

Renato Barbosa de Oliveira

Estudo Teórico da Localização de Carga em Boratos Homo-Metálicos de Ferro e Manganês

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Física do Departamento de Física da PUC-Rio como parte dos requisitos parciais para obtenção do grau de Mestre em Física.

Orientador(a) : Maria Matos

AGOSTO 2005

Renato Barbosa de Oliveira

Estudo Teórico da Localização de Carga em Boratos Homo-Metálicos de Ferro e Manganês

Dissertação apresentada como requisito parcial para obtenção do grau de Mestre pelo programa de Pós-Graduação em Física do Departamento de Física do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> **Prof(a). Maria Matos** Orientadora Departamento de Física – PUC-Rio

Prof. João Carlos Fernandes Instituto de Física/Universidade Federal Fluminense

Prof(a). Joice Pereira Terra e Souza Departamento de Matéria Condensada e Espectroscopia/Centro Brasileiro de Pesquisas Físicas

Prof. Welles Antonio Martinez Morgado

Departamento de Física/PUC-Rio

José Eugênio Leal Coordenador Setorial do Centro Técnico Científico/PUC-Rio

Rio de Janeiro, 19 de agosto 2005

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Renato Barbosa de Oliveira

Graduou-se em Física na Pontifícia Universidade Católica do Rio de Janeiro em 2003.

Ficha Catalográfica

Oliveira, Renato Barbosa de

Estudo Teórico da Localização de Carga em Boratos Homo-Metálicos de Ferro e Manganês / Renato Barbosa de Oliveira; orientador: Maria Matos. – Rio de Janeiro: PUC, Departamento de Física, 2005

89 f. ; 30 cm

1. Dissertação (Mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física.

Inclui referências bibliográficas.

1. Física - Teses. 2. Métodos semi-empíricos . 3. Oxo-Boratos Metálicos . 4. I. Matos, Maria. II. Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física. III. Título.

CDD: 530

À Elsa Gerber Figueira de Melo (*in memoriam*) e Delfina Figueira de Melo Nevares, por seus préstimos inestimáveis.

Agradecimentos

À Pontifícia Universidade Católica por me propiciar um ambiente de carinho e tão enriquecedor.

Aos meus amigos, pela forma com que as ações sempre são reveladas.

À minha orientadora Maria Matos, pela dedicação sem a qual este trabalho não alcancaria sua forma final.

Às meninas, Márcia, Nélia, Giza e Majô pelo privilégio de estarem sempre comigo.

Ao professor Marco Cremona pelo empréstimo da CPU que executou parte dos cálculos eHT.

Ao CNPq pela bolsa de pesquisa.

Ao professor Greg Landrum pela disponibilização do pacote YAEHMOP; e igualmente aos responsáveis pelo desenvolvimento do software PowderCell, W.Kraus e G.Nolze;

À Natureza, que apresenta suas faces novas sempre tão brilhantes...

e finalmente,

...à Maria Teresa Figueira de Mello Nevares por não me permitir desviar do caminho.

Abstract

Oliveira, Renato Barbosa de ; Matos, Maria **Theoretical Study of Charge Localization on Iron and Manganese Homometallic Oxo-Borates**. Rio de Janeiro, 89p. Master's Thesis – Departament of Physics, Pontifícia Universidade Católica do Rio de Janeiro.

It is shown a theoretical study of the electronic structure of the homometalic warwickites $Fe_2OBO_3 \in Mn_2OBO_3$. It is well observed that in these compounds there happens charge localization at room temperature in metallic sites of octahedral coordination. Distinct ordering mechanisms are behind each of the materials. It can be explained by the Jahn-Teller (JT) effect on Mn_2OBO_3 and probably by eletrostatic repulsions on Fe_2OBO_3 . In this work we have used the extended Hückel Theory (eHT) to study the monoclinic phase of both materials. Density of States' and band's structure calculations are performed for the cristal structure and for some defined sub-units. It is done a detailed study on the bond order of metal-oxigen for octahedral sub-units. Our results show that, in the manganese warwickite, the shortening of two octahedral axes lead to the appearance of a large energy gap of inside the e_q band, indicating the presence of JT effect for Mn^{3+} . For the iron warwickite the great resemblance on the eletronic structure and the absence of a significant t_{2g} gap in all metal sites, indicates eletronic equivalence among them, and an unfavorable situation for the JT effect in Fe_2OBO_3 . It is also shown that the use of high-spin configuration along with the eHT method, is best suitable for predicting a correct oxidation state for the metal in Mn_2OBO_3 and a sharper charge localization on Fe_2OBO_3 .

Keywords

Física - Teses; Métodos semi-empíricos; Oxo-Boratos Metálicos;Matos, Maria; Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física; Título.

