

Mariella Alzamora Camarena

Antiferromagnetismo e ponto crítico quântico no composto CeCoGe_{2,1}Si_{0,9} sob pressão

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio.

Orientador: Prof. Hortencio Alves Borges Co-Orientador: Prof. Magda Bittencourt Fontes

Rio de Janeiro setembro de 2007

Mariella Alzamora Camarena

Antiferromagnetismo e ponto crítico quântico no composto CeCoGe_{2,1}Si_{0,9} sob pressão

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Hortencio Alves Borges Orientador – PUC-Rio

Prof. Magda Fontes Bittencourt Co-orientador - CBPF

Prof. Elisa Maria Baggio Saitovitch CBPF

Prof. Welles Antonio Martinez Morgado PUC-Rio

> Prof. Mucio Amado Continentino UFF

Prof. Renato Bastos Guimarães CBPF

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 27 de setembro de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Mariella Alzamora Camarena

Bacharel em Física pela Universidad Nacional Mayor de San Marcos de Lima - Perú. Mestre em Física pelo Centro Brasileiro de Pesquisas Físicas, na área de supercondutividade e magnetismo.

Ficha Catalográfica

Alzamora Camarena, Mariella

Antiferromagnetismo e ponto crítico quântico no composto CeCoGe_{2,1}Si_{0,9} sob pressão / Mariella Alzamora Camarena; orientador: Hortencio Alves Borges ; co-orientadora: Magda Bittencourt Fontes. – Rio de Janeiro: PUC, Departamento de Física, 2007.

v.,138f: il.;29,7 cm.

Tese de doutorado - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física.

Incluí referências bibliográficas.

1. Física – Teses. 2. Antiferromagnetismo. 3. Ponto crítico quântico. 4. Férmion pesado. I. Borges, Hortencio Alves. II. Fontes, Magda Bittencourt. III. Pontificia Universidade Católica do Rio de Janeiro. Departamento de Física. IV. Título.

Dedico este trabalho às pessoas mais importantes na minha vida, meus pais: Alfredo e Maria.

Agradecimentos

Este espaço é dedicado àqueles que cooperaram para a concretização desse importante passo na minha formação profissional e àqueles que tornaram esse período da minha vida também enriquecedor do ponto de vista pessoal. Agradeço

A meu orientador Professor Hortêncio Borges pelo incentivo, simpatia e presteza no auxílio nas atividades e discussões sobre o desenvolvimento deste trabalho.

A minha orientadora Professora Magda Bittencourt Fontes pelo apoio e dedicação na orientação deste trabalho.

A Professora Elisa M. Baggio-Saitovitch, pela paciência, apoio e incentivo, e também pelas valiosas contribuição neste trabalho.

A os doutores Julio, Eduardo e Scheilla pelos valiosos ensinamentos e frutíferas discussões desenvolvidas durante o dia a dia do laboratório. Agradeço a Scheilla também pela ajuda na redação desta tese sem a qual este trabalho no teria a mesma qualidade.

Aos técnicos Henrique, Walmir, Ivanildo e Vicente por manterem o laboratório funcionando

Aos funcionários do departamento Giza e Julinho, pelas orientações e ajuda e também aos funcionários do CBPF: Vanda e Ronaldo que sempre me ajudaram.

A turma do vôlei dos sábados, família Xing, Alex, Flora, Vanji, Jacky, William

A minha família pelo apoio constante que me brindaram durante tantos anos de estudo, por seu carinho e sua compreensão. A Dalber quem me acompanho e me ajudo neste recorrido.

À CAPES e ao CLAF pelo apoio financeiro, à PUC-Rio e ao CBPF pela oportunidade concedida para o desenvolvimento deste trabalho.

