3 Rastreamento

Em Realidade Virtual (RV) e Realidade Aumentada (RA), o processo de acompanhamento das coordenadas de um objeto em tempo real chama-se **rastreamento**. Os objetos mais comuns a serem rastreados são os capacetes de RV e dispositivos manuais de interação tri-dimensional. Em muitos casos, a posição (três graus de liberdade) e a orientação (três graus de liberdade) do objeto devem ser recuperados, dando origem a sistemas de rastreamento com seis graus de liberdade.

Para um sistema de RV e RA, o rastreamento deve possuir as seguintes características:

- Velocidade: as aplicações devem funcionar a taxas de 30 a 40 Hz, para não atrapalharem a sensação de imersão;
- Precisão: as aplicações de RA, principalmente, necessitam que os objetos virtuais casem com os objetos reais, no processo de registro [3, 4];
- Ruído: quando não há movimento do objeto sendo rastreado, o mesmo deve estar parado no mundo virtual;
- Robustez: pequenos movimentos no mundo real devem gerar pequenos movimentos no mundo virtual. Os pontos fora da curva devem ser devidamente descartados;
- Mobilidade: o dispositivo que está sendo rastreado e o rastreador não devem atrapalhar o movimento do usuário;
- Predição: a fim de evitar atrasos na renderização, técnicas podem ser utilizadas para prever a posição futura do objeto sendo rastreado.

O rastreamento óptico pode oferecer vantagens sobre os métodos magnéticos ou mecânicos. Ele permite que sejam utilizados dispositivos sem fio, facilitando a mobilidade do usuário, rastreamento de múltiplos objetos, oferece pouca sensibilidade a interferências externas e pode ser utilizado com câmeras digitais convencionais, tornando-se um produto de fácil acesso. A maioria dos

sistemas ópticos utiliza objetos cobertos por materiais retroreflexivos e receptores com filtros infravermelhos. Na Figura 15 podemos observar um capacete de RV com 3 esferas cobertas com esse tipo de material que serão rastreadas para determinar a posição e orientação da cabeça do usuário.

Figura 15: HMD rastreado por esferas retroreflexivas.

A Figura 16 ilustra a visualização de um conjunto de esferas retroreflexivas utilizando-se uma câmera convencional, uma câmera com sensores infravermelhos dentro de uma sala com lâmpadas incandescentes e outra em uma sala com lâmpadas fluorescentes. O problema ilustrado é que a luz amarela contém a componente infravermelha, atrapalhando a captura da imagem.

Figura 16: Esferas retroreflexivas: (i) Câmera convencional; (ii) Câmera com filtro infravermelho em ambiente com lâmpadas incandescentes; (iii) Câmera com filtro infravermelho em ambiente com lâmpadas fluorescentes.

A abordagem mais simples em rastreamento de dispositivos de interação é a utilização de somente um marcador (geralmente esférico). Essa abordagem permite que apenas 3 graus de liberdade (posição) sejam recuperados, utilizando mais de uma câmera. Outra abordagem existente é a utilização de marcadores com uma posição tri-dimensional conhecida. Utilizando propriedades projetivas invariantes, apresentadas em [31], é possível comparar a posição dos pontos da

3 Rastreamento

imagem com padrões em uma base de dados. O padrão que melhor representa o padrão do modelo é escolhido. É possível determinar a posição e a orientação do dispositivo utilizando imagens de mais de uma câmera.

Na presente dissertação, o dispositivo proposto será composto por apenas uma esfera. Ela será rastreada por quatro câmeras a fim de prover redundância. Com apenas uma câmera, é possível determinar um segmento de reta que parte da sua posição e intercepta a imagem no ponto detectado. Com duas câmeras é possível determinar, com uma certa aproximação, a interseção entre dois segmentos e estabelecer a posição da esfera no espaço. Essa aproximação existe porque, devido a erros de calibração, as retas não se interceptam realmente. A heurística empregada para determinar a "interseção" foi a de se utilizar o ponto mais próximo entre as duas retas. Com mais de duas câmeras, o resultado pode ser estabelecido com mais precisão, além do sistema permitir que a visão de algumas câmeras seja bloqueada em algum momento, provendo maior mobilidade ao usuário.