Resumo

Oliveira, Renato Barbosa de ; Matos, Maria **Estudo Teórico da Local**ização de Carga em Boratos Homo-Metálicos de Ferro e Manganês. Rio de Janeiro, 89p. Tese de Mestrado – Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Apresenta-se neste trabalho um estudo teórico da estrutura eletrônica das warwickitas homometálicas Fe_2OBO_3 e Mn_2OBO_3 . Nesses materiais observou-se experimentalmente uma localização de cargas em sítios metálicos de coordenação octaédrica em temperatura ambiente. Este ordenamento se dá de maneira distinta em cada um dos compostos, e pode ser explicado por efeito Jahn-Teller (JT) na warwickita de manganês e uma possível repulsão eletrostática em Fe_2OBO_3 . Neste trabalho, utilizamos o método de Hückel estendido (eHT) para estudar a estrutura eletrônica dos dois compostos, em fase monoclínica. Cálculos de banda e densidade de estados são feitos na estrutura cristalina e diversas sub-unidades. É feito um estudo detalhado da ordem de ligação metal-oxigênio em sub-unidades octaédricas. Os resultados mostram que, na warwickita de Mn, o encurtamento de dois eixos octaédricos leva ao aparecimento de uma grande lacuna de energia dentro da banda e_a , indicando a presença de efeito JT em Mn^{3+} . Na warwickita de Fe, a grande semelhança na estrutura eletrônica e ausência de uma lacuna t_{2g} significativa nos sítios cristalinos distintos indica equivalência eletrônica dos mesmos e situação desfavorável para efeito JT no composto. Mostra-se também que o uso da configuração de alto spin no método eHT, é o mais adequado à descrição da estrutura eletrônica em ambos os casos, levando a uma correta descrição dos estados de oxidação do metal em Mn_2OBO_3 e uma maior localização de cargas em Fe_2OBO_3 .

Palavras-chave

Física - Teses; Métodos semi-empíricos; Oxo-Boratos Metálicos;Matos, Maria; Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Física; Título.

Sumário

1	1 Introdução			15
2	A Teoria de Orbitais Moleculares			
	2.1	A Equ	ıação de Schroedinger	21
	2.2	A Apr	oximação de Born-Oppenheimer	22
	2.3	O Mo	delo do Elétron Independente	23
	2.4	O Mét	odo Variacional	25
	2.5	Comb	inação Linear de Orbitais Atômicos	26
	2.6	As Eq	uações de Roothaan	26
	2.7	O Mét	codo de Hückel Estendido	28
		2.7.1	O Método de Hückel	28
		2.7.2	O Método de Hückel Estendido - eHT	29
		2.7.3	O Método eHT Aplicado a Sistemas Cristalinos	31
	2.8	Distril	buição Eletrônica	33
		2.8.1	População de Mulliken	33
		2.8.2	Densidade de Estados	34
		2.8.3	СООР	35
		2.8.4	As Configurações de Alto-Spin (SA)	36

3	Des	crição	do Material	38
	3.1	Oxo-B	oratos Metálicos	38
	3.2	Sub-U	nidades Estruturais	41
4	Res	ultado	S	44
	4.1	Estrut	ura de Bandas e Densidade de Estados	44
		4.1.1	Estrutura de Bandas/Densidade de Estados 3 D $\ .\ .\ .$	44
		4.1.2	Estrutura de Bandas/Densidades de Estados 1D	53
	4.2	Monôr	neros	56
		4.2.1	Metais de Transição em Campos Octaédricos	56
		4.2.2	A Quebra da Simetria Octaédrica e as Ocupações Eletrônio	cas
			59	
		4.2.3	Relocando Octaedros	60
		4.2.4	A Distribuição de Carga	67
		4.2.5	Ordens de Ligação Metal-Oxigênio	71
5	Disc	cussão		74
6	Con	clusão		76
7	Apê	endices		82
	7.1	Apênd	ice A - Coordenadas Cristalográficas	82
	7.2	Apênd	ice B - Monômeros Transladados / Tabelas de Distâncias	84

Lista de Figuras

1.1	Ludwigita / Warwickita - Os números estão indicando os sítios	
	distintos para cada composto, e os círculos pequenos indicam	
	os átomos de boro de valência $+3$ responsáveis pela união das	
	fitas	20
3.1	A célula primitiva e a primeira Zona de Brillouin (em azul)	
	para as warwickitas $Fe_2OBO_3 Mn_2OBO_3$ em fase monoclínica.	
	Mostram-se algumas direções importantes no cristal	41
3.2	$Fe_2OBO_3\ /\ Mn_2OBO_3$ - A célula unitária monoclínica para	
	as warwickitas. Pode-se ver em violeta os átomos metálicos,	
	em verde os átomos de oxigênio, e em azul os átomos de boro.	43
4.1	Estrutura de Bandas e DOS para a warwickita de Fe - o nível	
	de Fermi para o estado fundamental de spin zero é : -12,079eV	45
4.2	Estrutura de Bandas e DOS para a warwickita de Mn - o nível	
	de Fermi para o estado fundamental de spin zero é : -11,18eV	46
4.3	Projeções nos orbitais dos oxigênios - o nível de Fermi para	
	o estado diamagnético (spin zero) é : -12,08eV. Mostra-se a	
	contribuição dos oxigênios ligados e não ligados a B	47