Resumo

Camarena, Mariella Alzamora; Borges, Hortencio Alves; Fontes, Magda Bittencourt. **Antiferromagnetismo e ponto crítico quântico no composto CeCoGe_{2,1}Si_{0,9} sob pressão.** Rio de Janeiro , 2007. 138p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Estudos no sistema pseudoternário $CeCoGe_{3-x}Si_x$ (com $0 \le x \le 3$) mostraram que o sistema evolui continuamente de um estado antiferromagnético da rede de Kondo ($CeCoGe_3$ com ~ 21K) para um composto de valência intermediária ($CeCoSi_3$ com $T_{FV} \sim 230 K$). O sistema apresenta comportamento tipo não-líquido de Fermi (NLF) em torno do ponto crítico quântico (PCQ) na concentração crítica $x_c \approx 1,25$. A substituição isoeletrônica dos átomos de por não aumenta o grau de desordem magnética, sendo ideal para o estudo de efeitos intrínsecos das variações das constantes de interação da rede Kondo. Estudamos este sistema em concentrações próximas à concentração crítica através de medidas de resistividade elétrica AC sob pressão (x = 0.9) e campo magnético (x = 1), em amostras policristalinas. Nossos resultados mostram que a ordem magnética de longo alcance presente na amostra $CeCoGe_{2,1}Si_{0,9}$ é suprimida com o aumento da pressão e, para a pressão crítica $P_C \approx 6.2 \, kbar$, $T_N \rightarrow 0$. Para temperaturas inferiores a T_N , as medidas de resistividade são bem descritas considerando um espalhamento de elétrons de condução por mágnons antiferromagnéticos anisotrópicos. Acima de P_c observa-se a recuperação do comportamento líquido de Fermi. Na região crítica o estado NLF com expoentes próximos a 1 foi observado. A análise do comportamento da linha crítica na proximidade do PCQ indica que as flutuações magnéticas relevantes são tipicamente bidimensionais. Por outro lado, no composto CeCoGe₂Si₁, que apresenta ordem magnética de curto alcance com $T_N \approx 2 K$, observa-se que a temperatura de ordenamento é reduzida com o aumento do campo magnético, e para campos acima de 3T surge o comportamento tipo líquido de Fermi.

Palavras-chave

Antiferromagnetismo, ponto crítico quântico, férmion pesado.

Abstract

Camarena, Mariella Alzamora; Borges, Hortencio Alves; Fontes, Magda Bittencourt. **Antiferromagnetism and quantum critical point in CeCoGe_{2,1}Si_{0,9} compound under pressure.** Rio de Janeiro, 2007. 138p. PhD thesis - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Studies on the pseudo ternary system $CeCoGe_{3-x}Si_x$ (where $0 \le x \le 3$) have shown that the system evolves continuously from a Kondo lattice antiferromagnetic state ($CeCoGe_3$ with $T_N \sim 21 K$) towards a mixed valent compound (*CeCoSi*₃ with $T_{FV} \sim 230 K$). The system displays a non-Fermiliquid-type behavior (NFL) in the vicinity of the quantum critical point (QCP) at the critical concentration $x_c \approx 1.25$. Isoelectronic substitution of Si atoms for Ge does not enhance the degree of magnetic disorder, rendering it ideal for the study of the Kondo lattice's interaction constants intrinsic effects. We have studied this system in polycrystalline samples at concentrations close to the critical one through AC electrical resistivity under pressure (x = 0.9) and magnetic field (x = 1) measurements. Our results show that the long range magnetic order present in the $CeCoGe_{2.1}Si_{0.9}$ sample is suppressed as pressure is increased, and that for the critical pressure $P_C \approx 6.2 \, kbar$, $T_N \rightarrow 0$. For temperatures below T_N , the resisitivity data are well described considering conduction electron scattering by anisotropic antiferromagnetic magnons. Above P_c we observe the Fermi liquid behavior. At the critical region, a NFL state with exponents close to 1 was found. The analysis of the behavior of the critical line in the neighborhood of the QCP indicates that the relevant magnetic fluctuations are typically two-dimensional. On the other hand, the $CeCoGe_2Si_1$ compound displays short range order ($T_N \approx 2 K$). The ordering temperature is reduced under an increase of an applied magnetic field, and for magnetic fields above 3T a Fermi liquid behavior arises.

