Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos

8.1 Introdução

Neste capítulo estudaremos o potencial da fábrica de neutrinos para sondar os parâmetros NSI e o seus impactos na determinação dos parâmetros de oscilação usual. Neste capítulo iremos combinar os detetores, sendo que o primeiro está a 3.000km da fonte e o segundo a 7200 km. A posição do primeiro detetor é relevante para resolver as degenerscência entre θ_{13} e δ , enquanto que a posição do segundo detetor, a dependência da probabilidade de oscilação com a fase de violação CP desaparecem, quando os parâmetros NSI estão ausentes. O comprimento de L=7200 km é especial "mágico" e é conhecido na literatura como *Magic Baseline* MB.

8.2

O Comprimento Mágico (Magic Baseline)

Neste trabalho utilizamos o MB (120, 121) para estudar a sensibilidade dos parâmetros NSI. Nessa subseção vamos discutir analiticamente o MB na ausência do NSI.

O MB, L_{magic} , é definido por (122) :

$$L_{magic} = \frac{2\pi}{\sqrt{2}G_F n_e} = 7200 \left(\frac{\rho}{4.5 \text{ g/cm}^3}\right)^{-1} \text{km}, \qquad (8-1)$$

onde G_F é a constante de Fermi, n_e é a densidade de número de elétrons e ρ é densidade de matéria. No MB, a probabilidade de oscilação não depende dos parâmetros relevantes para explicar dados de neutrinos solares ($\Delta m_{12}^2, \theta_{12}$) nem a fase de violação de CP, δ . Abaixo podemos ver isso analiticamente.

A probabilidade de transição aproximada pode ser representada por (74):

$$P(\nu_e \to \nu_\mu) \simeq |A_{\text{atm}} e^{-i(\Delta_{32} - \delta)} - A_{\odot}|^2$$

$$= |A_{\text{atm}}|^2 + 2A_{\text{atm}} A_{\odot} \cos(\Delta_{32} - \delta) + |A_{\odot}|^2$$
(8-2)

Figura 8.1: O plano de bi-probabilidade $(P \times \overline{P})$ onde vemos que no MB, $L \approx 7.200$ Km, não há elipses como nos demais comprimentos. Portanto no MB não há dependência da fase CP na ausência do NSI.

onde

$$A_{\text{atm}} \equiv \sin 2\theta_{23} \sin 2\theta_{13} \Delta_{31} \frac{\sin(\Delta_{31} - 2aL)}{\Delta_{31} - 2aL}$$

$$(8-3)$$

$$A_{\odot} \equiv \sin 2\theta_{23} \sin 2\theta_{12} \Delta_{21} \frac{\sin(2aL)}{\Delta_{31} - 2aL}$$
(8-4)

são as amplitudes atmosférica e solar, respectivamente, $\Delta_{ij} \equiv \Delta m_{ij}^2 L/4E$ e o efeito de matéria *a* é considerando constante. No MB, $aL = 2\pi$ e portanto a amplitude solar desaparece,

$$P(\nu_{e} \to \nu_{\mu}) \approx |A_{A}|^{2}$$

$$= \sin^{2} 2\theta_{23} \sin^{2} 2\theta_{12} \Delta_{31}^{2} \frac{\sin^{2} \Delta_{31}}{(\Delta_{31} - \pi)^{2}}$$
(8-5)

E conseqüentemente a probabilidade de oscilação não depende dos parâmetros solares assim como da fase de violação CP.

Na Fig. 8.1 mostramos o espaço de bi-probabilidades, $P(\nu_e \rightarrow \nu_{\mu}) \times P(\bar{\nu}_e \rightarrow \bar{\nu}_{\mu})$, os comportamentos da dependência da fase violação de CP,

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos

 δ com vários comprimentos dos detetores, 6000-8400 km. Nela podemos ver claramente um ponto justamente quando atinge o MB, $L \approx 7200$ km, enquanto que para outros comprimentos, há elipses geradas pela fase CP, δ .

Expressões similares é válida para o canal $\nu_e \rightarrow \nu_\tau$ com substituição $\sin \theta_{23} \to \cos \theta_{23} = \cos \theta_{23} \to -\sin \theta_{23}$ na Eq.(8-2).

