

Rafael Martinez Rodriguez

Estudo da Emissão de Íons Estáveis e Metaestáveis (LiF)_nLi⁺ Induzida por Fragmentos de Fissão do ²⁵²Cf

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Física da PUC-Rio.

Orientador: Prof. Enio Frota da Silveira

Rio de Janeiro, agosto de 2003

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rafael Martinez Rodriguez

Graduou-se em Engenharia Quimíca na Facultade de Engenharia de Processos da Universidad Nacional de San Agustin em Arequipa, Peru. O tema da sua defensa foi a investigação experimental sobre vidrios organicos. Trabalhou en diferentes áreas da industria da produção. O contato emocionante Física comecou seu com а percisamente com o Mestrado, participando en alnguns congressos nas áreas de Colisões Inelasticas e Física da Materia Condensada no Brasil. Atualmente pertenece ao Laboratorio de Espectrômetria de Massa da PUC-Rio

Ficha Catalográfica

Martinez Rodriguez, Rafael

Estudo da Emissão de Íons Estáveis e Metaestáveis (LiF)nLi+ Induzida por Fragmentos de Fissão do 252Cf/ Rafael Martinez Rodriguez; orientador: Prof. Enio Frota da Silveira - Rio de Janeiro: PUC, Departamento de Física, 2003

140 f. : il. ; 30 cm

1. Dissertação (mestrado) - Pontifícia Universidade Católica de Rio de Janeiro, Departamento de Física.

Incluí referências bibliográficas.

1. Fisica - Teses. 2. Emissão Íons Secundários. 3. Íons Metaestáveis. 4. Tempo de Vida Média. 5. Detector Sencível à Posição. 6. Velocidades Iniciais. 7. Distribuições Angulares. I. da Silveira, Ênio. II. Pontifícia Universidade Católica de Rio de Janeiro. Departamento de Física. III.

Rafael Martinez Rodriguez

Estudo da Emissão de Íons Estáveis e Metaestáveis (LiF)_nLi⁺ Induzida por Fragmentos de Fissão do ²⁵²Cf

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Física da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Enio Frota da Silveira Orientador PUC-Rio

Prof. Arnaldo Naves de Britto LNLS

Prof. Carlos Vieira de Barros Leite Filho PUC-Rio

> Prof. Roberto Rosas Pinho UFJF

Prof. Ney Dumont Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 28 de agosto de 2003

Aos meus pais em sinal de eterno agradecimento

Aos meus irmãos

Agradecimentos

Ao meu orientador, Professor Enio Frota da Silveira, pelos conhecimentos ensinados, pela paciência e por guiar o desenvolvimento do presente trabalho, o que o converte em um verdadeiro orientador. Ao grupo de pesquisa todo pela ajuda constante: à Cássia pela preparação dos alvos e pelas correções do texto deste manuscrito, ao Vladimir pela ajuda durante a realização das experiências e ao Lucio pelo apoio com o programa de adquisição e pelas sugestões a esta dissertação.

Aos funcionários do Laboratório do Acelerador Van de Graff, agradeço a ajuda durante o desenvolvimento da etapa experimental.

A todos os professores do Laboratório e do Departamento de Física, que contribuíram para a minha formação acadêmica.

Aos meus colegas, expresso minha satisfação pelos momentos agradáveis vividos.

Ao CAPES e à PUC-Rio pelos auxílios concedidos durante o mestrado.

Resumo

Martinez Rodriguez, Rafael. Estudo da Emissão de Íons Estáveis e Metaestáveis (LiF)_nLi⁺ Induzida por Fragmentos de Fissão do 252 Cf. Rio de Janeiro, 2003. xxxp. Dissertação de Mestrado - Departamento de Física, Pontificia Universidade Católica do Rio de Janeiro.

Um espectrômetro de massa por tempo-de-vôo 252 Cf-PDMS foi empregado para a realização de três atividades: a) o aperfeiçoamento do espectrômetro com a instalação de novos dispositivos; b) a análise da emissão secundária de agregados iônicos por um alvo de LiF; c) a análise da fragmentação em vôo de íons positivos (LiF)_nLi⁺ metaestáveis.

O aperfeiçoamento do espectrômetro consistiu: i) na blindagem elétrica do detector *start* para aumentar a sua estabilidade; ii) na caracterização de dois pares de placas defletoras já existentes; iii) na instalação de um novo tipo de detector sensível à posição com anodo multi-fios, e iv) no projeto e na instalação de uma lente "Einzel" para aumentar a transmissão de íons secundários entre a amostra e o detector.