Keywords

Antiferromagnetism, quantum critical point, heavy fermion.

Sumário

1 Introdução	18
2 Aspectos teóricos	24
2.1. O efeito Kondo	24
2.2. Rede Kondo	26
2.3. Transições de fase quântica e leis de escala.	29
2.4. Os férmions pesados	33
2.5. Modelo de fases de Griffith	37
2.6. Ondas de spin em um antiferromagneto anisotrópico	39
3 Compostos de cério	41
3.1. O composto CeCoGe ₃	46
3.2. O composto CeCoSi ₃	60
3.3. O sistema CeCoGe _{3-x} Si _x	62
3.3.1. Região Antiferromagnética ($0 \le x < 1,0$)	63
3.3.2. Região crítica (1,0 ≤ x≤ 1,5)	67
3.3.3. Região de valência intermediária (1,5 <x≤ 3)<="" td=""><td>74</td></x≤>	74
4 Os métodos experimentais	77
4.1. Preparação das amostras	77
4.2. Teste de qualidade das amostras	81
4.3. Resistividade AC	82
4.3.1. Contatos elétricos e instalação no porta-amostra	82
4.3.2. Sistema de aquisição de dados	83
4.4. Baixas temperaturas	85
4.4.1. Os criostatos.	87
4.4.2. Sistema de Refrigeração ³ He/ ⁴ He	89
4.5. Células de pressão	93

5 Resultados e discussões	96
5.1. Caracterização	96
5.1.1. Raios-x	96
5.1.2. Medidas de magnetização	100
5.1.3. Medidas de resistividade elétrica à pressão ambiente	101
5.2. Resistividade elétrica sob pressão no composto $CeCoGe_{2,1}Si_{0,9}$	106
5.2.1. Fase magnética (0 \leq P \leq 6,2 kbar)	106
5.2.2. Ondas de spin em um AF anisotrópico (0 \leq P \leq 6,2 kbar)	109
5.2.3. Fase não-magnética (6,7 \leq P \leq 10,2 kbar)	114
5.2.4. Região não-Líquido de Fermi (5,5 \leq P \leq 8,2 kbar)	117
5.2.5. Resistividade Residual (0 \leq P \leq 10,2 kbar)	118
5.2.6. T_{max} (0 \le P \le 10,2 kbar)	120
5.2.7. Diagrama de fase do CeCoGe _{2,1} Si _{0,9}	122
5.3. Composto CeCoGe _{2,25} Si _{0,75}	123
5.4. Resistividade elétrica sob campo magnético no CeCoGe ₂ Si ₁	125
6 Conclusões e perspectivas	130
Refêrencias	133

Lista de figuras

- Figura 1.1 temperatura de ordem magnética em função da concentração de silício, para x<0,75 o sistema apresenta duas transições (ferromagnética e antiferromagnética), para x=0,75 uma única transição antiferromagnética e para x=1,25 a temperatura de ordem tende a zero. As temperaturas Kondo, obtidas de medidas de calor específico, aumentam com a concentração de silício acima da concentração critica [10].
- Figura 2.1. Esquema do processo de blindagem do spin da impureza magnética (em preto) pela nuvem de elétrons de condução (em cinza), os elétrons de condução não se encontram localizados, simplesmente a meia vida deles na região da impureza aumenta devido ao espalhamento ressonante.
- Figura 2.2. Resistividade elétrica para um metal não magnético, para um metal com impureza magnética e para o modelo Kondo.
- Figura 2.3. Dependência da magnitude T_K da interação de Kondo e da magnitude T_{RKKY} da interação RKKY com parâmetro J/W.
- Figura 2.4. Diagrama de fases magnético predito por teoria de flutuações de spin. Na região I, propriedades LF podem ser observadas, na região II e III, comportamento NLF podem ser encontrados.
- Figura 2.5. Diagrama esquemático dos férmions pesados, proposto por Continentino [21], mostrando a linha de coherencia (T_{coh}) , a linha crítica magnética (T_N) e a trajetória não-líquido de Fermi (NLF) em temperaturas finitas acima do PCQ. No diagrama g=J/W-(J/W)_C, e mede a distancia ao ponto crítico.
- Figura 2.6. Diagrama de fluxo para a rede Kondo. Quando um material é levado a um valor crítico de T_K/T_{RKKY} , este é forçado atravessar o PCQ. Os pontos fixos AF e LF são ligados por um novo ponto fixo instável [23].

