6 Comparações entre resultados teóricos e experimentais

No capítulo 4, um estudo sistemático quantificou os efeitos dos parâmetros do modelo proposto sobre as grandezas físicas observáveis. A seguir, será apresentada uma análise sobre os parâmetros mais adequados para o sistema $N^{2+} \rightarrow H_2O$, tendo como objetivo o acordo com os resultados experimentais apresentados no capítulo 5.

6.1 Metodologia

No modelo, quase todas as ionizações na superfície do sólido situadas no semi-plano x > 0 foram excluídas do cálculo quando $\theta_p \neq 0$. Esta é uma aproximação radical, mas coerente com a hipótese de que elétrons secundários apenas se deslocam no interior do sólido em direções perpendiculares à trajetória do projétil: o ultratraço não intercepta a superfície em x > 0. Nestas condições, apenas os elétrons originários do infratraço atravessam a superfície em x > 0, pois são provenientes das interações pré-impacto entre o projétil e a superfície. A formação de cátions na superfície diretamente pelo projétil ocorre dentro de uma pequena elipse centrada no ponto de impacto e possuindo semi-eixos b_{max} e $b_{max}/\cos \theta_p$.

No semiplano x < 0, as ionizações e trajetórias no quadrante y < 0também foram excluídas na execução do código. Isto foi feito em função da simetria especular dos fenômenos em relação ao plano de incidência do feixe (plano XZ): os resultados obtidos para y > 0 são repetidos para -y.

Como conseqüência de cálculos preliminares constatou-se que a grande maioria das emissões iônicas ocorria no quadrado limitado por x = y = 20 Å. As simulações subseqüentes ficaram então restritas a essa região (ver figura 6.1). Um retículo com passo de 0,5 Å nas direções X e Y foi empregado de modo a gerar $41 \times 41 = 1641$ células, adicionadas àquelas das interações preimpacto em x > 0.

Figura 6.1: A superfície reticulada foi considerada para o cálculo, onde uma trajetória se inicia a cada célula de 0.5 Å de lado. Para cada trajetória será associada uma probabilidade de que um íon secundário a percorra.

Partindo de cada uma destas células, foi calculada uma trajetória para cada espécie química dessorvida. A velocidade desses íons foi determinada passo a passo até 5 ps após o impacto. Nos primeiros 3 ps o passo considerado foi de 0,01 ps, aumentando para 0,1 nos últimos 2 ps. Os resultados finais permaneceram estáveis para variações do passo em torno desses valores. Para o cálculo de distribuição angular e de energia (velocidade), uma densidade de íons secundários $\sigma_M(x, y)$ foi associada para cada célula (ver seção 6.2.3).

Os melhores valores obtidos para as vidas médias de neutralização dos traços positivo e negativo, tomando como base as distribuições de velocidades axiais experimentais dos íons H⁺ e H⁻, foram $\tau^+ = 0, 2 ps$ e $\tau^- = 0, 3 ps$. O valor de τ^+ concorda com resultados de Wien [44], obtidos para materiais orgânicos com a equação (3-20) que completa a expressão proposta por Fenyö et al. [58]. O valor de $\lambda_q = 6$ Å foi mantido constante em todas as simulações; este é um valor aceitável para o sistema $N^{2+} \rightarrow H_2O$.

6.2 Grandezas físicas de controle

Como o modelo possui etapas bem definidas, valores de algumas grandezas podem ser avaliados para controlar se os resultados intermediários evoluem de maneira adequada.

Dentre estas grandezas, três são particularmente importantes: o potencial eletrostático V(x,y) em t = 0 na superfície, o rendimento γ de elétrons secundários, e a densidade superficial $\sigma_I(x,y)$ de íons formados na superfície.

6.2.1 Potencial eletrostático na superfície do sólido

Se as cargas do infra e ultra traços não se neutralizassem com o tempo, o fenômeno da dessorção iônica seria conservativo e a energia potencial dos íons na superfície poderia ser somada à energia cinética inicial para determinar a energia final dos íons emitidos. Nestas circunstâncias, a mera inspeção do mapa de potenciais eletrostáticos V(x,y) em t = 0 permite identificar as regiões da superfície do sólido que são possíveis emissoras de íons positivos ou negativos. Mais ainda, o valor da área ocupada pelos íons capazes de escapar ao sólido indica aproximadamente o seu rendimento de dessorção.