3.1. Calibração da câmera

A etapa inicial no processo de rastreamento feito por câmeras digitais consiste na calibração das câmeras. Calibrar uma câmera é encontrar parâmetros (vistos mais adiante) que permitam definir uma matriz de transformação que levam os pontos do mundo tridimensional para o plano da imagem gerada por aquela câmera.

Existem diversas técnicas de calibração de câmeras descritas na literatura, sendo que o algoritmo utilizado nesta tese foi o algoritmo proposto por Tsai em [29, 30].

Figura 17: Modelo de câmera "pinhole".

A Figura 17 ilustra o modelo de câmera "*pinhole*" utilizado para calibração. (x, y, z) é a coordenada do ponto P no sistema de coordenadas do mundo 3D. (X,Y,Z) é a coordenada do ponto no sistema de coordenadas da câmera, com origem no ponto O, que é o seu centro óptico, e com seu eixo z coincidindo com o eixo óptico. (\tilde{U}, \tilde{V}) é o sistema de coordenadas da imagem centralizado em C(interseção entre o eixo focal e o plano da imagem) e paralelo ao eixo (X,Y). f é a distância focal, ou a distância entre o plano da imagem e o centro óptico. $p(\tilde{u}, \tilde{v})$ é a coordenada na imagem do ponto (X,Y,Z) se o modelo de câmera fosse perfeito e não houvesse distorção. $p_d(\tilde{u}_d, \tilde{v}_d)$ é o ponto real na imagem onde (X,Y,Z) é projetado. Contudo, como o sistema do computador é discretizado em *pixels*, alguns parâmetros que relacionam a coordenada do ponto na imagem com a coordenada (u, v) devem ser especificados e calibrados. Os quatro passos da transformação total do ponto (x, y, z) em (u, v) estão ilustrados na Figura 18.

Figura 18: Os quatro passos da transformação de coordenadas do mundo em coordenadas da imagem no computador

Passo 1: Transformação do ponto em coordenadas do mundo (x, y, z) para as coordenadas do sistema da câmera (X, Y, Z)

$$\begin{bmatrix} X \\ Y \\ Z \end{bmatrix} = R \begin{bmatrix} x \\ y \\ z \end{bmatrix} + T, \qquad (3.1)$$

onde R é uma matriz de rotação 3x3

$$R \equiv \begin{bmatrix} \vec{r}_1 \\ \vec{r}_2 \\ \vec{r}_3 \end{bmatrix} = \begin{bmatrix} r_{1x} & r_{1y} & r_{1z} \\ r_{2x} & r_{2y} & r_{2z} \\ r_{3x} & r_{3y} & r_{3z} \end{bmatrix},$$
(3.2)

e T é um vetor de translação

$$T \equiv \begin{bmatrix} t_x \\ t_y \\ t_z \end{bmatrix}.$$
 (3.3)

Os parâmetros a serem calibrados são $R \in T$. Convém observar que o ponto $T = (t_x, t_y, t_z)$ representa a origem dos sistema do mundo escrita em coordenadas da câmera. As matrizes $R \in T$ podem ser vistas como uma única matriz [R | T]

$$\begin{bmatrix} R \mid T \end{bmatrix} = \begin{bmatrix} \vec{r}_1 & t_x \\ \vec{r}_2 & t_y \\ \vec{r}_3 & t_z \end{bmatrix} = \begin{bmatrix} r_{1x} & r_{1y} & r_{1z} & t_z \\ r_{2x} & r_{2y} & r_{2z} & t_y \\ r_{3x} & r_{3y} & r_{3z} & t_z \end{bmatrix}$$
(3.4)

Passo 2: Transformação das coordenadas da câmera (X,Y,Z) para as coordenadas ideais da imagem (\tilde{u}, \tilde{v}) usando projeção perspectiva

$$\tilde{u} = f \frac{X}{Z} \tag{3.5}$$

$$\tilde{v} = f \frac{Y}{Z}.$$
(3.6)

O parâmetro a ser calibrado é a distância focal f.