Figura 2.7. Diagrama de Fase para o modelo de fase de Griffith, onde δ

22

25

25

27

31

35

36

representa o parâmetro de controle, como concentração ou pressão.	38
Figura 3.1. Diagramas esquemáticos da variação da energia de alguns	
orbitais em função do número atômico (a) e da densidade de estados	
do Ce (b) [27].	41
Figura 3.2. Diagrama de fase (T-P) do Ce metálico [28].	42
Figura 3.3. Estruturas cristalinas do BaNiSn ₃ (a), e ThCr ₂ Si ₂ (b) [39].	44
Figura 3.4. Calor específico de CeCoGe ₃ (à esquerda) e resistência elétrica	
(à direita) em função da temperatura para amostras policristalinas de	
grão alinhado [35].	46
Figura 3.5. Susceptibilidade magnética com campo paralelo (\Box) e	
perpendicular (+) ao eixo c para a amostra policristalina CeCoGe ₃ de	
grão alinhado [35].	47
Figura 3.6. Magnetização de CeCoGe ₃ com H//[001]. a) depois do	
resfriamento a campo nulo, b) medido diminuindo a temperatura com	
campo aplicado, c) resfriado com campo e medido com aumento da	
temperatura e d) igual que c) mas com o campo desligado. A curva e)	
corresponde a magnetização com H \perp [001], resfriado com campo e	
medido com aumento da temperatura [35].	48
Figura 3.7. Magnetização do CeCoGe3 em função da temperatura para	
campos magnéticos altos com o campo magnético paralelo ao eixo c	
[35].	49
Figura 3.8. Isotermas de magnetização de CeCoGe ₃ em 3K, 15K e 19K para	
H//[001] e em 15K para H⊥[001].	50
Figura 3.9. Diagrama de fases para o CeCoGe ₃ [35].	51
Figura 3.10. Resistividade elétrica de CeCoGe ₃ para baixas temperaturas.	
As setas correspondem a transições antiferromagnéticas [41].	52
Figura 3.11.a) Curvas de magnetização para H//[001] em diferentes	
temperaturas. b) susceptibilidade magnética em baixas temperaturas de	
5K até 30K com os campos magnéticos em duas diferentes direções	
[41].	52
Figura 3.12. Magnetização em 2 K para H//[001] e [100], isotermas de	
magnetização em CeCoGe3 para H//[001] para diferentes temperaturas	
[41].	53