As previsões de SEID para V(x,y) em t = 0 estão apresentadas na figura 6.2a. A região de maior potencial (~ 3 V) encontra-se em torno de x = -5 Å e y = 0. Como V(x,y) é positivo sobre toda a região escolhida para o cálculo, pode-se antecipar que íons negativos com energia cinética inicial nula ou quase nula não podem ser emitidos em t = 0.

Em função do valor $\tau^+ = 0, 2 ps$ e da escolha $\tau^+ < \tau^-$, esta situação muda rapidamente. A figura 6.2b mostra V(x,y) 0,1 ps após o impacto. O potencial da parte central torna-se menos positivo (máximo em ~ 1 V) e o da parte periférica negativo. Como os íons positivos de massa alta movem-se mais lentamente do que os de massa baixa e como o campo elétrico sobre eles também depende da distância à superfície, tal mudança na configuração de V(x,y) acarretará para aqueles uma distribuição de energia cinética final

Figura 6.2: Potencial eletrostático $V(\mathbf{x}, y)$ na superfície em a) t = 0 e b) t = 0, 1 ps.

X (Å)

inferior a dos íons mais leves. Os íons negativos lentos e periféricos, que sobreviveram a espera de 0,1 ps sem neutralização, podem então iniciar sua dessorção empurrados por uma força axial positiva.

Transcorrido um lapso da ordem de τ^+ , V(x,y) torna-se negativo sobre praticamente toda a superfície. Os íons positivos, em vôo, passam a ser desacelerados mas geralmente não retornam à superfície. Os íons negativos continuam a ser emitidos mas sofrem uma neutralização mais efetiva em relação aos positivos.

6.2.2 Rendimento de elétrons secundários γ

SEID calcula o número de elétrons secundários que atravessam a superfície. Desprezando variações provocadas por captura eletrônica ou ionização de moléculas superficiais, este número deve ser próximo do valor medido do rendimento de elétrons secundários γ .

Para o caso de $N^{2+}(1, 7MeV) \rightarrow H_2O$, SEID prevê $\gamma = 3, 6$.

O valor experimental de γ nas mesmas circunstâncias não foi encontrado na literatura, mas será avaliado a seguir. J. Schou fornece $\gamma_H \sim 1, 1$ para $H^+(\text{de 121 keV}) \rightarrow Al$ [48]. Esta energia de prótons corresponde a uma velocidade igual à dos íons nitrogênio empregados na presente medida. Admitindo uma dependência do poder de freamento eletrônico com a profundidade, estima-se que íons de nitrogênio com $q_{eq} = 2,8$ produzam $\gamma_N = [(dE/ds)_e(N(q_{eq}))/(dE/ds)_e(H^+)]\gamma_H \sim (48/7,57)/1, 1 = 7,0, \text{ onde}$ $(dE/ds)_e$ é dado em eV/Å. O acordo é pois bastante razoável, uma vez que o número atômico do alumínio é pouco maior do que o do oxigênio que forma a água.

Outra verificação possível é através da dependência $\gamma(\theta_p)$. É conhecido que os rendimentos experimentais de elétrons secundários e de íons secundários são aproximadamente proporcionais a $1/\cos \theta_p$ [59]. Com efeito, tanto o comprimento L_T do traço como sua carga total têm esta dependência com θ_p .

A figura 6.3 mostra que as previsões de SEID de $\gamma(\theta_p)$ fornecem o comportamento próximo ao esperado. Discrepâncias desta função em relação a $1/\cos\theta_p$ são devidas à forma cilíndrica do ultratraço e sua interseção com a

superfície do sólido. Naturalmente, em $\theta_p = 0$ o modelo fornece incorretamente $\gamma = 0$ já que todas as trajetórias dos elétrons secundários são perpendiculares ao traço.

Figura 6.3: Rendimento de elétrons secundários em função do ângulo de impacto do projétil, θ_p .

6.2.3 Densidade superficial de íons σ_I

Para uma dada pequena área na superfície do sólido, o número de íons formados nela é calculado multiplicando-se o número de elétrons que a atravessam após o impacto pelo número de moléculas ali localizadas e pela seção de choque de ionização (captura ou perda), (eq. 3-39). A densidade de íons formados, σ_I , é a razão entre este número e o valor da área escolhida.