A emissão secundária de agregados iônicos por um filme de LiF policristalino, bombardeado por fragmentos de fissão de ~ 60 MeV foi analisada através da técnica tempo-de-vôo (TOF). O detector sensível à posição recém instalado permite o emprego da técnica XY-TOF para analisar distribuições angulares de íons Li e dos agregados (LiF)_nLi⁺. Determinaram-se as distribuições angulares dos agregados com n = 0 a 3, através de medidas simultâneas de suas velocidades axiais e radiais, evento por evento.

A vida media de íons metaestáveis $(LiF)_nLi^{+*}$ é determinada fazendo uso da configuração do espectrômetro e especialmente do comprimento do tubo de vôo livre. Após serem emitidas, as espécies iônicas metaestáveis monocarregadas são aceleradas por um campo elétrico da ordem de 2 kV/mm, e conduzidas a uma região de campo externo nulo, onde podem se dissociar espontaneamente em um fragmento iônico e outro neutro. Para facilitar a analise dos dados, impede-se a detecção do fragmento iônico através de um filtro eletrostático. Foram analisados os agregados iônicos com n = 1 a 5. Encontrouse que os valores das vidas medias estão na faixa de 30 a 100 ns. Discute-se também a detecção de espécies neutras produzidas por colisão de agregados $(LiF)_nLi^+$ com moléculas de gás residual

Palavras-chave

1.Física – Tese; 2. Emissão Íons Secundários; 3. Tempo de Vôo; 4. Metaestáveis; 5. Fragmentos de Fissão; 6. Tempo de Vida Médio; 7. Detector Sensível à Posição; 8. Velocidades Iniciais; 9. Distribuições Angulares; 10. PDMS.

Martinez Rodriguez, Rafael. Study of the Stable and Metastable $(LiF)_n Li^+$ Ion Emission Induced by ²⁵²Cf Fission Fragments. Rio de Janeiro, 2003. xxxp. MSc. Dissertation - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

A 252 Cf-PDMS time-of-flight mass spectrometer was used for the accomplishment of three activities: a) improvement of the spectrometer by introducing new devices; b) analysis of the LiF cluster ion secondary emission; c) analysis of the (LiF)_nLi⁺ metastable ion fragmentation, in flight.

The spectrometer improvement consists of: i) the shielding of the start detector to increase its stability, ii) the characterization of two existing deflecting- plate pairs, iii) the installation of a new type of position-sensitive delay line detector for secundary ions, and iv) the project and manufacture of a Einzel lens to increase the transmission of the secondary ions between the sample and the detector

The secondary cluster ion emission of policrystalline LiF, induced by the impact of fission fragments (60 MeV), is analyzed by the time-of-flight technique (TOF). The new position sensitive delay-line detector allows the use of the XY-TOF technique to analyze angular distributions of Li ions and $(\text{LiF})_n\text{Li}^+$ clusters. Event by event, their axial and radial velocities are measured simultaneously, allowing the angular distributions measurement of clusters with n = 0 to 3.

Mean lives of metastable clusters are determined through the measurement of the detection rate dependence on the target bias. After been emitted, the monocharged metatable ions are acelerated by a 2 kV/mm electric field towards a field-free region, where they can spontaneously dissociateinto two fragments, one ion and another neutral. To facilitate the data analysis, it is avoided the detection of ionic fragments by placing an electrostatic filter in front of the detector. Mean lives values of 30 to 100 ns are determined for ionic clusters with n = 1 to 5. The production of neutral species by collision of the (LiF)_nLi⁺ clusters with the gas molecules is also discussed.

Keywords

1.Physics – theses; 2. Secundary ion emission; 3. Time of flight; 4. Metastables; 5. Fission Fragments; 6. Mean life time; 7. Position sensitive delay line detector; 8. Initial velocities; 9. Angular distributions; 10. Plasma desorption mass spectrometry.

Sumario

1 Introdução		1
1.1 Motivaç	ão	2
1.2 Objetivo	05	2
2 Breve Revisã	o de Espectrometria de Massa e da Técnica PDMS	4
2.1 Espectro	ometria de Massa	5
2.2 Analisad	dor de Massa	6
2.2.1 Esp	pectrometria por Tempo de Vôo (TOF-MS)	7
2.2.2 Comparação do TOF com outras técnicas		11
2.3 Técnicas	s de Ionização	12
2.3.1 A	Técnica PDMS	13
2.4 Prepara	ção de Amostras	15
2.4.1 Ele	ectrospray	15
2.4.2 Dej	posição por "Spin" (Spin-casting)	16
2.4.3 Eva	aporação em Vácuo	16
3. Distribuição	de Velocidades Iniciais e Íons Metaestáveis	17
3.1 Distribut	ição de Velocidades Iniciais na Dessorção Iônica	17
3.1.1 Eta	pas na Dessorção Iônica	18
3.1.2 Transferência de Energia Projétil-Alvo		20
a)	Perda de Energia Nuclear (dE/dx) _n	20
b)	Perda de Energia Eletrônica (dE/dx) _e	21
3.1.3 A p	bassagem do regime de interação nuclear para o eletrônico	23
3.1.4 Me	canismo de Emissão de Partículas por Sputtering Eletrônico	24
a)	Modelos Térmicos	25
b)	Modelos de explosão Coulombiana generalizada	26
c)	Modelos de expansão	27
d)	O modelo de Knotek-Feibelman	28
3.2 Íons Me	taestáveis	28
3.2.1 Análise da Fragmentação de Íons Metaestáveis		29
3.2.2 Expressões de Tempo de Vôo para Íons Metaestáveis (Modo		30
Linear	r)	