PUC-Rio - Certificação Digital Nº 0312436/CB

Figura 3.13. Diagrama de fase magnético de CeCoGe ₃ [41].	54
Figura 3.14. Curva de magnetização para H//[001] em 2 K. as linhas sólidas	
representam um processo de magnetização em 0 K [41].	55
Figura 3.15. Calor específico de CeCoGe ₃ monocristal em baixas	
temperaturas [41].	55
Figura 3.16. Inverso da susceptivilidade magnética de CeCoGe ₃ [41].	56
Figura 3.17. Parte magnética da resistividade em função da temperatura	
[41].	56
Figura 3.18. a) Contribuição da parte magnética do calor específico e b)	
entropia magnética de CeCoGe3. A linha sólida em a) é o resultado de	
cálculos de CEC [41].	58
Figura 3.19. Inverso da susceptibilidade magnética de CeCoGe ₃ . As linhas	
sólidas são o resultado de cálculos de CEC [41].	59
Figura 3.20. Medidas de resistividade em função da temperatura para	
CeCoSi ₃ , o <i>inset</i> mostra a transição supercondutora [32].	60
Figura 3.21. Inverso da susceptibilidade para CeCoSi ₃ (símbolo) e o ajuste	
com mínimos quadrados (linha solida) [30].	61
Figura 3.22. Parâmetros de rede a, c e o volume V da célula unitária à	
temperatura ambiente em função da concentração x de silício para	
$CeCoGe_{3-x}Si_x$ [10].	63
Figura 3.23. Magnetização em função da temperatura para três campos	
magnéticos diferentes nos compostos com $x=0$ (a) e $x=0.5$ (b). Os	
insets mostram as anomalias para baixos campos [10]	65
Figura 3.24. Curvas de C/T Vs T para $x= 0$; 0,5; 0.75; e 0,9 mostrando	
ordem antiferromagnética, para as duas primeiras concentrações são	
observada um pico maior e outro mais pequeno [10].	66
Figura 3.25. Do lado direito, curvas de resistência em baixas temperaturas	
para $CeCoGe_{2,25}Si_{0,75}$ em diferentes pressões. a linha corresponde ao	
ajuste considerando espalhamento elétron-mágnons. Do lado esquerdo,	
parâmetros obtidos dos ajustes a linha sólida representa o calculo	
teórico de T _N considerando um modelo de flutuações bidimensionais	
(ver ref. [12]),	67
Figura 3.26. C/T vs T para x=1,0; 1,1; 1,25; e 1,5, mostrando	

PUC-Rio - Certificação Digital Nº 0312436/CB

comportamento não-líquido de Fermi. O <i>inset</i> mostra os valores de γ	
para T=0.5 K em função da concentração de Si.	68
Figura 3.27. Variação térmica da inversa da susceptibilidade magnética	
para compostos não-magnéticos com $x \ge 1$ [10]	69
Figura 3.28. Espectro μ^+SR de CeCoGe _{1,9} Si _{1,1} para diferentes temperaturas	
(do lado esquerdo). Funções de assimetria A_1 e A_2 e as razões de	
relaxação do spin do muon λ_1 e λ_2 medidos para dois sítios do muon	
(do lado direito) [54].	72
Figura 3.29. Razão de relaxação do spin dos múons em campo zero para os	
dois sítios [56].	74
Figura 3.30. Curvas de <i>C/T</i> Vs <i>T</i> para x = 1,5; 2,0; 2,25; e 3,0 [10].	75
Figura 3.31. $T_N(\bullet)$, $\theta_W(\bullet)$ e T_K estimado para CeCoGe _{3-x} Si _x em função da	
concentração de silício x. Círculos abertos (0) denotam a temperatura	
de ordenamento de corto alcance obtida por medidas de	
susceptibilidade [10].	76
Figura 4.1. Fotos do forno arco do CBPF empregado na fusão dos	
elementos.	78
Figura 4.2. Ciclo de tratamento térmico na preparação das amostras	
CeCoGe _{3-x} Si _x . Na parte interior pode-se observar a fotografia de uma	
amostra após o tratamento térmico.	79
Figura 4.3. Exemplo de um difratograma de raios-x de uma amostra sem (a)	
e com fases espúrias (b).	81
Figura 4.4. Configuração convencional dos contatos para o cálculo da	
resistividade em uma amostra poliedral. No gráfico I e V representam	
os fios de corrente e voltagem respectivamente.	82
Figura 4.5. Diagrama de blocos do sistema usado nas medidas de	
resistividade AC sob pressão.	84
Figura 4.6. Diagrama de fases de uma mistura ³ He e ⁴ He.	86
Figura 4.7. Criostato Jannis empregado nas medidas de resistividade com a	
haste e o porta-amostras.	88
Figura 4.8. Criostato Oxford empregado nas medidas de resistividade em	
baixas temperaturas com campo magnético aplicado, na parte central	
do reservatório de He líquido será colocado o insert.	89

