

Welber Gianini Quirino

Produção e caracterização de dispositivos orgânicos eletroluminescentes (OLEDs) baseados em complexos β-dicetonatos de Terras-Raras

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio.

Orientador: Prof. Marco Cremona.

Rio de Janeiro, 16 de Março de 2007.

Welber Gianini Quirino

Produção e caracterização de dispositivos orgânicos eletroluminescentes (OLEDs) baseados em complexos β-dicetonatos de Terras-Raras

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Prof. Marco Cremona Orientador Departamento de Física - PUC-Rio

Profa. Sônia Renaux Wanderley Louro Departamento de Física - PUC-Rio

> Prof. Hermi Felinto de Brito USP

Profa. Maria Luiza Rocco Duarte Pereira UFRJ

> Profa. Maria José Valenzuela Bell UFJF

Prof. José Eugênio Leal Coordenador Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 16 de Março de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Welber Gianini Quirino

Graduou-se em Física pela Universidade Estadual Paulista Júlio de Mesquita Filho (UNESP), Bauru, São Paulo, em 2000. Obteve o título de Mestre em Física pela Universidade Federal de Juiz de Fora (UFJF), Juiz de Fora, Minas Gerais, em 2003.

Ficha Catalográfica

Quirino, Welber Gianini

Produção e caracterização de dispositivos orgânicos eletroluminescentes (OLEDs) baseados em complexos βdicetonatos de Terras-Raras/ Welber Gianini Quirino; Orientador: Marco Cremona. - Rio de Janeiro: PUC, Departamento de Física, 2007.

1v., 260 p.: il.; 30 cm

1. Tese (doutorado) - Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física.

Inclui referências bibliográficas.

1. Física - Teses. 2. Dispositivos eletroluminescentes. 3. OLEDs. 4. Eletroluminescência. 5. Complexos β dicetonatos de Terras-Raras. 6. Filmes finos. 7. Nanotecnologia. I. Cremona, Marco. II. Pontifícia Universidade católica do Rio de Janeiro. Departamento de Física. III. Título.

CDD: 530

Hos meus filhos Matheus e Júlia e à minha esposa Mariana.

Agradecimentos

Agradeço a Deus.

Aos meus pais Valmir e Maria Helena pelo poio e incentivo constante.

Aos meus filhos Matheus e Júlia e à Minha esposa Mariana pelo carinho, pelo incentivo e pela paciência durante todos esses anos.

Aos meus familiares, Alda, René, Henrique, Daniel e Carolina, por toda ajuda durante este período.

Ao meu orientador, Marco Cremona, por ter me dado a oportunidade de concluir mais esta etapa, por ter tido interesse e dedicação em todos os momentos desse curso, por ter me ajudado nos momentos difíceis, além de ter me proporcionado um trabalho novo, empolgante e bonito.

Aos professores e técnicos do Departamento de Física, pelos conhecimentos adquiridos e pelo apoio técnico.

Aos Professores Hermi F. Brito, Marian Davolos, Severino A. Júnior e Petrus A. Santa Cruz pelos complexos orgânicos utilizados neste trabalho.

Aos colaboradores e amigos Ercules E. Teotônio, Marco A. Guedes, Patrícia Lima, Renata Adati, Sérgio Lima, Patrícia Nobrega, pelos complexos orgânicos sintetizados, pelos trabalhos e discussões em conjunto e pelo apoio em todos esses anos.

Aos meus amigos do Laboratório de Optoeletrônica Molecular (LOEM) Reynaldo, Cristiano, Sully, Paula, Letícia, Bernardo, Mariana, Laura, Renata, Denis, Rafael Brasil, Rafael Mendes, Denis, Helder e Felipe pelo apoio, sugestões, discussões e trabalhos desenvolvidos em conjunto. A todos os professores e funcionários da PUC-Rio que de maneira direta ou indireta contribuíram para a realização deste trabalho.

A Pontifícia Universidade Católica de Rio de Janeiro (PUC-Rio) por proporcionar as condições necessárias para o bom andamento do trabalho.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq), à Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (Capes) e à Rede de Nanotecnologia Molecular e de Interfaces (Renami), pelo suporte financeiro.