Passo 3: Distorção radial das lentes: os parâmetros a serem calibrados são os coeficientes de distorção. A modelagem das distorções da lente pode ser encontrada em [17].

Passo 4: Transformação das coordenadas reais da imagem em coordenadas da imagem no computador levando em consideração os tamanhos dos *pixels* da tela.

Os parâmetros listados acima podem ser divididos em duas categorias: *intrínsecos* e *extrínsecos*. Os parâmetros intrínsecos da câmera são sua distância focal (f), os coeficientes de distorção da lente, o fator de escala (tamanho de um *pixel* no plano de captura da imagem) e as coordenadas da origem (u_o, v_0) no plano da imagem. Os parâmetros extrínsecos são a matriz de rotação R e o vetor de translação T.

O modelo ilustrado acima pode ser simplificado se não levarmos em consideração os passos 3 e 4, admitindo, portanto, que não existe distorção radial e que o centro da imagem no computador coincide com o centro óptico.

As equações (3.4), (3.5) e (3.6) podem ser compatibilizadas a fim de produzir uma transformação direta do ponto (x, y, z) do mundo no ponto (u, v) na imagem

$$\begin{bmatrix} us\\vs\\s \end{bmatrix} = \begin{bmatrix} f\vec{r}_1 & ft_x\\f\vec{r}_2 & ft_y\\\vec{r}_3 & t_z \end{bmatrix} \begin{bmatrix} x\\y\\z\\1 \end{bmatrix},$$
(3.7)

onde (us, vs, s) são coordenadas homogêneas. Multiplicando, encontramos:

$$u - u_0 = f \frac{r_{1x} x + r_{1y} y + r_{1z} z + t_x}{r_{3x} x + r_{3y} y + r_{3z} z + t_z}$$
(3.8)

e

$$v - v_0 = f \frac{r_{2x} x + r_{2y} y + r_{2z} z + t_y}{r_{3x} x + r_{3y} y + r_{3z} z + t_z}.$$
(3.9)

Uma observação a ser feita é que a escala existente na imagem está embutida na distância focal *f*.

Na presente dissertação, o método de Tsai coplanar foi utilizado, isto é, o método que encontra os parâmetros baseado em pontos do mundo tridimensional contidos no plano z = 0.

A partir das equações (3.8) e (3.9), assumindo z = 0 para todos os pontos, temos

$$u - u_0 = \tilde{u} = f \frac{r_{1x} x + r_{1y} y + t_x}{r_{3x} x + r_{3y} y + t_z}$$
(3.10)

e

$$v - v_0 = \tilde{v} = f \frac{r_{2x} x + r_{2y} y + t_y}{r_{3x} x + r_{3y} y + t_z}.$$
(3.11)

Dividindo (3.10) por (3.11) e em seguida o numerador e o denominador da razão da direita por t_y , temos:

$$\frac{r_{1x}}{t_y}x_i\widetilde{v}_i + \frac{r_{1y}}{t_y}y_i\widetilde{v}_i - \frac{r_{2x}}{t_y}x_i\widetilde{u}_i - \frac{r_{2y}}{t_y}y_i\widetilde{u}_i + \frac{t_x}{t_y}\widetilde{v}_i = \widetilde{u}_i.$$
(3.12)

O indicador *i* subescrito em cada variável corresponde aos vários pontos amostrados e utilizados no método Tsai.

Obtemos com isso um sistema linear Au = b, onde A é uma matriz $n \times 5$ e cada linha A_i é dada por $(x_i \tilde{v}_i, y_i \tilde{v}_i, -x_i \tilde{u}_i, -y_i \tilde{u}_i, \tilde{v}_i)$, u sendo um vetor dado por

$$(U_1 \quad U_2 \quad U_3 \quad U_4 \quad U_5) = \left(\frac{r_{1x}}{t_y} \quad \frac{r_{1y}}{t_y} \quad \frac{r_{2x}}{t_y} \quad \frac{r_{2y}}{t_y} \quad \frac{t_x}{t_y}\right)$$
 (3.13)

e cada elemento do vetor b sendo dado por \tilde{u}_i .