Figura 4.9. diagrama esquemático da câmara de isolamento do sistema d	e
refrigeração ³ He/ ⁴ He, <i>insert</i> , empregado nas medidas de resistividad	e
em baixas temperaturas.	90
Figura 4.10. Figura esquemática das componentes de um refrigerador d	e
diluição ³ He/ ⁴ He e fotografia do insert do sistema de refrigerador de	0
CBPF	91
Figura 4.11. Painel de controle do sistema de bombeamento.	92
Figura 4.12. Representação esquemática da célula de pressão liquid	a
utilizada no presente trabalho.	94
Figura 4.13. Porta amostra colada na rolha, a)observa-se o fio de manganin	a
enrolada, b) instalação de amostras c) instalação do chumbo do outro	0
lado do porta-amostras.	94
Figura 4.14. Exemplo da obtenção da T _C do chumbo para determinar	а
pressão.	95
Figura 5.1. Refinamento pelo método de Rietveld para os dados de difração	0
de raios-x da amostra CeCoGe3 à temperatura ambiente. Os ponto	S
correspondem aos dados experimentais, a linha contínua ao ajust	e
teórico, e as barras verticais às linhas de Bragg. Na parte superior	é
mostrada a estrutura cristalina deste composto.	97
Figura 5.2. Variação dos parâmetros de rede e do volume em função d	а
concentração x de Si. As linhas tracejadas são um guia para os olhos.	99
Figura 5.3. M/H para baixas temperaturas. As setas indicam as transiçõe	S
magnéticas.	100
Figura 5.4. Inverso das medidas de $M/H(T)$ para: a) CeCoGe ₃ e b) CeCo	0
$Ge_{2,1}Si_{0,9}$.	101
Figura 5.5. Medidas de resistividade para amostras com $x(S_1) = 0 e 0,9. O$	S
insets são uma ampliação na região de baixa temperatura, onde T_N	é
observada.	101
Figura 5.6.a) Medidas de resistividade para as amostras LaCoGe _{2,1} Si _{0,9} (∇)
e CoGe _{2,1} Si _{0,9} (o) e a contribuição magnética, ρ_m , para CeCoGe _{2,1} Si _{0,9}).
Na figura b) observa-se $\rho_m(T)$ no intervalo de altas temperaturas ond	e
encontra-se $T_{max} \propto T_K$.	103
Figura 5.7. Determinação do T _N a partir do mínimo da segunda derivad	a

dos dados de resistividade da amostra CeCoGe _{2,1} Si _{0,9} .	103
Figura 5.8. Exemplo da estimativa de ρ_0 para a amostra com x=0,9.	105
Figura 5.9. Medidas de resistividade sob pressão para a amostra	
CeCoGe _{2,1} Si _{0,9} . As setas indicam a temperatura de transição magnética	107
Figura 5.10. Variação de T_N em função da pressão. A linha sólida	
representa o ajuste com a Eq. 5.3, obtendo uma pressão crítica de	
6,18(2) kbar.	108
Figura 5.11. Curvas de resistividade em baixas temperaturas para diferentes	
pressões. As linhas sólidas representam o ajuste considerando a Eq.	
$K_{BT} < \Delta$ (ver texto) [69].	111
Figura 5.12. O gap e a quantidade $A \propto 1/D^3$, comparadas com a variação de	
T_N . Acima de 4,5kbar observa-se uma correlação entre $\Delta(P)$ e $T_N(P)$: a	
linha representa o ajuste de $\Delta(P)$ levando a uma pressão crítica igual a	
6,19 kbar [69].	112
Figura 5.13. Linha crítica obtida através de ajuste de $T_N(P)$ com a Eq. 5.6	
para pressões acima de 5 kbar, onde o gap (\blacktriangle) e T _N (o) caem mais	
rapidamente para zero. A linha tracejada representa uma simulação de	
T_N com a expressão para um sistema 3D [69].	114
Figura 5.14.a) $\rho(T)$ em símbolos abertos e o ajuste com $\rho(T)=\rho_0+CT^n$,	
obtendo para todas as pressões apresentadas n=2. b) Aplicação do	
método da horizontal: $(\rho(T)-\rho_0)/T^n$ para nossos dados, a linha preta	
representa o intervalo de temperatura para o qual o expoente n=2 é	
valido.	116
Figura 5.15. Variação de T_{cross} e C em função da pressão, as linhas	
representam os ajustes (ver texto) [69].	117
Figura 5.16. Método da horizontal para pressões próximas à pressão crítica.	118
Figura 5.17. Resistividade residual para vários sistemas férmions pesados	
apresentando comportamentos diferentes. Os picos vistos acima da	
pressão crítica estão associados a mudanças de valência [80].	119
Figura 5.18.a) Medidas de resistividade para diferentes pressões como	
função da temperatura (apresentada em escala logarítmica). b) Valores	
obtidos de ρ_0 para CeCoGe _{2,1} Si _{0,9} [69].	120
Figura 5.19. Resistividade magnética ρ_m da amostra $CeCoGe_{2,1}Si_{0,9}$ como	

