

Carlos Manuel Sánchez Tasayco

Propriedades estruturais, mecânicas e tribológicas de filmes de TiB₂ e Ti-B-N depositados por erosão catódica

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio.

Orientador: Fernando Lázaro Freire Júnior.

Rio de Janeiro, 19 de abril de 2007

Carlos Manuel Sánchez Tasayco

Propriedades estruturais, mecânicas e tribológicas de filmes de TiB₂ e Ti-B-N depositados por erosão catódica

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Fernando Lázaro Freire Júnior Orientador Departamento de Física - PUC-Rio

Prof. Marcelo Huguenin Maia da Costa INMETRO

Profa. Mônica Mesquita Lacerda Universidade do Estado de Santa Catarina

Prof. Francisco das Chagas Marques Universidade Estadual de Campinas

Prof. Marcos Antonio Zen Vasconcellos Universidade Federal do Rio Grande do Sul

> Prof. José Eugenio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 19 de abril de 2007.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Carlos Manuel Sánchez Tasayco

Graduou-se em Física na Faculdade de Física da Universidad Nacional Mayor de San Marcos em Lima, Peru, e fez o mestrado no estudo da incorporação de nitrogênio em filmes de carbono amorfo fluorado no Departamento de Física da Pontifícia Universidade Católica do Rio de Janeiro. Atualmente pertence ao Laboratório de Revestimentos Protetores da PUC-Rio.

Ficha Catalográfica

Tasayco, Carlos Manuel Sánchez

Propriedades estruturais, mecânicas e tribológicas de filmes de TiB₂ e Ti-B-N depositados por erosão catódica / Carlos Manuel Sánchez Tasayco ; orientador: Fernando Lázaro Freire Júnior. – 2007.

108 f. : il. ; 30 cm

Tese (Doutorado em Física)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2007.

Inclui bibliografia

1. Física – Teses. 2. Diborato de titânio. 3. Filmes finos. 4. Nitrogênio. 5. Tribologia. I. Freire Júnior, Fernando Lázaro. II. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Física. III. Título.

CDD: 530

PUC-Rio - Certificação Digital Nº 0312442/CA

Agradecimentos

Ao meu orientador o professor Fernando Lázaro Freire Júnior., pela parceria e profissionalismo.

À Capes e ao CNPq pelos auxílios concedidos para a realização desta tese.

À minha mãe, a Carol e o Pancho. À minha família toda.

Aos meus colegas do Laboratório *Van de Graaff*, Henrique, Clara, Paola, Bernabé, Cintia, Cristiano Camacho, Dunieskys, Rafael, Paquito, Renato e Eduardo.

Ao Marcelo pelas dicas e à ajuda nesta tese.

Aos professores e funcionários do Laboratório *Van de Graaff* e do Departamento de Física da PUC-Rio.

À Rose com muito amor

Ao Brasil e à cidade do Rio de Janeiro.

Sánchez Tasayco, Carlos Manuel; Freire Jr. Fernando Lázaro. **Propriedades estruturais, mecânicas e tribológicas de filmes de TiB₂ e Ti-B-N depositados por erosão catódica.** Rio de Janeiro, Abril, 2007. 108p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

O presente trabalho teve como objetivo central o estudo das modificações nas propriedades estruturais, mecânicas e tribológicas causadas pela incorporação de nitrogênio em filmes de diborato de titânio (TiB₂) crescidos pela técnica de erosão catódica assistida por um campo magnético. Os revestimentos de Ti-B-N com diferentes conteúdos de nitrogênio foram depositados em substratos de silício cristalino (100) a partir da erosão de um alvo de diborato de titânio mediante o uso da técnica de erosão catódica em uma atmosfera de argônio e nitrogênio e com tensões de polarização variando entre +100V e -100V. Os efeitos do conteúdo de nitrogênio e a influência da tensão de polarização na estrutura e no comportamento tribológico foram investigados com uso da técnica nuclear de retroespalhamento Rutherford (RBS), 0 espectroscopia de fotoelétrons induzida por raios-x (XPS), difração por raios-x (XRD), perfilometria (medidas de tensão interna), microscopia de força atômica (AFM) e de ângulo de contato. Os resultados do presente trabalho mostraram que a incorporação de nitrogênio produz filmes com tensões internas cada vez mais compressivas. No entanto a mudança da tensão de autopolarização a valores positivos provocou uma relaxação na tensão interna. Nesses casos, foi observada uma melhor adesão dos filmes aos substratos de silício. Os resultados de XPS mostraram que as fases, TiB₂, BN e TiN, estão presentes nos filmes de Ti-B-N e a caracterização por XRD determinou a estrutura nanocristalina desses revestimentos. Medidas de AFM indicaram valores de rugosidade superficial entre 1 e 2nm.