Como \vec{r}_1 , $\vec{r}_2 e \vec{r}_3$ são ortonormais, e designando $\alpha = \frac{r_{1z}}{t_y} e \beta = \frac{r_{2z}}{t_y}$, temos

que

$$\begin{cases} \alpha\beta = -U_1U_3 - U_2U_4 \\ \alpha^2 + U_1^2 + U_2^2 = \beta^2 + U_3^2 + U_4^2 \end{cases}$$
(3.14)

Resolvendo o sistema acima, calcula-se t_y a partir de

$$t_{y}^{2} = \frac{U - \sqrt{U^{2} - 4(U_{1}U_{4} - U_{2}U_{3})^{2}}}{2(U_{1}U_{4} - U_{2}U_{3})^{2}}$$
(3.15)

onde $U = U_1^2 + U_2^2 + U_3^2 + U_4^2$.

Portanto, com estes valores já definidos e utilizando a equação 3.13, é possível determinar os valores de r_{1x} , r_{1y} , r_{2x} , r_{2y} e t_x . Pelo fato dos vetores $\vec{r_1} \in \vec{r_2}$ terem normais iguais a um, encontram-se também os valores de r_{1z} e r_{2z} , e conseqüentemente calcula-se $\vec{r_3}$, pois $\vec{r_1}$, $\vec{r_2} \in \vec{r_3}$ são ortonormais. Finalmente, usando os valores já encontrados e as equações (3.10) e (3.11), calculamos $f \in t_z$. Pode haver a necessidade de se ajustar os sinais que inicialmente assumimos como positivos, como, por exemplo, t_y .

Em [26], Szenberg apresenta um estudo de métodos de calibração de câmera, onde ele conclui que o método de Tsai não apresenta bons resultados quando o número de pontos de calibração são poucos. Para resolver esse problema, ele utiliza uma homografia (transformação projetiva planar), na qual é definido um mapeamento 2D para 2D, de um plano contido no mundo real para o plano da imagem, para estimar uma quantidade maior de pontos para serem utilizados no Tsai.

3.2. Pré-processamento

Antes de se calibrar a câmera é necessário um pré-processamento na imagem a fim de se encontrar os objetos a serem rastreados mais facilmente.

A primeira etapa do pré-processamento é a aplicação de um filtro digital para eliminação de pequenos detalhes e ruído que existam na imagem. Um filtro adequado para esta tarefa é o filtro de suavização Gaussiano. Esse filtro é uma convolução bidimensional cujo núcleo possui algumas propriedades especiais. A forma da distribuição gaussiana unidimensional é dada por:

$$G(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{x^2}{2\sigma^2}}$$

onde σ é o desvio padrão da distribuição e assumindo que a distribuição tem uma média igual a zero. Um exemplo desta distribuição está ilustrado na Figura 19.

Figura 19: Distribuição gaussiana unidimensional com média 0 e σ = 1.

Em 2D, uma curva gaussiana isotrópica, isto é, circularmente simétrica, possui a forma:

$$G(x, y) = \frac{1}{2\pi\sigma^2} e^{-\frac{x^2 + y^2}{2\sigma^2}}.$$

Esse distribuição é ilustrada na Figura 20.

Figura 20: Distribuição gaussiana bidimensional com média (0,0) e σ = 1.

A idéia da suavização gaussiana é a utilização da distribuição 2D como uma função de "espalhamento pontual", e isso é alcançado através da convolução. Como a imagem é armazenada com uma coleção de *pixels* discretos, é necessária a construção de uma aproximação discreta da função gaussiana antes de se aplicar a convolução. Na teoria, a distribuição gaussiana é não nula em todos os pontos, exigindo que o núcleo da convolução seja infinitamente grande, mas na prática, a distribuição é efetivamente zero a mais de três desvios padrão da média. Logo, é possível quebrar o núcleo a partir desse ponto. A Figura 21 mostra um núcleo de convolução com valores inteiros que aproxima uma distribuição gaussiana com um desvio padrão $\sigma = 1$.