Sumário

1 Introdução	28
1.1. Estado da Arte	29
1.2. Justificativa	34
1.3. Escolha dos materiais	35
1.4. Objetivos Gerais	35
1.4.1. Objetivos Específicos	36
1.5. Metas e Resultados Esperados	38
1.6. Organização da Tese	38
2 Dispositivos Orgânicos Emissores de Luz - OLEDs	42
2.1. Configuração e Funcionamento	42
2.1.1. Fabricação e Arquiterura dos Dispositivos	42
2.1.2. Funcionamento	45
2.2. Materiais	47
2.2.1. Injetores de Carga	47
2.2.1.1. Injetores de Elétrons	48
2.2.1.2. Injetores de Buracos	50
2.2.2. Transportadores de Carga	53
2.2.2.1. Transportadores de Elétrons	53
2.2.2.2. Transportadores de Buracos	55
2.3. Mecanismos de Injeção e de Transporte de Cargas	56
2.3.1. Mecanismo de Injeção de Cargas em OLEDs	57
2.3.2. Influência do processo de transporte na condutividade	
elétrica	59
2.3.3. Injeção e transporte de cargas num OLED tipo	
heterojunção	61
2.3.4. A eletroluminescência nos OLEDs de heterojunção	65
2.3.5. Limites Operacionais de Funcionamento	67
2.3.5.1. Acoplamento Óptico	67
2.3.5.2. Eficiência Quântica	68
3 Os Íons Terras-Raras	75
3.1. Introdução	75
3.2. Resumo Histórico	75

3.3. Propriedades Gerais	76
3.4. Propriedades Espectroscópicas dos Íons TR ³⁺	77
3.5. Os Complexos de Terras-Raras	80
3.5.1. Estrutura dos complexos β -dicetonatos de Terras-	
Raras	80
3.5.2. Mecanismo de transferência de energia	81
3.5.3. Eletroluminescência dos complexos contendo íons	
lantanídeos	84
4 Procedimentos Experimentais	90
4.1. Introdução	90
4.2. Amostras	90
4.3. Síntese dos compostos β -dicetonatos de Terras-Raras	92
4.4. Preparação das amostras	93
4.4.1. Preparação dos substratos dos dispositivos	93
4.4.1.1. Padrões simples com fita adesiva	93
4.4.1.2. Padrões Especiais com Fotolitografia	96
4.4.1.3. Limpeza	99
4.5. Deposição de filmes finos	99
4.5.1. Deposição física de filmes finos por fase vapor	99
4.5.2. Descrição do sistema de deposição	101
4.5.3. Parâmetros utilizados para a deposição dos filmes	
orgânicos	103
4.5.3.1. Parâmetros de calibração do sistema de medidas de	
espessura dos filmes orgânicos (INFICON)	104
4.5.4. Deposição de filmes finos por spin-coating	105
4.5.5. Desenho dos dispositivos	106
4.5.6. Fabricação dos OLEDs	108
5 Técnicas Analíticas	110
5.1. Introdução	110
5.2. Medidas Ópticas	110
5.2.1. Medidas de Fotoluminescência e Eletroluminescência	114
5.2.2. Absorbância	116
5.2.3. Medidas de Fotometria e Radiometria	117
5.2.3.1. Fluxo ou Potência Radiante	117

5.2.3.2. Curva estandar de visibilidade do CIE	118
5.2.3.3. Fluxo Luminoso	118
5.2.3.4. Intensidade Radiante e Luminosa	120
5.2.3.5. Irradiância e Iluminância	121
5.2.3.6. Radiância e Luminância	121
5.3. Medidas Elétricas	123
5.3.1. Medidas I vs V	124
5.4. Caracterização Física e Química das amostras	125
5.4.1. Medidas de Espessura de Filmes Finos	125
5.4.2. Voltametria Cíclica	126
5.4.2.1. Obtenção dos parâmetros eletroquímicos	126
5.4.2.2. Eletrodos quimicamente modificados	130
5.4.2.3. Medidas de Voltametria Cíclica	131
5.4.3. Transição Vítrea	133