As seções de choque de produção de H⁺ e de H⁻ por impacto de elétrons em moléculas isoladas de H₂O, H₂ e H são apresentadas na figura 6.4 e 6.5, respectivamente. Uma comparação entre elas é feita na figura 6.6. É interessante observar nestas figuras: i) o limiar de produção de íons, ii) a região de energia dos elétrons em que a seção de choque tem seus maiores valores e iii) seus valores absolutos. Elétrons secundários com E < 6 eV não produzem íons; se têm energias entre 6 e 13 eV, só íons H⁻ podem ser gerados. Para energias mais elevadas, a produção de H⁺ domina.

Figura 6.4: Seção de choque de produção de H^+ a partir de impacto de e^- em H [60], H₂ [61] e em H₂O [62].

Figura 6.5: Seção de choque de produção de H^- a partir de captura eletrônica em H_2 [63] e em H_2O [64], ambos na fase gasosa.

Introduzindo estas seções de choque em (3-51) e levando em consideração o σ_M discutido em (3-52), determina-se σ_I . Os resultados para H⁺, H⁻ e H₂O⁺ são apresentados na figura 6.7 para regiões adjuntas ao eixo X. Alguns fatos são notáveis:

$$- \sigma_I(H^+) >> \sigma_I(H^-).$$

Figura 6.6: Comparação das seções de choque de produção de H^- , H^+ e H_2O^+ por impacto de e^- em H_2O .

- $\sigma_I(H_2O^+) >> \sigma_I(H^+).$
- $\sigma_I(x > b_{max}/\cos\theta_p) = 0$, já que o fluxo de elétrons na superfície é nulo para essa região.
- σ_I é máximo em $(x \sim 0, y = 0)$ devido ao número de elétrons secundários relativamente grande que convergem e atravessam a superfície próximo ao ponto de impacto.

Figura 6.7: Densidades superficiais, ao longo do eixo x, de formação dos íons H^+ , H^- e $(H_2O)^+$.

6.3 Emissão dos íons H⁺ e H⁻

Pelo fato de serem íons atômicos, espera-se que a descrição da emissão deles seja mais simples do que a dos agregados iônicos e será feita em primeiro lugar.

6.3.1 Rendimentos de dessorção em valores absolutos

Na tabela 6.1, os valores absolutos de rendimentos de dessorção de H^+ e H^- calculados por SEID são confrontados por valores experimentais. Note que os cálculos foram feitos para uma energia do feixe de nitrogênio que é o dobro do feixe utilizado na experiência. O acordo é bastante razoável.

	Y_{SEID} (N 1,7 MeV)	Y_{exp} (N 0,85 MeV) [54]
H+	25×10^{-3}	21×10^{-3}
H-	$1,8 \times 10^{-3}$	$2, 2 \times 10^{-3}$

Tabela 6.1: Rendimentos de dessorção teóricos e experimentais.

6.3.2 Distribuição de velocidades axiais

A determinação das componentes axiais das velocidades finais (isto é, após terminado o efeito dos campos elétricos locais) é feita diretamente pela medida de tempo de vôo dos íons secundários. Isto é, ela não necessita das medidas XY do detector sensível à posição.

Na figura 6.8 são comparadas as distribuições de velocidade axial v_z obtidas por SEID com dados experimentais dos íons H⁺ e H⁻. Considerouse inicialmente no cálculo que todos os íons tenham $E_0 = 1 \ eV$ ao deixarem a superfície e que sejam emitidos com $\theta_0 = 0$. O acordo teoria–experiência entre os valores absolutos de v_z (em km/s) já é razoável, no sentido de que os máximos das respectivas distribuições de velocidade concordam em valores absolutos. A causa provável de haver 2 picos nos resultados de SEID é que os rendimentos de dessorção estão superestimados na região do pico de velocidade baixa por falta de um tratamento de neutralização.

Figura 6.8: Distribuições de velocidade axial comparadas entre o modelo e os dados experimentais. a) para H⁺, e b) H⁻.

Deve ser enfatizado que a neutralização de íons por tunelamento de elétrons atinge prioritariamente os mais lentos. Como mostra a figura 6.9 para a emissão de H^+ , os íons de baixa velocidade provém da região periférica ao ponto de impacto, justamente a mais próxima do ultratraço negativo. Similarmente, muitos dos íons H^- de baixa energia provém de sítios próximos ao ponto de impacto, carregados positivamente, favorecendo a neutralização dos íons H^- .