Palavras-chave

Diborato de titânio; Filmes finos; Nitrogênio; Tribologia.

Sánchez Tasayco, Carlos Manuel; Freire Jr. Fernando Lázaro. **Structural, mechanical and tribological properties of TiB₂ and Ti-B-N films deposited by reactive DC magnetron sputtering.** Rio de Janeiro, April, 2007. 108p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

The main purpose of the present work was the study of the effects on the structural, mechanical and tribological properties of the incorporation of nitrogen in titanium diboride films (TiB₂) grown by reactive dc magnetron sputtering. Ti-B-N coatings with different N contents were deposited on Si (100) substrates from a TiB₂ target. The sputtering was carried out in an Ar-N₂ gas mixture with a substrate bias voltage in the range between +100V e -100V. The effects of the nitrogen content and the influence of substrate bias voltage on the coatings properties were studied by Rutherford Backscattering Spectrometry (RBS), X-Ray photoelectron spectroscopy (XPS), X-Ray diffraction (XRD), profilometry (internal stress measurements), atomic force microscopy (AFM) and contact angle measurements. The results of the present work show that nitrogen incorporation produces films with higher compressive internal stress. However, a positive substrate bias reduces the compressive stress, thus resulting in a better adhesion to the substrate. The XPS results showed that the TiB₂, TiN and BN phases are present in the *Ti-B-N* films. Characterization by XRD determined the nanocrystalline structure of Ti-B-N coatings. Measurements by AFM revealed low surface roughness values.

Keywords

Titanium diboride; Thin films; Nitrogen; Tribology.

Sumário

1 Introdução	15
1.1. O diborato de titânio	15
1.2. Objetivo do trabalho	17
2 Deposição por PVD	20
2.1. Introdução	20
2.2. Processos de erosão	20
2.3. Erosão catódica	21
2.3.1 Erosão catódica reativa	23
2.4 Mecanismos de Crescimento	26
3 Procedimentos Experimentais	29
3.1. Introdução	29
3.2. Sistema de deposição	29
3.3. Procedimentos Experimentais	31
3.4. Técnicas de Caracterização	32
3.4.1. Espectrometria de Retroespalhamento Rutherford (RBS)	32
3.4.2. Difração por raios-x (XRD)	36
3.4.3. Espectroscopia de fotoelétrons induzida por raios-x (XPS)	38
3.4.4. Perfilometria	40
3.4.5. Medidas de ângulo de contato	43
3.4.6. Microscopia de Força Atômica (AFM)	45
4 Crescimento de filmes de TiB ₂	49
4.1. Introdução	49
4.2. Parâmetros das deposições	49
4.3. Resultados	50
4.3.1. Taxa de deposição	50
4.3.2. Composição química e densidade atômica	53
4.3.3. Análise Estrutural	61
4.3.3.1. Espectroscopia de fotoelétrons induzida por raios-x (XPS)	61
4.3.3.2. Difração de raios-x (XRD)	66
4.3.4. Propriedades Mecânicas	72

4.3.4.1. Tensão Interna	72
4.3.5. Nanotribologia e ângulo de contato	74
4.3.5.1. Ângulo de contato	74
4.3.5.2. Topografia e Rugosidade (RMS)	78
5 Crescimento de filmes de Ti-B-N	83
5.1. Introdução	83
5.2. Parâmetros de deposição	83
5.3. Resultados	84
5.3.1. Taxa de deposição	84
5.3.2. Composição química e densidade atômica	85
5.3.3. Análise Estrutural	88
5.3.3.1. Espectroscopia de fotoelétrons induzida por raios-x (XPS)	89
5.3.3.2. Difração de raios-x (XRD)	94
5.3.4. Propriedades mecânicas	97
5.3.4.1. Tensão interna	97
5.3.5. Nanotribologia e ângulo de contato	98
5.3.5.1. Ângulo de contato	98
5.3.5.2. Topografia e Rugosidade (RMS)	100
6 Conclusões e considerações finais	103
7 Referências	105