a)	Fragmentação na região de aceleração: $t_f \leq t_l$	31
b)	Fragmentação na região de vôo livre: $t_f \ge t_1$	33
3.2.3 Tempo de vida média (τ)		34
3.2.4 Determinação de Q		35
3.2.5 Forma do Espectro		38
4 Condicional	nento do Espectrômetro de Massa	44
4.1 Descriq	ção do Equipamento	44
4.1.1 Es	spectrômetro de massa	44
a)	Fonte de Íons	44
b)	Tubo de Tempo de Vôo	47
c)	Espelho Eletrostático	47
d)	Sistema de Bombeamento	47
e)	Outras características	48
4.1.2 Le	ente Eletrostática Einzel	49
4.1.3 Pl	acas Defletoras	50
4.1.4 Si	stemas de Detecção	50
a)	Placas de Microcanais (MCP)	50
b)	Anodo Metálico Simples	51
c)	Anodo Sensível à Posição	52
4.2 Otimização do Equipamento		56
4.2.1 M	odificações do Detector Start	56
4.2.2 D	etectores start/stop e sua Otimização	59
4.2.3 A	linhamento do Espectrômetro por médio das Placas	
D	efletoras e dos Micrômetros	61
4.2.4 Co	plocação da Lente Einzel	65
4.2.5 U	so do Detector Sensível à Posição	67
a)	Efeitos das Placas Defletoras	67
b)	Efeito da Einzel	68
5 Métodos e F	Resultados Experimentais	73
5.1 Determinação de Velocidades Iniciais		73
5.1.1 Métodos de Determinação de Velocidades Iniciais		74
a)	Método direto	74
b)	Método da emissão em zona livre de campo	74

c)	Método das duas zonas de aceleração	75
d)	Método do espelho eletrostático	75
e)	Método de extração atrasada	76
f)	Detector Sensível à Posição	76
5.1.2 Det	alhamento do Método XY-TOF	77
a)	Método e Condições Experimentais	77
•	Medida do Tempo de Vôo	77
•	Medida da Posição	77
b) Resultados Experimentais		78
•	Espectros Obtidos	78
•	Determinação de Velocidades Iniciais	83
•	Resultados Experimentais	86
5.2 Íons Metaestáveis: Dissociação		91
5.2.1 Ana	álise de Íons Metaestáveis por MS-TOF	91
5.2.2 Det	alhamento do Método	92
5.2.3 Determinação da Eficiência do Detector MCP-Stop		95
5.2.4 Resultados Experimentais		97
a)	Espectros de Massa	97
b)	Dados obtidos	99
c)	Determinação da Vida Média	101
6 Discussão e C	Conclusões	104
6.1 Aperfeiç	coamento e Caracterização do Espectrômetro de Massa	105
6.2 Análise c	de Distribuições Angulares	106
6.3 Análise	do Espectro TOF de Partículas Neutras	108
6.3.1 Caj	ptura eletrônica	108
6.3.2 Dis	sociação Induzida por Colisão entre Moléculas	110
6.3.3 Dis	sociação de Metaestáveis	113
7 Referências Bibliográficas		114
Anexo		121

Lista de tabelas

Tabela 2.1 Características de alguns analisadores de massa	12
Tabela 2.2 Técnicas de Ionização para Espectrometria de Massa	
Molecular	13
Tabela 3.1 Tipos de Colisões Nucleares	21
Tabela 5.1. Taxa de Detecção de íons Emitidos e de Fragmentos	
Neutros	99