Figura 6.9: Velocidade axial final calculada por SEID para íons H⁺ dessorvidos, em função de seu sítio de emissão.

6.3.3 Distribuição de energia cinética

Incluindo na análise das velocidades axiais as distribuições relativas às velocidades radiais dos íons H⁺ e H⁻, as distribuições de energia cinética final desses íons — tanto experimental quanto teórica — podem ser determinadas.

A figura 6.10 permite fazer a confrontação dos resultados medidos e calculados. O acordo é razoável considerando a simplicidade das condições iniciais. As observações já feitas sobre o pico correspondente às velocidades mais baixas continuam válidas. A cauda da direita das distribuições experimentais (parte de energia alta) é produzida pelo sputtering nuclear [65] e não tem que

Figura 6.10: Distribuições de energia total comparadas: experimental e simulada.
a) para $\rm H^+,$ e b) $\rm H^-.$

ser reproduzida por um modelo que só trata do sputtering eletrônico.

6.4 Distribuição angular do H⁺

O traço nuclear produzido por uma incidência oblíqua do projétil modifica de modo desigual as trajetórias dos íons emitidos.

Considerando apenas os íons emitidos com $\theta_0 = 0$ das células ao longo do eixo x, uma dispersão de ~ 15° é obtida para íons H⁺ com $E_0 = 1 \text{ eV}$, dispersão essa que aumenta se E_0 diminui. A distribuição angular experimental mostrada na figura 5.19 indica entretanto que as emissões de H⁺ ocorrem dentro de um cone com ângulo muito maior. Para avaliar qual seria esse cone, previsões de SEID para $\theta_0 = 20^\circ$ foram acrescentadas à de $\theta_0 = 0$ e são confrontadas na figura 6.11 com a distribuição medida.

Figura 6.11: Distribuição angular experimental e teórica para H⁺.

Conclui-se que as direções de emissão dos íons H^+ devem ocorrer para θ_0 variando continuamente de zero até valores bem superiores a 20°. A grande simetria de rotação em torno do eixo z e a grande abertura angular observada

para θ_0 sugerem que a dessorção de H⁺ é fortemente dominada por uma fragmentação de moléculas H₂ ou H₂O.

6.5 Emissão dos agregados iônicos da água $(H_2O)_nH^+$

Partindo das equações (3-51) e (3-53), a figura 6.12 apresenta o σ_I calculado para os íons $(H_2O)_nH^+$ de massas m = 19 (n = 1), 109 (n = 6), 235 (n = 13) e 343 u (n = 19). O decréscimo de σ_I com n reflete o fato de que, maior o agregado, menor sua densidade superficial.

Figura 6.12: Densidades de íons ao longo do eixo x.

A etapa seguinte é o cálculo das velocidades axiais finais para cada posição inicial dos íons na superfície da amostra. A figura 6.13 ilustra resultados para n = 1 ($E_0 = 1 \, eV \, e \, \theta = 0$). O fato marcante é que a região que gera as maiores velocidades não é mais o ponto de impacto: logo, as distribuições angulares não devem mais ser simétricas com relação a x = y = 0, em acordo com os resultados mostrados na figura 5.18.

A figura 6.14 mostra a comparação entre os resultados do modelo e os experimentais para as distribuições de velocidade axial e energia de emissão

Figura 6.13: Densidades de velocidades axiais de íons $(H_2O)_nH^+$.

dos agregados $(H_2O)_n H^+$. Observa-se que SEID acompanha o decréscimo das velocidades quando *n* cresce e que os picos de baixa velocidade se intensificam. Em conseqüência deste decréscimo, as correções de neutralização devem ser maiores que as do hidrogênio.

Figura 6.14: Distribuições de velocidade axial.

6.6 Distribuições de energia

As distribuições de energia final experimentais e teóricas para os agregados de água encontram-se na figura 6.15. As energias de emissão dos agregados são inferiores às dos íons H^+ , fato descrito, também pelo modelo. Entretanto, o desacordo qualitativo geral verificado reforça a necessidade já identificada de completar o modelo e de acrescentar tratamento específico para a emissão de agregados iônicos. Essa será uma tarefa futura.

Figura 6.15: Distribuições de energia.