4.4	Projeções nos orbitais dos oxigênios - o nível de Fermi para	
	o estado diamagnético (spin zero) é : -11,180 eV. Mostra-se a	
	contribuição dos oxigênios ligados e não ligados a B	48
4.5	DE projetada nos átomos de metal nos compostos de ferro e	
	manganês - os niveis de Fermi para o Fe_2OBO_3 : -12,08eV ,	
	para o Mn_2OBO_3 : -11,18eV. Nas figuras 4.6 e 4.7 mostra-se	
	em detalhe a região contendo o nível de Fermi, e os orbitais d	
	dos metais	49
4.6	Bandas d para a estrutura cristalina (3D) do composto de ferro	
	- Região em torno da energia de Fermi : -12,08eV	51
4.7	Bandas d para a estrutura cristalina (3D) do composto de	
	manganês - Região em torno da energia de Fermi : -11,18eV.	
	Observe o descolamento de quatro bandas e_g , acima de -9,0eV,	
	que pertencem exclusivamente ao sítio 1 como pode ser visto	
	no painel central para a DE projetada em Mn(1). O pico mais	
	intenso em torno de -11,5eV corresponde a banda t_{2g} . O pico	
	de metade da intensidade logo acima, pertence a banda $e_g \ ,$	
	e pode-se ver que não existe separação considerável entre as	
	bandas $t_{2g} \in e_g \ldots \ldots$	52
4.8	A estrutura de bandas para a fita unidimensional de ferro -	
	Para essa sub-estrutura a energia de Fermi $=$ -12,08eV $\ .$	54
4.9	A estrutura de bandas para a fita unidimensional de manganês	
	- Para essa sub-estrutura a energia de Fermi $=-11,18 {\rm eV}$ $~.~.$	55
4.10	Orientação das regiões de alta densidade eletrônica para os	
	orbitais 3d	57

4	.11	A quebra da simetria octaédrica	59
4	.12	Os monômeros - Em cima (à esquerda) os monômeros 1	
		e 2 de Fe_2OBO_3 e abaixo os monômeros de Mn_2OBO_3 .	
		A estrutura mais a direita é uma idealização, uma estrutura	
		octa édrica regular com a função de localizar os níveis t_{2g} e e_g	
		- todos os monômeros estão projetados no plano xy de acordo	
		com o sistema de eixos apresentado	63
4	.13	Monômeros de ferro - À esquerda o sítio 1 e à direita o sítio 2	
		- No estado de oxidação $+3$ existe um elétron por nível. Para	
		o estado +2, o elétron extra ocupa o nível t_{2g} mais baixo	64
4	.14	Monômeros de manganês - À esquerda o sítio 1 e à direita o	
		sítio 2 - A configuração ${\cal M}n^{2+}$ ocorre somente no sítio 2, e	
		consiste numa ocupação de 5 elétrons de spins paralelos, um	
		em cada nível eletrônico $\ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	65
4	.15	Curvas de MOOP's para os quatro monômeros - a linha trace-	
		jada indica a mudanca de comportamento, ligante/anti-ligante	
		em torno de -14eV; acima, encontram-se os níveis t_{2g} e e_g de	
		caráter anti-ligante	73

Lista de Tabelas

3.1	$Mn_2OBO_3 / Fe_2OBO_3 \dots \dots \dots \dots \dots \dots \dots \dots \dots \dots$	39
3.2	Parâmetros empíricos para cálculos eHT	42
4.1	Monômeros - Tabela de Distâncias - Distâncias Médias $(\mathrm{em}\mathring{A})$	
	- Em destaque em cor azul os átomos de oxigênio que se encon-	
	tram mais próximos ao eixo z em cada sub-estrutura - (veja a	
	figura 4.12)	61
4.2	As cargas - os números em parênteses indicam a carga (con-	
	figuração eletrônica) usada no cálculo. Os valores em azul	
	for am obtidos com um aplicativo escrito em C# que, usando	
	a teoria v bs determina as cargas para os íons metálicos $\ .\ .\ .$	68
4.3	MOOP's médios para os monômeros em simulação para diver-	
	sos estados de carga	72
7.1	Mn_2OBO_3	82
7.2	Fe_2OBO_3	83
7.3	O monômero de ferro transladado e orientado - (Å) $\ . \ . \ .$.	84
7.4	O monômero de manganês transladado e orientado - (Å) $\ . \ .$.	85
7.5	As distâncias metal-oxigênio para o Fe - sítio 1. (Å)	85
7.6	As distâncias metal-oxigênio para o Fe - sítio 2. (Å)	86

- 7.7As distâncias metal-oxigênio para o Mn sítio 1. (Å). 867.8As distâncias metal-oxigênio para o Mn sítio 2. (Å). 877.9As Coordenadas Cartesianas para Fe_2OBO_3 (em Å). 88
- 7.10 As Coordenadas Cartesianas para $Mn_2OBO_3 \ (\text{em}\ \text{\AA})$ 89