<u>1</u> 273	1	4	7	4	1
	4	16	26	16	4
	7	26	41	26	7
	4	16	26	16	4
	1	4	7	4	1

Figura 21: Aproximação discreta da função gaussiana com σ = 1.

Uma vez tendo-se calculado um núcleo satisfatório, a suavização gaussiana é aplicada usando métodos de convolução conhecidos [12]. A Figura 22 mostra o resultado da aplicação da suavização gaussiana. A imagem fica mais "borrada", porém os pontos brancos estão mais conectados ao seu centro.

(i)

(ii)

Figura 22: Filtragem gaussiana: (i) imagem original; (ii) filtro gaussiano.

A próxima etapa do pré-processamento é a transformação da imagem em tons de cinza em uma imagem binária, com uma operação denominada *segmentação* ou *threshold*. Na verdade, a operação necessária é bastante simples e chama-se *threshold* binário.

O threshold binário funciona da seguinte maneira

$$dst(x, y) = \begin{cases} valorMax, se \ src(x, y) > threshold \\ 0, caso \ contrário \end{cases},$$
(3.16)

onde

dst(x, y)	valor da imagem destino,
src(x, y)	valor da imagem de origem,
valorMax	valor para substituição da cor do pixel da imagem de origem,
threshold	limite para substituição da cor na imagem de origem.

Como observado na Figura 23, antes de se executar o threshold definido pela equação (3.16), a imagem precisou ser invertida.

Figura 23: Segmentação: (i) imagem original; (ii) imagem invertida; (iii) imagem segmentada

Após a etapa de pré-processamento, a imagem está pronta para que possam ser extraídos os marcadores para calibração e para que o objeto desejado seja rastreado. No caso da implementação desta dissertação, todos os objetos envolvidos são esferas, logo, algum mecanismo de extração de elipses deve ser executado. É o que será visto na seção a seguir.

3.3. Extração de elipses

A fim de se extrair as elipses ou outros objetos de uma imagem, é necessária a separação das componentes conexas.

A identificação de componentes conexas funciona percorrendo uma imagem, pixel por pixel (de cima para baixo e da esquerda para direita, por exemplo) a fim de identificar as regiões de pixels conexas, isto é, as regiões onde pixels adjacentes compartilham os mesmos valores de intensidade V. Em uma imagem binária, temos $V = \{1\}$, contudo em uma imagem em escala de cinza, V possuirá um conjunto de valores, por exemplo: $V = \{51, 52, 53, ..., 77, 78, 79, 80\}$. O algoritmo de identificação de componentes conexas funciona com imagens binárias e em tons de cinza e com vários tipos de conectividade entre *pixels*.

A conectividade entre *pixels* descreve a relação entre dois ou mais *pixels*. Para que dois *pixels* estejam conectados, eles precisam validar algumas condições relativas a brilho do *pixel* e adjacência. Primeiramente, seus valores devem estar no mesmo conjunto de valores *V*.

Para formular o critério de adjacência, deve-se primeiro introduzir o conceito de *vizinhança*. Para um *pixel* p com coordenadas (x, y) o conjunto de *pixels* dados por:

$$N_4(p) = \{(x+1, y), (x-1, y), (x, y+1), (x, y-1)\}$$

é chamado de sua 4-vizinhança. Sua 8-vizinhança é definida como:

$$N_{8}(p) = N_{4} \cup \{(x+1, y+1), (x+1, y-1), (x-1, y+1), (x-1, y-1)\}$$

A partir desses conjuntos podemos definir o conceito de 4-conectividade e 8-conectividade. Dois *pixels* $p \in q$, ambos tendo valor no mesmo conjunto V, são 4-conectados se q pertence ao conjunto $N_4(p)$ e 8-conectados se q pertence ao conjunto $N_8(p)$. A Figura 24 mostra duas componentes conexas baseadas na 4conectividade.

Figura 24: Duas componentes conexas baseado na 4-conectividade.