6 Fabricação e Caracterização de OLEDs usando complexos β-dicetonatos de Terras-Raras como camada emissora 136

6.1. Introdução	136
6.2. <u>Sistema 1</u> – O Complexo [Eu(bmdm)₃(ttpo)₂]	136
6.2.1. Experimental	137
6.2.1.1. Síntese do Complexo	137
6.2.1.2. Fabricação dos dispositivos	138
6.2.2. Resultados e Discussão	139
6.2.3. Conclusão (Sistema 1)	157
6.3. <u>Sistema 2</u> – O Complexo Binuclear β -dicetonato de Eu e Tb	159
6.3.1. Introdução	159
6.3.1.1. Sistema Aceitador-Doador	161
6.3.2. Experimental	161
6.3.2.1. Síntese do Complexo binuclear	162
6.3.2.2. Fabricação dos Dispositivos	163
6.3.3. Resultados e Discussão	164
6.3.4. Conclusão (Sistema 2)	188
6.4. Sistema 3 – Os Complexos tetrakis(β -dicetonatos) de TR ³⁺ -	
(Sais de Lítio)	190
6.4.1. Introdução	190
6.4.2. Experimental	191
	 6.1. Introdução 6.2. <u>Sistema 1</u> – O Complexo [Eu(bmdm)₃(ttpo)₂] 6.2.1. Experimental 6.2.1.1. Síntese do Complexo 6.2.1.2. Fabricação dos dispositivos 6.2.2. Resultados e Discussão 6.2.3. Conclusão (Sistema 1) 6.3. Sistema 2 – O Complexo Binuclear β-dicetonato de Eu e Tb 6.3.1. Introdução 6.3.1.1. Sistema Aceitador-Doador 6.3.2. Experimental 6.3.2.1. Síntese do Complexo binuclear 6.3.2.2. Fabricação dos Dispositivos 6.3.3. Resultados e Discussão 6.3.4. Conclusão (Sistema 2) 6.4. Sistema 3 – Os Complexos tetrakis(β-dicetonatos) de TR³⁺ - (Sais de Lítio) 6.4.1. Introdução 6.4.2. Experimental

6.4.2.1. Os Complexos de Eu e Tb	191	
6.4.2.2. Fabricação dos Dispositivos	192	
6.4.3. Resultados e Discussão		
6.4.3.1. Caracterizações ópticas dos compostos dos sais de lít	io	
na forma de pó e filmes finos	193	
6.4.3.2. Dispositivos com o complexo Li[Eu(dbm) ₄]	197	
6.4.3.3. Dispositivos com complexo Li[Tb(acac) ₄]	202	
6.4.4. Conclusão (Sistema 3)	208	
7 Fotodegradação de Compostos Orgânicos	212	
7.1. Introdução		
7.2. Espectroscopia de fotoelétrons	213	
7.2.1. Espectroscopia de Fotoelétrons de Raios X (XPS – X-		
ray Photoelectron Spectroscopy)	214	
7.3. Espectroscopia de Fotoabsorção - NEXAFS (Near Edge X-ray		
Absorption Fine Structure)	216	
7.3.1. Ressonâncias π*	218	
7.3.2. Ressonâncias de Forma, σ*	218	
7.4. Luz Síncrotron	219	
7.4.1. Linhas de Luz utilizadas neste trabalho	221	
7.4.2. D08A - SGM (Spherical Grating Monochromator)	221	
7.4.3. D05A - TGM (Toroidal Grating Monochromator)	221	
7.5. Experimental	222	
7.5.1. Deposição dos filmes	222	
7.5.2. Montagem dos filmes orgânicos para análise por UPS,		
XPS e NEXAFS	222	
7.6. Resultados	224	
7.6.1. Alq ₃	226	
7.6.2. MTCD	230	
7.6.3. Complexo de Európio - Eu(TTA) ₃ (TPPO) ₂	234	
7.6.4. Conclusão	240	
7.7. Aplicação – OLED usado como dosímetro portátil de radiação		
UV	242	
7.7.1. Introdução	242	
7.7.2. Experimental	244	
7.7.3. Resultados	245	

7.8. Conclusão	251
8 Conclusões	254
9 Produção	259
9.1 Lista de publicações	259
9.2 Patente registrada	260

Lista de Figuras

- Fig. 2.5 Característica (corrente-voltagem) para três OLEDs usando AI, Mg:Ag e LiF/AI como catodo, respectivamente [3]......49

- Fig. 2.10 Representação da injeção por tunelamento tipo Fowler-Nordheim e a injeção termoiônica, em uma estrutura metal/semicondutor-intrínseco/metal.

