Clara Muniz da Silva de Almeida

Análise por XPS e AFM da superfície de blendas de PVC/PHB

DISSERTAÇÃO DE MESTRADO

DEPARTAMENTO DE FÍSICA

Programa de Pós-Graduação em Física

Rio de Janeiro, Março de 2005

Clara Muniz da Silva de Almeida

Análise por XPS e AFM da superfície de blendas de PVC/PHB.

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-graduação em Física da PUC-Rio como requisito parcial para obtenção do título de Mestre em Física.

Orientador: Prof. Rodrigo Prioli Menezes

Rio de Janeiro Março de 2005

Clara Muniz da Silva de Almeida

Análise por XPS e AFM da superfície de blendas de PVC/PHB

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo Programa de Pós-Graduação em Física do Departamento de Física do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Rodrigo Prioli Menezes

Orientador Departamento de Física – PUC-Rio

Prof. Rubén Jesus Sánchez Rodriguez Co-Orientador Laboratório de Materiais Avançados – UENF

Prof. Gilson Brand Baptista

Prof. Suzana Isabel Zanette de Caride CBPF

Prof. José Eugenio Leal Coordenador Setorial do CTC – PUC-Rio.

Rio de Janeiro, 29 de Março de 2005.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Clara Muniz da Silva de Almeida

Graduou-se em Física na Pontifícia Universidade Católica do Rio de Janeiro – PUC-Rio em 2002. Atualmente é aluna de doutorado na PUC-Rio.

Ficha catalográfica

Almeida, Clara Muniz da Silva de

Análise por XPS e AFM da superfície de blendas de PVC/PHB / Clara Muniz da Silva de Almeida ; orientador: Rodrigo Prioli Menezes. – Rio de Janeiro : PUC-Rio, Departamento de Física, 2005.

78 f.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física .

Inclui referências bibliográficas

1. Física – Teses. 2. Espectroscopia de fotoelétrons excitados por raios-X. 3. Microscopia de força atômica. 4. PHB. 5. Blendas. I. Menezes, Rodrigo Prioli. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Física . III. Título.

PUC-Rio - Certificação Digital Nº 0312421/CA

Aos meus avós, tios, primos, pai e irmãozinho. Especialmente à minha mãe, meu exemplo.

Agradecimentos

Ao Professor Rodrigo Prioli Menezes, que me acolheu repentinamente, acreditou na minha capacidade e no meu trabalho. Pela amizade criada e por ter me apresentado novas possibilidades. Pelos conhecimentos compartilhados, pelo esforço conjunto, pelas críticas e pela atenção.

Ao Professor Gilson Brand Baptista, muito mais que um orientador. Por acreditar em mim e me incentivar sempre. Pelos conselhos, pelos ensinamentos e pela amizade.

Ao Prof. Ruben Sanchez e ao Marcelo O. Siqueira pela ajuda e pelo auxílio e pelo tempo gasto comigo.

Ao Henrique e ao Robert, pelas inúmeras risadas e por estarem sempre por perto para minhas dúvidas. Pela amizade.

Agradeço aos meus amigos que me acompanham nessa jornada e que sem eles por perto, não sei se seria possível chegar aqui: Flávia, Samantha, Pedro, Lucas,... e aos engenheiros, enfim todos que estiveram e estão por perto.

A todos os professores e funcionários do Departamento de Física que contribuíram no meu crescimento acadêmico.

Ao CNPq e a PUC-Rio pelos auxílios concedidos, sem os quais este trabalho não teria sido realizado.