Para descrever o algoritmo de identificação de componentes conexas, admitimos que a imagem sendo analisada é binária e a conectividade utilizada é a 8. O algoritmo de identificação de componentes conexas percorre a imagem por linha até encontrar um ponto p com valor igual a 1. Quando isso acontece, o algoritmo examina os quatro pontos vizinhos de p que já foram encontrados durante o rastreio da imagem, isto é, os vizinhos (i) à esquerda de p, (ii) acima de p, (iii e iv) as suas duas diagonais superiores. Baseado nessa informação, a identificação ocorre como a seguir:

- se todos os quatros vizinhos são 0, associe um novo identificador a p, senão
- se somente um vizinho é 1, associe o seu identificador a p, senão
- se um ou mais vizinhos são 1, associe um dos identificadores a p e anote as equivalências.

Após completar todo o rastreio da imagem, os pares de identificadores equivalentes são classificados por classes de equivalência e um identificador é associado a cada classe. Como passo final, um novo rastreio é feito na imagem, onde cada identificador é substituído pelo identificador da sua classe de equivalência.

Depois de identificadas as componentes conexas, detectam-se quais dos conjuntos de *pixels* são elipses, a fim de remover possíveis erros na imagem, como a mão do usuário, ou outro objeto que pode vir a surgir. A posição dos marcadores pode ser aproximada pelos centros das elipses encontradas. O método de extração de elipses utilizado foi o de mínimos-quadrado [22].

De posse das elipses, é necessária uma etapa da identificação dos objetos para associação da sua posição na imagem com sua posição no padrão de calibração. No desenvolvimento dessa dissertação, a identificação foi feita manualmente, pois a mesma era executada uma única vez para a mesma configuração de câmeras. Para o rastreamento do objeto, uma única esfera foi utilizada, logo não houve necessidade de identificação.

3.4. Posicionamento da esfera rastreada

A partir das matrizes R e T obtidas pela calibração de uma câmera, é possível determinar a posição tridimensional da esfera no plano z = 0. Com essa

posição, calcula-se um raio que parte da posição da câmera e intercepta o plano, passando pelo centro da esfera.

A fim de determinar a posição real (x, y, z) da esfera, é necessário que haja no mínimo duas câmeras acompanhando-na. De posse do raio que parte das duas câmeras, é possível encontrar a interseção entre elas. Porém, devido a erros provenientes da extração do centro da esfera, dos pixels serem discretos e do próprio método Tsai, a interseção certamente será nula. Logo, o ponto mais próximo entre os dois segmentos de reta deve ser encontrado.

De acordo com a Figura 25, o que queremos encontrar é o ponto médio do vetor w_c .

Figura 25: Duas retas não paralelas no espaço. O vetor w_c é o vetor de menor comprimento entre elas.

Podemos escrever as retas como sendo $L_1: P(s) = P_0 + s(P_1 - P_0)$ e $L_2: Q(t) = Q_0 + t(Q_1 - Q_0)$. Seja w(s,t) = P(s) - Q(t) um vetor entre pontos das duas retas. O que queremos encontrar é o vetor w(s,t) de menor comprimento para todo s e t.

Em qualquer espaço *n*-dimensional, as duas linhas, $L_1 \in L_2$, estão mais próximas em um único par de pontos, $P(s_c) \in Q(t_c)$, onde w(s,t) possui tamanho mínimo. Se $L_1 \in L_2$ não forem paralelas, então o seguimento de reta $\overline{P(s_c)Q(t_c)}$ que une o par de pontos é perpendicular a ambas as linhas ao mesmo tempo. Nenhum outro segmento entre as retas $L_1 \in L_2$ possui esta propriedade. Logo, o vetor $w_c = w(s_c, t_c)$ é perpendicular as direções $\vec{u} \in \vec{v}$, e isto é equivalente a satisfazer as duas equações $u \cdot w_c = 0$ e $v \cdot w_c = 0$.