- Fig. 2.12 Junção orgânica "tipo p-n" num dispositivo bicamanda sob tensão. A recombinação na CEL emite luz verde (~510 nm) proveniente dos estados excitados do Alq₃......63

- Fig. 3.2 Estrutura simplificada dos complexos de terras-raras octacoordenados.
 [O] indica o íon terra-rara central, [•] indica os átomos de oxigênio e/ou nitrogênio provenientes dos ligantes.
- - eletroluminescente envolvendo o "efeito antena"......86

- Fig. 5.7 Linha traçada pelo perfilômetro de um risco feito num filme orgânico.
- Fig. 5.8 Diagrama de bandas para uma estrutura metal/orgânico/metal. 126

- Fig. 6.1 Estrura química do ligante bmdm......136
- Fig. 6.2 Representação esquemática do complexo [Eu(bmdm)₃(tppo)₂]......138

- Fig. 6.4 Espectro de fotoluminescência a 77 K do complexo de Európio, mostrando as estreitas e típicas linhas de emissão do íon Eu³⁺, atribuídas às transições ⁵D₀ - ⁷F_J (J = 0, 1, 2, 3, 4). O gráfico inserido mostra o espectro de fotoluminescência à temperatura ambiente de um filme de 50nm depositado termicamente sobre quartzo......141

- Fig. 6.7 Diagrama de Cromaticidade (X,Y) CIE para o dispositivo 1, X = 0.66, Y = 0,33 (circulo)......144
- tensão aplicada......146

- Fig. 6.16 Diagrama de Cromaticidade (X,Y) CIE para o dispositivo 1, X = 0.66, Y = 0,33 (circulo) e para o dispositivo 2, X = 0.46, Y = 0.44 (triângulo) 151

Fig. 6.17 - Eletroluminescência de outro dispositivo tricamada em função da
tensao aplicada
Fig. 6.18 – Característica I vs V do segundo dispositivo 2 – tricamada, utilizando
a fonte de tensão programável Keithley 2240.
Fig. 6.19 - Característica I vs V do dispositivo 2 –
Fig. 6.20 - Comportamento característico para o gráfico $\ln(I/V^2)x(1/V)$ para o
OLED baseado Eu(bmdm) $_3$ (ttpo) $_2$ tricamada. É possível distinguir duas
regiões distintas de injeção de cargas; a primeira (p) onde temos injeção
predominante de buracos e uma segunda (n) com injeção predominante de
elétrons. As duas linhas contínuas representam aproximações do modelo
de injeção por tunelamento (Fowler-Nordheim)154
Fig. 6.21 – Voltamograma do complexo [Eu(bmdm) ₃ (tppo) ₂]. O complexo é
depositado sobre o eletrodo de grafite. A expressão matemática inserida no
gráfico mostra o cálculo realizado para achar o valor em energia do HOMO,
utilizando a expressão (5.7) da Sec. (5.4.2)
Fig. 6.22 - Diagrama rígido de energia obtido por medidas de voltametria cíclica
para determinar o HOMO dos compostos. O LUMO é obtido pela soma dos
valores do HOMO com o gap óptico, obtido por medidas de absorbância. As
linhas pontilhadas representam a posição do Alq ₃ (HOMO = 5,6eV e LUMO
= 2,6 eV)
Fig. 6.23 – Passado e futuro da iluminação ambiente. Um OLED branco
produzido pela GE Global Research, que produz 70 lúmens e com uma
eficiência de 7 lm/W160
Fig. 6.24 – Sistema doador-aceitador. A sobreposição das bandas é condição
necessária para transferência de energia161
Fig. 6.25 – Estrutura Molecular do complexo Eu(btfa) ₃ •phenterpy•Tb(acac) ₃ 162
Fig. 6.26 - Estrutura molecular do ligante phenterpy - 4',4""-(1,4-Phenileno)bis-
(2,2':6',2''-terpiridina), chamado ao longo deste trabalho de apenas
"phenterpy"
Fig. 6.27 - Espectros de excitação na região do UV-vis do complexo binuclear,
(linha tracejada vermelha – detector em 614 nm, (Eu)), (linha contínua –
detector em 440 nm, (Tb)). Ambos os espectros foram obtidos a partir de
um filme do complexo binuclear depositado termicamente sobre quartzo e
medidos a temperatura ambiente. O gap óptico foi estimado em 3,61 eV.
Fig. 6.28 – Espectros de Fotoluminescência do complexo
Eu(btfa) ₃ •phenterpy•Tb(acac) ₃ (a) baixa temperatura e (b) temperatura

- Fig. 6.30 Estrutura esquemática do dispositivo 1......168
- Fig. 6.31 Espectros de Electroluminescência a temperatura ambiente do dispositivo 1: ITO/NPB(40)/[Eu(btfa)₃•phenterpy•Tb(acac)₃(20)]/Al(100) para diferentes valores de voltagem. A banda larga centrada em 580 nm pode ser associada com a eletrofosforescência do ligante mais a eletroemissão do NPB. A seta indica a eletroemissão do Európio sob a banda da eletrofosforescência do ligante. O gráfico inserido mostra a característica I vs V de um diodo típico.