Lista de figuras

Figura 1.1 Esquema de uma rede hexagonal de átomos de boro na	
matriz de titânio [3].	15
Figura 1.2 Diagrama do sistema de fase ternário do titânio, boro e	
nitrogênio [39].	19
Figura 2.1 Interações dos íons incidentes com a superfície do material	
alvo.	21
Figura 2.2 Cinética de partículas: erosão catódica convencional e erosão	
catódica confinado por campo magnético.	22
Figura 2.3 Esquema de deposição de filmes por erosão catódica reativa.	24
Figura 2.4 Histerese no processo de erosão catódica reativa.	25
Figura 2.5 Mecanismos básicos de crescimento de filmes finos.	26
Figura 2.6 Representação esquemática de estruturas de filmes crescidos	
por erosão.	28
Figura 2.7 Modelo de zonas em função da temperatura do substrato, T _S .	28
Figura 3.1 Sistema de Deposição por erosão catódica confinado por um	
campo magnético. Na foto acima temos o plasma de argônio.	30
Figura 3.2 Esquema de um canhão de sputtering planar constituído por	
magnetos.	31
Figura 3.3 Esquema RBS, retroespalhamento elástico de íons incidentes	
por um alvo [47].	33
Figura 3.4 Arranjo do interior da câmara de análise por RBS.	36
Figura 3.5 Condição para a difração de Bragg numa família de planos	
espaçados de uma mesma distância d.	37
Figura 3.6 Esquema de um espectrômetro de difração por raios-x.	38
Figura 3.7 Estação de Análise por XPS do Laboratório Van de Graaff da	
PUC-Rio.	40
Figura 3.8 (a) tensão interna tensiva e (b) tensão interna compressiva em	
filmes [45].	41
Figura 3.9 Imagem do perfilômetro DEKTAK 3 do Laboratório Van de	
Graaff.	42
Figura 3.10 Perfil do raio de curvatura de um filme obtido no perfilômetro.	42
Figura 3.11 Esquema representando o ângulo de contato θ no limite das	
fases sólida, líquida e vapor.	43

Figura 3.12 Equipamento para medida de ângulo de contato.	44
Figura 3.13 Simulação da força de interação entre um átomo da ponta e	
um átomo da superfície em função de sua distância obtida através do	
uso do potencial de <i>Lennard-Jones</i> .	46
Figura 3.14 Esquema do funcionamento do AFM – Detecção da deflexão	
do cantilever por meio de um feixe de laser.	47
Figura 4.1 Variação da taxa de deposição em função da pressão no	
interior da câmara.	51
Figura 4.2 Mudança da taxa de deposição em função da tensão aplicada	
no porta-amostra.	52
Figura 4.3 Espectro RBS de um filme de TiB2 depositado em uma	
atmosfera de argônio a pressão de 0,15Pa.	53
Figura 4.4 Espectro RBS de um filme de TiB2 depositado numa	
atmosfera de argônio a pressão de 0,36Pa.	54
Figura 4.5 Espectro RBS de um filme de TiB2 depositado numa	
atmosfera de argônio a pressão de 0,8Pa.	55
Figura 4.6 Espectro RBS de um filme de TiB2 depositado numa	
atmosfera de argônio a pressão de 1,0Pa.	55
Figura 4.7 Espectro RBS de um filme de TiB2 depositado numa	
atmosfera de argônio a pressão de 2,0Pa.	56
Figura 4.8 Densidade atômica dos filmes em função da pressão de	
argônio.	57
Figura 4.9 Espectro RBS de um filme de TiB ₂ depositado com -100V de	
tensão de polarização.	58
Figura 4.10 Espectro RBS de um filme de TiB ₂ depositado com -50V de	
tensão de polarização.	58
Figura 4.11 Espectro RBS de um filme de TiB ₂ depositado com $+50V$ de	
tensão de polarização.	59
Figura 4.12 Espectro RBS de um filme de TiB ₂ depositado com +100V de	
tensão de polarização.	59
Figura 4.13 Densidade atômica em função da tensão de polarização	
aplicada no substrato.	60
Figura 4.14 Espectro completo de um filme de TiB2 crescido numa	
atmosfera pura de argônio.	62
Figura 4.15 Espectro XPS na região do boro 1s para filmes de TiB $_{2}$	
crescidos em atmosfera pura de argônio.	63