Resumo

Almeida, C. M. **Análise por XPS e AFM da superfície de blendas de PVC/PHB.** Rio de Janeiro, 2005. 78p. Dissertação de Mestrado – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Neste trabalho, foram estudadas blendas formadas pelo polímero Policloreto de Vinila (PVC) e pelo polímero biodegradável Poli Hidroxibutirato (PHB), com diferentes concentrações relativas de cada polímero. As blendas foram preparadas em forma de membrana, com concentracões de PHB variando de 2 a 40%. A técnica utilizada para o preparo das amostras foi a evaporação do solvente, sendo dicloroetano o solvente utilizado. A composição química das superfícies das blendas foi caracterizada utilizando a técnica de espectroscopia de fotoelétrons induzida por raios-X (XPS). A morfologia e as propriedades mecânicas das amostras foram estudadas com o auxílio da microscopia de força atômica (AFM). Medidas de calorimetria diferencial exploratória foram realizadas a fim de conhecermos a miscibilidade das blendas formadas. Nas blendas formadas observou-se uma segregação de PHB para a superfície, sendo o percentual de PHB na superfície na faixa de 18±2%, mesmo para blendas com mais baixa concentração relativa de PHB. Entretanto o grau de cristalização do PHB em cada blenda aumenta com a incorporação do polímero na blenda. Foi observado um aumento na dureza conforme aumentamos a concentração de PHB na blenda. As blendas foram caracterizadas como parcialmente miscíveis.

Palavras – chave

Física – Dissertação; Espectroscopia de fotoelétrons excitados por raios-X; microscopia de força atômica; PHB; blendas.

Abstract

Almeida, C. M. **XPS and AFM analysis of PVC/PHB blends surfaces.** Rio de Janeiro, 2005. 78p. Msc. Dissertation – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

In this work, the study of polymer blends surfaces formed by a biodegradable polymer (poly3-hydroxybutyrate, PHB) and PVC (polyvinyl chloride) with different molar percentages of PHB is presented. The blends samples were prepared as membranes with PHB molar concentrations from 2 to 40%. The technique used to prepare the membranes was the solvent-casting technique, using dichloroethene as solvent. The chemical composition of the blends samples surfaces were characterized by X-ray photoelectron spectroscopy (XPS). Their morphologies and mechanical properties were studied by atomic force microscopy (AFM). Differential scanning calorimeter measures were obtained in order to know the blends miscibility. A PHB surface segregation of $18\pm2\%$ was observed, even for the blends with lower PHB concentrations. However, the degree of the PHB crystallization in each blend increases in the blends hardness was observed while the PHB blends concentration increases. The blends were founded to be partially miscible.

Keys - Words

Physics – Dissertation; X-ray photoelectron spectroscopy; Atomic Force Microscopy; PHB; blends.

Sumário

1. Introdução	16
2. Procedimentos experimentais	23
2.1. Preparação das blendas	23
2.2. Espectroscopia de elétrons induzida por raios-X (XPS)	25
2.2.1. Princípios básicos	25
2.2.2. Instrumentação utilizada	26
2.2.3. Calibração do equipamento utilizado nas análises	
de XPS	29
2.2.4. Análise semi-quantitativa através da técnica	
de XPS	30
2.3. Ângulo de Contato	31
2.3.1. Princípios básicos	31
2.3.2. Instrumentação utilizada	32
2.4. Microscopia atômica de força (AFM)	34
2.4.1. Princípios básicos	34
2.4.2. Instrumentação utilizada	37
2.5. Calorimetria diferencial exploratória	42
2.5.1. Princípios básicos	42
2.5.2. Instrumentação utilizada	43
3. Resultados obtidos	45
3.1. Espectroscopia de elétrons induzida por raios-X (XPS)	45
3.1.1. Análise semi-quantitativa através da técnica	
de XPS	50
3.2. Ângulo de Contato	51
3.2.1. Ângulo de contato estático (SCA)	51
3.2.2. Ângulo de contato dinâmico (DCA)	53
3.3. Microscopia de Força Atômica (AFM)	56
3.3.1. Morfologia	56

3.3.2. Medindo qualitativamente as propriedades

mecânicas das blendas com o AFM	65
3.4 Calorimetria Diferencial Exploratória	69
4. Conclusão e perspectivas futuras	72
Referências	75