- Fig. 6.36 Eletroluminescência do dispositivo 1 com o complexo binuclear como camada emissora (linha tracejada azul); Eletroluminescência do dispositivo 3 com o complexo phterpy como camada emissora (linha pontilhada preta).
 Ajuste gaussiano realizado na banda larga do dispositivo 3 (linha vermelha contínua).

- Fig. 6.39 Característica I vs V do segundo dispositivo 2 com eixos log-log....175

Fig. 6.40 - Estr	utura esquem	ática do dis	positivo 4		176
Fig. 6.41 - E	spectros de	electrolumi	nescência à	temperatura	ambiente do
dispositivo	1				4:
ITO/NPB(4	40)/[Eu(btfa)₃•	phenterpy	Tb(acac) ₃ (20)]/Alq₃(30)/Al(1	00) para
diferentes	valores de	voltagem.	Houve um	aumento da	banda larga
centrada e	em 580 nm as	ssociada co	m a eletrofos	forescência de	o ligante. Este
aumento s	se deve ao a	aumento da	banda centr	ada em 510	nm associada
com a em	iissão do Alq	₃ . A seta ir	idica a eletro	eluminescênc	ia do Európio
sob a ban	da da eletrofo	sforescênci	a do ligante.		177
Fig. 6.42 - Foto	do dipositivo	o 4 em funci	onamento. A	intensa emiss	ão branca (20
cd/m²) é c	onseqüência	da soma da	is emissões:	(i) fluorescênc	ia do NPB, (ii)
eletrofosfo	rescência do	ligante, (iii)	fluorescência	a do Alq ₃ e (iv)) fluorescência
do Eu ³⁺					177
Fig. 6.43 – E	spectros de	Electrolum	nescência à	temperatura	ambiente do
dispositivo	5 com maoii	r espessura	do complexo	binuclear (40) nm) e menor
espessura	do Alq ₃ (20	nm) para o	diferentes val	ores de volta	gem aplicada.
					178
Fig. 6.44 - Dia	grama de Cr	omaticidade	(X,Y) CIE (círculo) para o	o dispositivo 4
funcionand	do a 18 V e (†	triângulos) d	quando o disp	positivos está	funcionando a

diferentes voltagens (A=23V, B=25V, C=27V, D=28V and E=30). O espectro correspondente a cada um desses pontos está mostrado na Fig. 6.43....179

- Fig. 6.47 Estrutura molecular do ligante 4'4'Bipiridina......182
- Fig. 6.49 Espectros de excitação do complexo binuclear 2. Curva de excitação obtida com o detector centrado na transição hipersensível do Eu³⁺ (linha

- Fig. 6.50 Espectros de electroluminescência à temperatura ambiente do dispositivo A: ITO/NPB(40)/[Eu(btfa)₃•Bipy•Tb(acac)₃(10)]/Alq₃(30)/Al(100) para diferentes valores de voltagem. Neste caso, uma banda larga está cobrindo todo o espectro de 400 a 700 nm. Esta banda está, como no caso dos dispositivos anteriores, associada com a eletrofosforescência do ligante mais a eletroemissão do NPB e do Alq₃. É possível identificar agora a eletroemissão do Tb³⁺ junto com algumas bandas do Eu³⁺, ambas parcialmente encobertas pela banda larga mencionada acima......185 Fig. 6.52 – Estrutura molecular do ligante bzac = 1-fenil-1,3-butanodiona 186 Fig. 6.53 - Espectros de Electroluminescência a temperatura ambiente do OLED baseado no composto trinuclear, com Tm(0,8), Tb(0,15) e Eu(0,05). O Fig. 6.54 – Fórmula estrutural do complexo tetrakis-dibenzoilmetrano de európio Fig. 6.55 - Fórmula estrutural do complexo tetrakis-acetilacetonato de térbio (III). Fig. 6.56 - O espectro de fotoluminescência do complexo sólido Li[Eu(dbm)₄ à baixa temperatura com λ_{exc} = 394 nm mostra as transições típicas do íon Eu³⁺ (⁵D₀-⁷F_{0,1,2,3,4}), acima. O espectro de fotoluminescência do complexo sólido Li[Tb(acac)₄ à baixa temperatura com λ_{exc} = 342 nm mostra as Fig. 6.57 - Espectros de absorção e fotoluminescência na região do UV-vis do filme do compelxo Li[Tb(acac)₄], gráfico (a). Espectros de absorção, excitação e de fotoluminescência do filme de Li[Eu(dbm)₄], gráfico (b). Todos os espectros foram obtidos a partir de um filme fino sobre uma amostra de quartzo a temperatura ambiente......197 Fig. 6.59 - Espectros de electroluminescência à temperatura ambiente do dispositivo 1: ITO/NPB(40)/Li[Eu(BDM)₄](50)/Al(160) para diferentes valores de voltagem. A pequena banda larga centrada em 435 nm pode ser
- Fig. 6.60 Espectros de electroluminescência à temperatura ambiente do dispositivo 1: ITO/NPB(40)/Li[Eu(BDM)₄](50)/Alq3(25)/Al(130) para