Figura 4.16 Espectro XPS na região do titânio 2p para filmes de TiB ₂	
crescidos em atmosfera pura de argônio.	64
Figura 4.17 Espectros na região do boro 1s para diversos filmes com	
diferentes tensões de polarização aplicadas no substrato: a) +100V, b)	
+50V, c) -50V, d) -100V.	65
Figura 4.18 Espectros na região do titânio 2p para filmes de TiB2 com	
diferentes tensões de polarização aplicadas no substrato: a) +100V, b)	
+50V, c) -50V, d) -100V.	66
Figura 4.19 Espectros XRD para filmes de TiB ₂ depositados a diversas	
pressões de argônio na câmara.	67
Figura 4.20 Razão das intensidades dos picos nos espectros de XRD.	68
Figura 4.21 Tamanho de grão em função da pressão de deposição.	69
Figura 4.22 Espectros XRD para filmes de TiB ₂ crescidos com diferentes	
tensões de polarização.	70
Figura 4.23 Razão das intensidades dos picos presentes nos espectros	
XRD em função da tensão de polarização.	71
Figura 4.24 Tamanho de grão em função da tensão de polarização	
aplicada no substrato.	71
Figura 4.25 Tensão interna dos filmes de Ti B_2 em função da pressão de	
deposição.	72
Figura 4.26 Tensão interna dos filmes de TiB ₂ crescidos com diferente	
tensão de polarização.	74
Figura 4.27 Imagem de uma gota de água sobre a superfície de um filme	
de TiB ₂ (2Pa) com ângulo de contato de 79.7°.	75
Figura 4.28 Imagens de três gotas de água sobre a superfície de filmes	
de TiB ₂ com pressões de 2Pa, 0.8Pa e 0.15Pa e ângulos de contato de	
79.7°, 87.2° e 90.5° respectivamente.	76
Figura 4.29 Ângulo de contato para filmes de TiB ₂ crescidos a diferentes	
pressões de deposição.	77
Figura 4.30 Ângulo de contato em função da tensão de polarização	
aplicada no substrato.	78
Figura 4.31 Rugosidade quadrática média de filmes de TiB ₂ em função	
da pressão de deposição.	79
Figura 4.32 Imagens topográficas (escala de varredura: 400nmx400nm)	
de filmes de TiB ₂ : (a) 0,36 Pa (b) 1Pa e (c) 2Pa .	80
Figura 4.33 Rugosidade quadrática média de filmes de TiB ₂ em função da	81

tensão de polarização.

Figura 4.34 Coeficiente de atrito em função da pressão de deposição.	82
Figura 5.1 Taxa de deposição dos filmes de Ti-B-N em função do fluxo	
de nitrogênio.	85
Figura 5.2 Espectro RBS de um filme de Ti-B-N depositado com 2sccm	
de fluxo de nitrogênio.	86
Figura 5.3 Espectro RBS de um filme de Ti-B-N depositado com 8 sccm	
de fluxo de nitrogênio.	86
Figura 5.4 Espectro RBS de um filme de Ti-B-N depositado com 16 sccm	
de fluxo de nitrogênio.	87
Figura 5.5 Densidade atômica dos filmes em função da concentração de	
nitrogênio.	88
Figura 5.6 Espectro XPS completo de um filme de Ti-B-N.	89
Figura 5.7 Espectros na região do boro 1s para filmes de Ti-B-N.	91
Figura 5.8 Distribuição das áreas dos picos presentes nos espectros XPS	
na região do boro 1s.	92
Figura 5.9 Espectros na região do titânio 2p para filmes de Ti-B-N.	93
Figura 5.10 Distribuição das áreas dos picos presentes no espectro XPS	
na região do titânio 2p.	94
Figura 5.11 Espectros XRD para filmes de Ti-B-N.	95
Figura 5.12 Tamanho de grão do TiN(111) em função da concentração	
de nitrogênio.	96
Figura 5.13 Tamanho de grão do TiN(200) em função da concentração	
de nitrogênio.	97
Figura 5.14 Tensão interna dos filmes de Ti-B-N em função do conteúdo	
de nitrogênio.	98
Figura 5.15 Duas imagens de gotas de água com distintos ângulos de	
contato sobre filmes depositados em diferentes fluxos de nitrogênio: a)	
2sccm e b) 16sccm.	99
Figura 5.16 Valores do ângulo de contato para filmes de Ti-B-N para	
diferentes concentrações de nitrogênio.	99
Figura 5.17 Rugosidade quadrática média de filmes Ti-B-N em função do	
fluxo de N.	100
Figura 5.18 Imagens de AFM para filmes de Ti-B-N depositados com	
diferentes fluxos de nitrogênio: (a) 2sccm (b) 8sccm e (c) 16sccm.	101
Figura 5.19 Coeficiente de atrito em função da concentração de N.	102

Lista de tabelas

Tabela 1.1 Propriedades físicas e mecânicas típicas do diborato de	
titânio à temperatura ambiente [6,7].	16
Tabela 4.1 Resumo dos parâmetros de deposição empregados	
nesta seção da tese.	50
Tabela 4.2 Valores da potência em função da pressão de argônio	
no interior da câmara.	51
Tabela 4.3 Valores da potência em função da tensão de	
polarização no substrato.	52
Tabela 4.4 Composição química dos filmes depositados a	
diferentes pressões de argônio.	56
Tabela 4.5 Composição química dos filmes depositados com	
diversas tensões de polarização (0.8Pa, -350V no canhão).	60
Tabela 4.6 Energias de ligações para as ligações químicas	
estudadas nas regiões indicadas.	63
Tabela 5.1 Tabela resumindo os parâmetros de deposição de	
filmes de Ti-B-N.	84
Tabela 5.2 Composição química dos filmes de Ti-B-N em função do	
fluxo de nitrogênio.	87
Tabela 5.3 Energias de ligações para as ligações químicas	
estudadas nas regiões indicadas.	90