Lista de figuras

Figura 1.1 - Fórmula estrutural dos PHAs	17
Figura 1.2 - Fórmula estrutural do PHB	17
Figura 2.1 - Foto tirada do interior da câmara de XPS utilizada	27
Figura 2.2 - Foto do porta amostras de prata utilizado para prender a	
membrana polimérica para fazer as análises de XPS	28
Figura 2.3 - Curva de calibração do analisador de elétrons utilizado	
para XPS	29
Figura 2.4 - Esquema representativo das tensões superficiais e do	
ângulo de contato entre uma gota e uma superfície	31
Figura 2.5 - Aparato experimental utilizado para a medida de ângulo	
de contato	33
Figura 2.6 - Gráfico da força resultante em função da distância	
ponta-superfície	35
Figura 2.7 - Microscópio de força atômica utilizado	37
Figura 2.8 - Indentações realizadas com correções de diferentes	
ângulos a fim de identificar a melhor correção	39
Figura 2.9 – Perfis topográficos das indentações realizadas com	
correção no ângulo de torção igual a 30º (a), 20º (b)	
e 10º (c)	40
Figura 2.10 – Exemplo do processo de equalização realizado nas	
indentações para realçar a diferença de alturas da	
imagem. O intervalo de alturas selecionado neste	
histograma foi evidenciado com as setas tracejadas	41
Figura 2.11 – Exemplo do procedimento utilizado para o cálculo	
da área das indentações realizadas	41
Figura 2.12 – Esquema representando a célula utilizada nas	
medidas de DSC	42
Figura 2.13 – Suporte utilizado para as medidas de DSC	43

Figura 2.14 – Equipamento de DSC utilizado	44
Figura 3.1 - Espectros de alta resolução na faixa de energia dos	
fotoelétrons do carbono (a) para o PVC, e os espectros	
da região de energias dos fotoelétrons do carbono (b) e	
do oxigênio (c) para o PHB	46
Figura 3.2 - Espectros de alta resolução na faixa de energia dos	
fotoelétrons do carbono para as blendas 2,4,5,8,e 12%	
em a-e respectivamente, e os espectros da região de	
energias do oxigênio para as mesmas blendas f-j	48
Figura 3.3 - Fotos das gotas utilizadas para a medida do ângulo de contato para o PVC(a), blenda 05%(b) e 40%(c), e para o PHB puro(d)	52
Figura 3.4 - Variação do ângulo de contato em função do tempo para os polímeros puros PHB(a) e PVC(b), e para as blendas 2(c), 5(d), 12(e) e 40%(f). Para as blendas foi feito um ajuste linear, e para os polímeros puros fizemos	
um ajuste exponencial	54
Figura 3.5 - Variação do ângulo de contato em função da concentração de PHB nas blendas. Cada curva representa um tempo diferente de observação da	
gota sobre a superfície	55
Figura 3.6 - Esquema da estrutura cristalina do PHB no plano AC.	57
Figura 3.7 – Imagem obtida pelo AFM da blenda 10%. Escala em z variando de 0-214nm.	57
Figura 3.8 – Imagem de microscopia ótica da blenda 5%, onde é possível observar os esferulitos espalhados por toda	
a superfície	58
Figura 3.9 – Imagens 100μm ² da topografia do (a) PVC e do (b) PHB. Escala em z variando de 0-15,5nm (a) e 0-558,8nm (b).	59
Figura 3.10 - Imagens 250μm ² (a) e 100μm ² (b) da topografia da blenda 2%. Escala em z variando de 0-0,82μm (a) e	