diferentes valores de voltagem. A banda larga centrada em 435 nm é devida à eletroemissão do NPB. O gráfico inserido, mostra que o dispositivo funciona como um diodo típico......200 Fig. 6.61 - Espectros de electroluminescência à temperatura ambiente do dispositivo 3: ITO/NPB(40)/Li[Eu(BDM)4](70)/LiF(0,5)/Al(150) para diferentes valores de voltagem......201 Fig. 6.62 - Foto do dipositivo 3 em funcionamento com emissão predominantemente vermelha do íon Európio......202 Fig. 6.63 - Diagrama de Cromaticidade (X,Y) CIE para o dispositivo 1, X = 0,54, Y = 0,35, dispositivo 2, X=0,40 ; Y=0,33 e dispositivo 3, X=0,56 ; Y=0,36. Fig. 6.64 - Espectros de Electroluminescência a temperatura ambiente do dispositivo 4: ITO/NPB(40)/Li[Tb(acac)₄](50)/Al(160) para diferentes valores de voltagem. A banda larga centrada em 435 nm é devida à eletroemissão Fig. 6.65 - Espectros de electroluminescência à temperatura ambiente do dispositivo 5: ITO/MTCD(40)/Li[Tb(acac)₄](50)/Al(160) para diferentes valores de voltagem......204 Fig. 6.66 - Diagrama de Cromaticidade (X,Y) CIE para o dispositivo 4, X = 0,22, Y = 0,43 e para o dispositivo 5, X=0,24 ; Y=0,50.205 Fig. 6.68 - Voltamogramas dos sais de lítio. O complexo é depositado sobre o Fig. 6.69 - Diagrama rígido de energia obtido por medidas de voltametria cíclica para determinar o HOMO dos compostos NPB, binuclear e Alq₃. O LUMO é obtido pela soma dos valores do HOMO com o gap óptico, obtido por medidas de absorbância. As linhas pontilhadas representam a posição do Fig. 7.2 – Mapa das linhas de Luz instaladas no LNLS. As linhas de luz que operam em raio-x estão representadas em azul, as linhas de luz que operam em ultravioleta e raios-x moles estão representadas em vermelho. Também aparecem no mapa, em verde, as três novas linhas previstas...220 Fig. 7.3 - Disposição dos filmes dos compostos orgânicos empregados em OLEDs no porta-amostra utilizado para os experimentos de UPS, XPS e

- Fig. 7.5 Espectro de NEXAFS na borda 1s do carbono do Alq₃ degradado (linha vermelha), em comparação com o do filme não-degradado (linha preta). 227
- Fig. 7.6 Orbitais moleculares do Alq₃ obtidos pelo programa computacional Gaussian 98, utilizando o método Hartree-Fock na base 6-311g*: a) HOMO,
 b) LUMO, c) LUMO+1, d) LUMO+2 ^[16].
- Fig. 7.8 Espectro de NEXAFS na borda 1s do oxigênio do Alq₃ degradado (linha vermelha), em comparação com o do filme não-degradado (linha preta). 230

- Fig. 7.12 Espectros de fotoemissão do MTCD cobrindo a banda de valência (hv = 250 eV) antes (linha preta) e depois de 20 minutos de exposição à luz branca (ordem zero) da luz síncrotron (linha vermelha)......234
- Fig. 7.13 Estrutura molecular do complexo de Európio Eu(TTA)₃(TPPO)₂..235
- Fig. 7.14 Espectro de NEXAFS na borda 1s do carbono e do oxigênio do complexo de Európio Eu(TTA)₃(TPPO)₂ degradado (linha vermelha), em comparação com o do filme não-degradado (linha preta)......235