As duas equações são resolvidas substituindo-se

$$W_c = P(s_c) - Q(t_c) = W_0 + s_c \vec{u} - t_c \vec{v},$$

onde $w_0 = P_0 - Q_0$, nas duas equações lineares:

$$(\vec{u} \cdot \vec{u})s_c - (\vec{u} \cdot \vec{v})t_c = -\vec{u} \cdot w_0$$
$$(\vec{v} \cdot \vec{u})s_c - (\vec{v} \cdot \vec{v})t_c = -\vec{v} \cdot w_0$$

Fazendo $a = \vec{u} \cdot \vec{u}$, $b = \vec{u} \cdot \vec{v}$, $c = \vec{v} \cdot \vec{v}$, $d = \vec{u} \cdot w_0$ e $e = \vec{v} \cdot w_0$, encontramos

$$s_c = \frac{be - cd}{ac - b^2}$$
 e $t_c = \frac{ae - bd}{ac - b^2}$

sempre que o denominador $ac - b^2$ for diferente de zero.

A posição do centro da esfera é igual a $\frac{w_c}{2}$. Os pontos Q₀ e P₀ são as coordenadas das câmeras obtidas pela calibração e os pontos P₁ e Q₁ são os pontos amostrados do centro da esfera.

Quando existem *n* câmeras capturando, o mesmo algoritmo pode ser aplicado para um combinação $\binom{n}{2}$ de segmentos de reta. Com o conjunto de pontos equidistantes obtidos, pode-se calcular o centro da esfera através da média da posição dos pontos ou descartando os pontos mais distantes.

O algoritmo descrito acima é uma heurística que tenta aproximar a interseção de quatro retas muito próximas que, supostamente, deveriam se interceptar. Essa não é a única heurística existente. Outras maneiras existem, como por exemplo, a utilização do método dos mínimos quadrados para minimizar a distância entre o ponto de interseção e as quatro retas.

3.5. Filtro de Kalman

Um filtro de Kalman [15,33] tem como idéia básica a predição e a correção de predição de um evento. A predição é feita a partir de valores passados e a correção de predição utiliza medições provenientes da observação de um fenômeno. A Figura 26 ilustra o resultado de uma predição, onde o movimento observado difere do movimento previso.

O fenômeno a ser observado e corrigido pelo filtro de Kalman é um processo $x \in \Re^n$ que obedece a uma lei de evolução linear, com a presença de erros aleatórios, ou seja,

$$x_{k} = \Phi_{k} x_{k-1} + \mathcal{E}_{k},$$

e uma medição $z \in \Re^m$ descrita por

$$z_k = H_k x_k + \mu_k, \text{ onder}$$

 H_k é a matriz de medição que relaciona o estado x_k à medida z_k e,

 $\begin{cases} \varepsilon_k \sim N\left(0, \mathbf{Q}_k\right) \\ \mu_k \sim N\left(0, \mathbf{R}_k\right) \\ m \leq m \end{cases}$ são distribuições normais de probabibilidade com média 0 e matriz de covariância Q_k e R_k .

O problema a ser resolvido pelo filtro de Kalman é, dada a estimativa \hat{x}_{k-1} do estado anterior, com sua respectiva matriz de covariância \hat{P}_{k-1} , procurar uma solução da forma

$$\hat{x}_k = \tilde{x}_k + K_k (z_k - H_k \tilde{x}_k)$$
, onde $\tilde{x}_k = \Phi_k \hat{x}_{k-1}$,

de tal modo que o valor esperado do erro quadrático $(E(\hat{x}_k - x_k)^2)$ seja mínimo. A matriz K_k é denominada ganho de Kalman.