Lista de Figuras

Figura 2.1: Análise por espectrometria de massa	5
Figura 2.2: Componentes básicos de um espectrômetro de massa	6
Figura 2.3: Esquema de um espectrômetro TOF linear (²⁵² Cf - PDMS)	7
Figura 2.4: Causas de perda de resolução em massa	10
Figura 2.5: Efeitos da emissão sobre a forma do pico	10
Figura 2.6: Diagrama esquemático de um espectrômetro para PDMS	14
Figura 3.1: Etapas na dessorção iônica em função do tempo	19
Figura 3.2: Simulação da Potência de Frenamento	20
Figura 3.3: Interação projétil-alvo: formação de traços e cascatas de	
colisão	23
Figura 3.4: Exemplo da fragmentação de íons metaestáveis no tubo	
de vôo livre	39
Figura 3.5: Forma do pico TOF	41
Figura 3.6: Expansão do pico em função do momento da quebra no	
tubo de vôo livre	42
Figura 4.1: Vista superior da câmara principal	45
Figura 4.2: Espectrômetro de massa	46
Figura 4.3: Sistema de bombeamento do espectrômetro	48
Figura 4.4: Simulação em Simion dos campos de força da Einzel	49
Figura 4.5: Montagem das placas MCP em um detector	51
Figura 4.6: Esquema da eletrônica do sistema de aquisição de dados	52
Figura 4.7: Determinação da posição de uma partícula detectada	53
Figura 4.8: Eletrônica do sistema sensível à posição	55
Figura 4.9: Cronologia de processamento dos sinais no detector XY	56
Figura 4.10: Diminuição das contagens no detector start em função	
de U	57
Figura 4.11: Estabilidade do detector start em função do tempo antes	
e depois das modificações no detector	57
Figura 4.12: Configuração do detector start	58
Figura 4.13: Resultado das modificações feitas no detector start	59
Figura 4.14: Contagens Starts em função do limiar no CFD	60
Figura 4.15: Eficiência de detecção de íons em funçãoda tensão	
aplicada no detector	61
	~~

PUC-Rio - Certificação Digital Nº 0124802/CA

Figura 4.15: Eficiência de detecção de íons em funçãoda tensão	
aplicada no detector	61
Figura 4.16: Alinhamento do espectrômetro no eixo X (horizontal)	62
Figura 4.17: Alinhamento do espectrômetro no eixo Y (vertical)	62
Figura 4.18: Alinhamento do espectrômetro através dos micrômetros	63
Figura 4.19: Alinhamento do espectrômetro no eixo X	64
Figura 4.20: Alinhamento do espectrômetro no eixo Y	64
Figura 4.21 a, b, c: Dependência do rendimento de detecção utilizando	
a lente eletrostática Einzel para os íons H ⁺ , Cs ⁺ e (CsI)Cs ⁺	66
Figura 4.22: Tensão correspondente ao rendimento máximoda lente	
Einzel em função da tensão de aceleração	67
Figura 4.23: Espectro 2D, sem aplicação de campo elétrico nas	
placas defletoras	68
Figura 4.24a: Efeito da tensão aplicada nas placas defletoras no feixe	
de íons Movimentação do feixe ao longo do eixo X	69
Figura 4.24b: Efeito da tensão aplicada nas placas defletoras no feixe	
de íons Movimentação do feixe ao longo do eixo Y	70
Figura 4.25: Focalização do feixe de íons utilizando a lente eletrostática	
Einzel	71
Figura 5.1: Espectro de tempo de vôo	79
Figura 5.2: Espectro de posição relativa ao eixo X	79
Figura 5.3: Espectro XY, para todos os íons	80
Figura 5.4: Espectro X-TOF	80
Figura 5.5: Espectro bidimensional e projeções do pico do H⁺	81
Figura 5.6: Espectro bidimensional e projeções do pico do Li⁺	82
Figura 5.7: Espectro bidimensional e projeções do pico do Li $(LiF)^{+}$	82
Figura 5.8: Espectro bidimensional e projeções do pico do $Li_2(LiF)^+$	83
Figura 5.9: Região de aceleração	84
Figura 5.10: Distribuição de velocidades iniciais axiais	88
Figura 5.11: Distribuição de energias iniciais axiais	88
Figura 5.12: Distribuição de velocidades iniciais radiais	89
Figura 5.13: Distribuição de energias iniciais radiais	89

Figura 5.14: Distribuição de Energia Total	
Figura 5.15: Distribuição Angular (íons emitidos por ângulo sólido)	90
Figura 5.16 a,b: Simulações feitas com a equação 5.15	94
Figura 5.17: Eficiência total de detecção, definida por N ^{det} = $\epsilon(U)N$	96
Figura 5.18 a, b: Espectros característicos fragmentos neutros e íons	98
Figura 5.19: Rendimento de detecção dos fragmentos	100
Figura 5.20 Eficiência de detecção stop	100
Figura 5.21: Vidas médias experimentais	102
Figura 5.22: Comparação dos resultados experimentais com as	
simulações	103
Figura 6.1: Projeção ortográfica do 2° agregado iônico do LiF	106
Figura 6.2: Distribuição angular do agregado (LiF)₂Li⁺.	107
Figura 6.3: Taxa de neutralização de íons atômicos secundários	110
Figura 6.4: Aumento de número de fragmentações com a pressão do	
gas residual	112
Figura 6.5: Variação do número de fragmentações	112