- Fig. 7.19 Estrutura molecular do complexo Eu(btfa)₃Bipy245

- Fig. 7.22 Eletroluminescência do dispositivo tricamada do complexo [Eu(btfa)₃bipy] em função da tensão aplicada. Como no caso da (FL) é possível identificar facilmente as transições características do íon Eu³⁺...247

Lista de Tabelas

Resumo

Welber Gianini Quirino. Produção e caracterização de dispositivos orgânicos eletroluminescentes (OLEDs) baseados em complexos β -dicetonatos de Terras-raras. Rio de Janeiro, 2007. 260p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Este trabalho apresenta os resultados de um estudo que envolve a fabricação e a caracterização de dispositivos orgânicos emissores de luz (OLEDs) baseados em complexos β -dicetonatos de terras-raras. O estudo se coloca como continuação lógica da linha de pesquisa em dispositivos eletroluminescentes baseados em íons terras-raras, começada alguns anos atrás neste grupo de pesquisa. Para a produção dos dispositivos foram empregadas várias técnicas de deposição de filmes finos, tais como deposição térmica resistiva, pulverização catódica assistida por plasma (rf-magnetronsputtering) e spin-coating. A síntese dos compostos orgânicos, bem como alguns estudos adicionais puderam ser realizadas através de colaborações com diversos grupos de pesquisas nacionais, os quais dispõem de recursos e capacitação em áreas complementares. Os complexos orgânicos estudados foram divididos em três conjuntos, que chamamos de sistemas. No sistema 1, estudou-se o complexo Eu(bmdm)₃(ttpo)₂, onde o ligante orgânico bmdm é um conhecido agente absorvedor de radiação UV bastante usado em protetores solares. Os OLEDs baseados neste complexo apresentaram intensa foto- e eletroluminescência com alta pureza de cor dada apenas pelas finas transições características do íon Eu³⁺. No sistema 2, estudou-se o complexo chamado de binuclear. Este composto tem dois núcleos terras-raras coordenados numa mesma molécula. 0 primeiro binuclear estudado, complexo 0 Eu(btfa)₃•phenterpy•Tb(acac)₃, não apresentou as transições características dos íons Tb³⁺ e Eu³⁺ como era esperado inicialmente. Por outro lado, apresentou uma eletroluminescência sintonizável em duas situações distintas, a primeira em função da tensão aplicada e a segunda através de mudanças na arquitetura das camadas constituintes. Por causa desse efeito, mostramos a possibilidade de se construir um dispositivo OLED emissor de luz branca. Ainda nesse sistema, foram estudados OLEDs com complexos modificados quimicamente, chamados de "binuclear 2" e trinuclear. O complexo binuclear 2 apresentou as linhas de emissão dos íons Tb³⁺ e Eu³⁺. Apesar de menos eficiente que o primeiro complexo binuclear, este estudo mostrou que através de manipulações

moleculares (nanotecnologia) é possível sintetizar compostos capazes de emitir as linhas características de emissão dos íons terras-raras, ou seja, com um único complexo é possível obter duas emissões distintas. Por último, ainda como sistema 2, o complexo trinuclear, é uma mistura de compostos orgânicos contendo Tm, Tb e Eu e não formam uma única molécula, como no caso dos compostos binucleares. Este estudo foi iniciado recentemente e ainda não foi completamente explorado. Os primeiros testes mostraram que é possível usar este complexo também para fabricar OLEDs com emissão de cor branca, variando-se as quantidades relativas de Tm, Tb e Eu da mistura. Sabendo-se que os ligantes β-dicetonas são os responsáveis pela transferência de energia para os íons TR³⁺, através do efeito antena, o sistema 3, despontou como grande novidade, mostrando a construção de dispositivos eletroluminescentes baseados em complexos tetrakis(β -dicetonatos) de TR, ou seja, compostos que possuem quatro ligantes β -dicetonas coordenandos a um único íon TR. Com esse sistema conseguimos pela primeira vez uma emissão eficiente e pura das principais transições do íon Tb à temperatura ambiente. O trabalho apontou, também, que tanto a irradiação com luz UV, quanto a exposição aos agentes atmosféricos (oxigênio, água, umidade, etc.) contribuem para uma rápida degradação dos complexos orgânicos com conseqüente decaimento do desempenho dos dispositivos fabricados. Para tanto, iniciamos um estudo para investigar as causas da degradação de alguns dos compostos orgânicos utilizados na fabricação de OLEDs. Os estudos de fotoabsorção e fotoemissão realizados no Laboratório Nacional de Luz Síncrotron foram fundamentais para uma maior compreensão destes efeitos. Os resultados deste estudo mostraram que as técnicas espectroscópicas empregadas neste trabalho podem ser utilizadas para se investigar a estrutura eletrônica, bem como a fotodegradação de compostos orgânicos usados na fabricação de OLEDs. Utilizando a espectroscopia de fluorescência, se estudou a viabilidade de se construir um dosímetro de radiação ultravioleta portátil e de uso pessoal usando um OLED cuja eletroluminescência é sensível à radiação UV.