uma função da Temperatura (em escala Logaritmica) para diferentes	
pressões. As setas indicam a temperatura onde ρ_m é máxima [69].	121
Figura 5.20. T _{max} obtida da parte magnética da resistividade em função da	
pressão [69].	121
Figura 5.21. Diagrama de fases $P \times T$ para amostra CeCoGe _{2,1} Si _{0,9} . A linha	
sólida representa o ajuste com modelo de ondas de spin para um	
sistema bidimensional, a linha tracejada corresponde ao ajuste de	
campo médio e as linhas pontilhadas delimitam a região não-liquido de	
Fermi [69].	122
Figura 5.22. Temperatura de Néel em função da pressão para o sistema	
$CeCoGe_{2,25}Si_{0,75}$. Os símbolos abertos representam T_N obtidas de	
medidas de resistência e susceptibilidade em função da pressão. Os	
círculos cheios representam T_N por nos obtidos para a amostra	
$CeCoGe_{2,1}Si_{0,9}$.	124
Figura 5.23. C/T vs. ln T e susceptibilidade magnética AC [83, 84].	125
Figura 5.24. Medida de resistividade elétrica para nossa amostra com $x=1$	
com campos magnéticos inferiores a 2 T. As setas representam a	
temperatura de ordenamento (T _N).	126
Figura 5.25. Medida de resistividade elétrica para H=3,5 T. observa-se uma	
dependência linear entre 0,5 e 2,8 K.	126
Figura 5.26. Medida de resistividade elétrica para $H \ge 3,5$ T. as linhas	
sólidas representam um ajuste linear que representa a dependência	
quadrática da resistência com a temperatura.	127
Figura 5.27. Temperatura de ordem e coerência em função do campo	
magnético aplicado.	128
Figura 5.28. Resistividade elétrica em campo 0 e 4 T em função de $T^{1,5}$	
[85].	129

Lista de tabelas

Tabela 2.1. Dependências das linhas T_I , T_{II} e T_m para um sistema	
ferromagnético e antiferromagnético, tridimensional e bidimensional.	31
Tabela 2.2. Predições do comportamento crítico quântico com a	
temperatura para o caso 3D e 2D.	32
Tabela 4.1. Amostras preparadas da série CeCoGe _{3-x} Si _x .	77
Tabela 4.2. Exemplo das quantidades (em gramas) dos elementos	
necessários para preparar 2 g de CeCoGe _{2,1} Si _{0,9} .	78
Tabela 4.3. Temperaturas de fusão para os elementos utilizados.	79
Tabela 4.4. Lista de amostras do sistema CeCoGe _{3-x} Si _x , indicando a perda	
de massa após a fusão.	80
Tabela 5.1. Parâmetros de rede a e c obtidos pelo refinamento de Rietveld	
dos difratogramas de raios-x das amostras CeCoGe _{3-x} Si _x à temperatura	
ambiente.	98
Tabela 5.2. Valores de T_N , e Δ para da medida com pressão de 5,5 kbar	
substituídos nas equações 5.6 e 5.7 para obter o valor de Γ .	113