A solução do filtro de Kalman foi obtida de [33]. Ela é composta de duas etapas: predição e correção. A solução da etapa de predição é

(1) Estimar o processo: $\tilde{x}_k = \Phi_k \hat{x}_{k-1}$

(2) Estimar a matriz de covariância: $\tilde{P}_k = \Phi_k \hat{P}_{k-1} \Phi_k^T + Q_k$

e a da etapa de correção é

- (1) Calcular o ganho de Kalman: $K_k = \tilde{P}_k H_k^T (H_k \tilde{P}_k H_k^T + R_k)^{-1}$
- (2) Atualizar a estimativa através da medida z_k : $\hat{x}_k = \tilde{x}_k + K_k (z_k H\tilde{x}_k)$
- (3) Atualizar a matriz de covariância: $\hat{P}_k = (I K_k H_k) \tilde{P}_k$

Dessas fórmulas, o mais importante é concluirmos qual será o comportamento do filtro diante dos valores das matrizes de covariância $Q \in R$. Para isso devemos analisar o comportamento da matriz K. Ela pode ser definida como

$$K = \frac{\Phi_{k} P_{k-1} \Phi_{k}^{T} H_{k}^{T} + Q_{k} H_{k}^{T}}{H_{k} \Phi_{k} P_{k-1} \Phi_{k}^{T} H_{k}^{T} + H_{k} Q_{k} H_{k}^{T} + R_{k}}$$

Dessa equação concluímos que:

- se Q >> R, então $K = \frac{1}{H}$ e $\hat{x}_k = z_k$, ou seja, se o erro associado ao processo for muito maior do que o erro associado a medição, o filtro de Kalman utilizará os valores medidos como predição;
- se R >> Q, então K = 0, x̂_k = x̂_k, ou seja, se o erro da medição for muito maior, o filtro utilizará os valores corrigidos com base no processo.

Observamos também, que o comportamento do filtro depende muito pouco da matriz de covariância inicial P_0 .

Na presente tese, o filtro de Kalman foi utilizado para estimar o movimento sendo realizado pela esfera rastreada. Para isso, o modelo empregado foi o seguinte:

$$\begin{bmatrix} X \\ Y \\ Z \\ \dot{X} \\ \dot{Y} \\ \dot{Z} \\ \dot{X} \\ \dot{X} \\ \dot{Y} \\ \dot{Z} \\ \dot{X} \\ \dot{X} \\ \dot{Y} \\ \dot{Z} \\ \dot{X} \\ \dot{X} \\ \dot{X} \\ \dot{X} \\ \dot{Y} \\ \dot{Z} \\ \dot{X} \\$$

onde (X,Y,Z) é a posição, $(\dot{X},\dot{Y},\dot{Z})$ a velocidade e *dt* é a variação em segundos, medido a cada passo. No Capítulo 4, serão dados mais detalhes sobre os valores das matrizes de covariância *Q* e *R*.

3.6. Algoritmo Proposto

O algoritmo proposto é composto de duas etapas: calibração e rastreamento, sendo que elas possuem alguns procedimentos em comum. Ambas as etapas trabalham com a imagem segmentada, logo, as quatro primeiras tarefas são iguais:

- a) Captura da imagem pela câmera;
- b) Aplicação de filtro gaussiano;
- c) Inversão da imagem;
- d) Segmentação.

A partir desse momento, a imagem segmentada será utilizada pela etapa de calibração, que é feita uma única vez para cada uma das quatro câmeras utilizadas:

- e) Detecção das elipses;
- f) Identificação dos pontos de calibração (etapa manual);
- g) Calibração da câmera;
- h) Gravação dos arquivos de calibração;

Como a etapa de calibração é feita somente uma vez, os arquivos que armazenam as informações das câmeras calibradas serão utilizados posteriormente para recuperação da posição de cada câmera. A etapa de rastreamento possui as seguintes tarefas:

- e) Para cada câmera:
 - f) Detecção e determinação do centro da esfera sendo rastreada;
 - g) Conversão do centro da esfera em coordenadas da imagem para coordenadas do mundo;
 - h) Definição do segmento de reta r_i, que passa pela posição da câmera e pelo centro da esfera obtido por essa câmera;
- i) Para cada par de segmentos de reta *i* e *j*:
 - j) Cálculo do ponto P_{ij} mais próximo entre as retas i e j;
- k) Determinação da média das posições dos pontos P_{ij}.

A média encontrada é o centro da esfera sendo rastreada. Na próxima seção, serão vistos detalhes da implementação e os resultados obtidos.