Palavras-chave

Dispositivos eletroluminescentes orgânicos, OLEDs, eletroluminescência, complexos β-dicetonatos de Terras-Raras, filmes finos, nanotecnologia.

Abstract

Welber Gianini Quirino. Production and characterization of organic electroluminescent devices (OLEDs) based on β -diceketone Rare-Earth complexes. Rio de Janeiro, 2007. 260p. PhD Thesis – Physics Departament, Pontifical Catolic University of Rio de Janeiro.

In this work we present the results of a study that involves the manufacture and the characterization of organic eletroluminescent devices (OLEDs) based on β -diketonates Rare-Earth complexes. The investigation reported is a continuation of the research in electroluminescent devices based on rare-earth ions, started some years ago in our Group. For the production of the devices were applied several thin films deposition techniques: thermal resistive, rf-magnetronsputtering and spin-coating. The synthesis of organic compounds, as well some additional studies, were carried on through the collaboration with different brazilian research groups, which have resources and qualification in complementary areas. The organic compounds studied in this thesis have been divided in three groups, named systems. In system 1, the studied complex was Eu(bmdm)₃(ttpo)₂, where the organic bmdm ligand is a known UV sensitive material, frequently used in sunblockers. The OLEDs based on this complex presented intense photo- and electroluminescence with high pure color emission due to the almost atomic transitions characteristic of the Eu³⁺ ion. In system 2, a binuclear complex. represented bv the molecular formula Eu(btfa)₃•phenterpy•Tb(acac)₃ was studied. This complex has two rare-earth nuclei coordinated in the same molecule. The OLEDs based on this complex did not present the Tb³⁺ and Eu³⁺ characteristic transitions as expected. On the other hand, the complex gave us the possibility to develop an OLED with white color emission. Probably the major novelty of this thesis is represented by system 3. Indeed, knowing that the β -diketone ligands are the main responsible for the RE³⁺ ions energy transference through the antenna effect, in system 3, we investigated the possibility to fabricate electroluminescent devices based on RE β-diketonate tetrakis complexes, which have four coordinated β -diketones ligand to an RE ion in order to enchance the energy transfer and the emission efficiency. With this system we obtained, for the first time, an efficient and pure Tb emission at room temperature.

Keywords

Organic Eletroluminescent devices, OLEDs, eletroluminescence, Rare-Earths β-diketonates complexes, thin films, nanotecnology.

Lista de Símbolos e Abreviações

- EL Eletroluminescência; FL Fotoluminescência
- LEDs Light Emission Diodes
- HTL Transportador de buracos
- ETL Transportador de elétrons
- OLEDs Dispositivos emissores de luz, do *inglês Organic Light Emission Diodes*
- LOEM Laboratório de Optoeletrônica Molecular
- SMOLEDs Oleds baseados em pequenas moléculas, do inglês Small
- Molecule Organic Light Emission Diodes
- POLEDs Oleds baseados em polímeros , do inglês Polymer Organic
- Light Emission Diodes
- HOMO Orbital molecular mais alto ocupado, do inglês *Highest Occupied Molecular Orbital*
- LUMO Orbital molecular mais baixo desocupado, do inlgês Lowest
- Unoccupied Molecular Orbital
- TCO Óxidos transparentes condutores
- TCL Transporte de cargas limitado por armadilhas
- SCL Transporte de carga limitado por carga espacial
- TFL Limite de transporte de armadilha cheia
- ϵ Campo elétrico aplicado
- Δ Diferença de energia entre a função trabalho do metal e o nível molecular
- Φ Energia do nível molecular
- J Densidade de corrente
- h Constante de Planck
- k Constante de Boltzmann
- $\boldsymbol{\phi}$ Barreira de potencial para injeção de portadores
- $E_{\rm T}\,$ Nível de energia das armadilhas em relação ao LUMO
- μ Mobilidade dos portadores