0-320,3nm (b)	59
Figura 3.11 – Imagens 250 μ m ² (a) e 100 μ m ² (b) da topografia da	
blenda 4%. Escala em z variando de 0-1,22µm (a) e	
0-274,5nm (b)	60
Figura 3.12 – Imagens 250 μ m ² (a) e 100 μ m ² (b) da topografia da	
blenda 5%. Escala em z variando de 0-638,6nm (a) e	
0-242nm (b)	60
Figura 3.13 – Imagens 250 μ m ² da topografia da blenda 6%(a) e da	
blenda 8%(b). Escala em z variando de 0-1,27µm (a) e	
0-820nm (b).	61
Figura 3.14 - Imagens de topografia(a) e de força lateral(b) da blenda	
PVC/PHB5%	62
Figura 3.15 – Ampliação das imagens de topografia (a) e de força	
lateral (b) da blenda 5%, com seus respectivos perfis	
(c) da topografia e (d) da imagem de força lateral	63
Figura 3.16 – Fotos das gotas depositadas sobre as superfícies	
do PVC (a) e do PHB (b)	64
Figura 3.17 - Indentações realizadas na blenda PVC/PHB5%	65
Figura 3.18 – Área das indentações realizadas em função da	
concentração de PHB na blenda	66
Figura 3.19 – Exemplo de perfil de profundidade de uma das	
indentações realizadas	67
Figura 3.20 – Indentações realizadas na blenda 10% nas partes amorfa	a,
cristalina e intermediária aparentes na superfície	68
Figura 3.21 – Resultado de DSC para as blendas 2, 4, 6, 8 e 12%	
e para o PVC	70

Lista de tabelas

Tabela 1.1 - Algumas propriedades físico-químicas do PHB, PHB-HV,	
PP e PVC	18
Tabela 2.1 - Relação das blendas estudadas	24
Tabela 3.1 - Tabela com o número de varreduras de cada espectros	
de alta resolução apresentado anteriormente	49
Tabela 3.2 - Parâmetros utilizados para o ajuste das curvas dos	
espectros de alta resolução da região do carbono para	
o PHB e PVC puros	49
Tabela 3.3 – Resultados das análises de XPS para a concentração de	
PHB na superfície da blenda em função da concentração	
de PHB na blenda	50
Tabela 3.4 - Tabela com os valores do ângulo de contato das blendas	
e dos polímeros puros	52
Tabela 3.5 - Coeficientes angulares das curvas do ângulo de contato	
em função do tempo para as blendas e para os polímeros	
puros	54
Tabela 3.6 - Área das indentações normalizadas a partir do maior	
valor obtido	68
Tabela 3.7 – Valores encontrados para Tg	71

Lista de abreviações

- AFM Microscopia de Força Atômica
- CAB Cellulose Acetate Butyrate
- CCD "Charge Coupling Device"
- C_{PHB} razão estequiométrica de carbono no monômero de PHB
- C_{PVC} razão estequiométrica de carbono no monômero de PVC
- DCA Ângulo de contato dinâmico
- DSC Calorimetria Diferencial Exploratória
- EPR "ethylene-propylene rubber"
- F força normal entre ponta e superfície
- FWHM largura à meia altura
- K constante de mola do cantilever
- κ coeficiente linear da reta ajustada
- O_{PHB} razão estequiométrica de oxigênio no monômero de PHB
- PBA "poly(1,4-butylene adipate)"

PCHMA - "poly(cyclohexil methacrylate)"

- PECH "Poly(epichlorohydrin)"
- PET Polietileno Tereftalato
- PHA Polihidroxialcanoato
- PHB Polihidroxibutirato
- PHB-HV Polihidroxibutirato-co-hidroxivalerato
- PHPV "Poly(-3-hydroxy-5-phenylvalerate)"
- PHU "Polyhydroxyundecenoate"
- PMMA "Poly(methyl methacrylate)"
- PP Polipropileno
- PVA "Poly(vinyl alcohol)"
- PVAc Polivinil Acetato
- PVB-VA "Poly(vinyl butiral)-vinyl alcohol"
- PVC Policloreto de Vinila

PVDF - "Poly(vinylidene fluoride)"

- S_C fator de sensibilidade do carbono
- SCA Ângulo de contato estático
- So fator de sensibilidade do oxigênio
- T_g Temperatura de transição vítrea
- T_m Temperatura de fusão
- X concentração relativa de PHB na superfície das blendas

XPS – Espectroscopia de Elétrons Induzida por Raios-X

- γ_{lv}-tensão líquido-vapor
- γsi-tensão sólido-líquido
- γ_{sv} tensão sólido-vapor
- Δz deslocamento vertical do cantilever
- θ ângulo de contato