8.3 Os efeitos de NSI no Comprimento Mágico

A Fig 8.2 mostra as probabilidades em função do comprimento e varrendo a fase $\delta de 0 - 2\pi$. Nela observamos que no ponto em que situa o MB, há uma interseção nas probabilidades próximo de $L \sim 7000 \text{ km}$ representada pela linha pontilhada azul quando o NSI está ausente. Quando os parâmetros NSI são ligados, mostrado pela linha vermelha, a dependência passa acontecer. Essa interseção em torno de $L \sim 7000 km$ dependendo o ε muda ou deixa de existir, por isso que no MB é muito interessante estudar os seus efeitos e claro os seus vínculos com os demais parâmetros de oscilação, como a fase de violação CP, $\sin^2 2\theta_{13}$, hierarquia de massa. Por isso que os experimentos de grandes comprimentos são muito promissores para sondar os parâmetros NSI, o que abre as portas para entrarmos na Nova Física.

Devido a complexidade, principalmente a de ser obter uma expressão analítca, vamos estudar os impactos dos parâmetros NSI com apenas dois ε 's apenas nos parâmetros de oscilação, em particular $\theta_{13} \in \delta$.

A Fig. 8.3 mostra no plano de bi-probabilidade por $P(\nu_e \rightarrow \nu_{\mu})$ e $P(\bar{\nu}_e \to \bar{\nu}_\mu)$ (125) para parâmetros NSI não nulos, os impactos dos parâmetros NSI com 3 valores de $\sin^2 2\theta_{13} = 0.0005; 0.001$ e 0.0015, respectivamente, mostradas pelos pontos verdes. As elipses vermelhas correspondem os valores positivos dos ε 's, enquanto as azuis correspondem os valores negativos. Nos pontos verdes não tem o efeito NSI para o mesmo valor de $\sin^2 2\theta_{13}$ das elipses e as regiões laranjas mostram a dependência com os valores de θ_{13} .

Colocar um detetor no MB tem grandes chances de sondar os efeitos NSI, em particular para os parâmetros $\varepsilon_{\alpha\beta}$ fora da diagonal, como mostrado na Fig. 8.3 onde as elipses são formadas quando δ está variando no espaço de bi-probabilidade, onde cada painel é indicado por um valor particular de $\varepsilon_{\alpha\beta}$.

Uma característica observável na Fig. 8.3 é que o efeito do NSI nas probabilidades dos neutrinos e anti-neutrino é grande para termos tipo elétrons fora da diagonal, $\varepsilon_{e\tau} \in \varepsilon_{e\mu}$, embora seus valores sejam extremamente pequenos em relação aos demais, $\varepsilon_{e\tau} = \varepsilon_{e\mu} \simeq 10^{-3}$. Nota-se que os tamanhos dos outros ε 's o qual dá o aumento do efeito de magnitude similar como aquele de $\varepsilon_{e\mu}$ e $\varepsilon_{e\tau}$ são grandes por um fator 20 ($\varepsilon_{\mu\tau}$ e $\varepsilon_{\mu\mu}$) e de fator 50 ($\varepsilon_{\tau\tau}$). Isso é um

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos

Figura 8.2: O alcance da probabilidade de oscilação em função do comprimento do detetor, com a fase de violação CP variando de $0 - 2\pi$.

ponto chave o qual permite a alta sensibilidade para $\varepsilon_{e\mu}$ e $\varepsilon_{e\tau}$. Podemos ver que o comportamento das elipses para esses parâmetros são idênticos e para entender melhor suas as carcterísticas, vamos analisar a expressão analítica da probabilidade de oscilação com esses parâmetros NSI.

No apêndice C, derivamos a fórmula para $P(\nu_e \rightarrow \nu_{\mu})$ com $\varepsilon_{e\mu}$ ou $\varepsilon_{e\tau}$ assim como ε_{ee} que corresponde a uma das expressões de Cervera *et al* (74) para o caso padrão, isto é, sem os efeitos dos ε 's. No MB temos $\tilde{a}(E)L/4E = \pi$, onde $\tilde{a}(E) = 2aE$, as fórmulas para a probabilidade de oscilação de aparecimento de ν_{μ} simplificadas, com NSI representada por $\varepsilon_{e\tau}$ e é dada por:

$$P(\nu_{e} \to \nu_{\mu}; \varepsilon_{e\tau})$$

$$= 4 \frac{(\Delta m_{31}^{2})^{2}}{(\tilde{a}(E) - \Delta m_{31}^{2})^{2}} s_{23}^{2} s_{13}^{2} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

$$+ \frac{4 \tilde{a}(E) c_{23} s_{23}^{2}}{(\tilde{a}(E) - \Delta m_{31}^{2})^{2}} \left[2 \Delta m_{31}^{2} s_{13} |\varepsilon_{e\tau}| \cos(\delta + \phi_{e\tau}) + c_{23} \tilde{a}(E) |\varepsilon_{e\tau}|^{2}\right] \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

$$(8-6)$$

A fórmula correspondente para anti-neutrinos pode ser obtida fazendo as seguintes substituição: $\tilde{a}(E) \to -\tilde{a}(E)$, $\delta \to -\delta$, e $\phi_{e\tau} \to -\phi_{e\tau}$. A fórmula com $\varepsilon_{e\mu}$ é muito similar e Eq.(8-6) e, é obtida fazendo: $c_{23}\varepsilon_{e\tau} \to s_{23}\varepsilon_{e\mu}$ na segunda linha da Eq.(8-6). Então, o valor da probabilidade $P(\nu_e \to \nu_\mu)$ com $\varepsilon_{e\tau}$ e $\varepsilon_{e\mu}$ são numericamente iguais com os valores dos parâmetros usados na Fig.8.3, com o

Figura 8.3: O espaço de bi-probabilidades os impactos dos parâmetros NSI, ligados um por vez no MB com 3 valores de $\sin^2 2\theta_{13} = 0.0005, 0.001 \text{ e } 0.0015,$ rescpectivamente. A figura mostra que no MB pode-se resolver a degenerescência de θ_{13} com a fase de violação CP δ .

valor máximo de sin² $2\theta_{23}$ e $|\varepsilon_{e\mu}| = |\varepsilon_{e\tau}|$. Isso explica o comportamento idêntico das probabilidades com $\varepsilon_{e\mu}$ e $\varepsilon_{e\tau}$ vistos no segundo e terceiro paineis superiores da Fig. 8.3. As elipses nesses painéis são muitos esticadas e se aproximam de uma linha por que existe apenas a dependência em $\cos(\delta + \phi_{e\tau})$ onde $\phi_{e\tau}$ corresponde a fase de $\varepsilon_{e\tau}$. A forma $\cos(\delta + \phi_{e\tau})$ significa que a localização das elipses não mudam quando $\phi_{e\tau}$ está variando, no entanto o valor de δ na elipse varia.

8.4 Estudo do efeito NSI no detetor a L=3000km

A Fig. 8.4 mostra o plano formado pelas probabilidades $P \times \bar{P}$ com seus respectivos ε 's analogamente, com a Fig. 8.3, mas com a distância detetor-fonte igual a 3000 km. Podemos ver nesta figura que ao contrário do MB, as elipses estão todas concentradas na região em que o efeito NSI está ausente (região em laranja), exceto para $\varepsilon_{e\mu}$ onde o seu impacto é bem maior na probalilidade de oscilação do que os demais parâmetros. Nesta Fig. 8.4, podemos ver quepode ser muito ruim estudar o efeito NSI(exceto para o parâmetro $\varepsilon_{e\mu}$), onde há

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos

Figura 8.4: O espaço de bi-probabilidades os impactos dos parâmetros NSI, ligados um por vez no MB com 3 valores de $\sin^2 2\theta_{13}=0.0005$, 0.001 e 0.0015, rescpectivamente. Os mesmos parâmetros da Fig. 8.3, mais com L = 3000 km e densidade de matéria $\rho=3.6$ g/cm³ para ε positivo e negativo.

degenerescência com o caso padrão, onde uma análise mais detalhada será dada na próxima secção.

8.5

Detetor a L = 3000km e a *sinergia* esperada quando combinada com outro detetor a L = 7000km

Nesta subseção vamos dar argumentos qualitativos para estudar os parâmetros NSI no canal de aparecimento ${}^{1}\nu_{e} \rightarrow \nu_{\mu}/\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}$ com dois detetores L=3000 km e L=7200 km. Também vamos explorar o potencial da *sinergia*² obtida quando combinado os dados simulados desses detetores. Mostraremos nesta tese que este tratamento é mais relevante para parâmetros NSI fora da diagonal, isto é, $\varepsilon_{\alpha\beta} \operatorname{com} \alpha \neq \beta$.

E importante comparar um gráfico similar para um detetor a L = 3000 km, (mostrado na Fig. 8.4) com outro a L = 7200 km (Fig. 8.3), com os mesmo valores dos ε 's. Podemos notar duas diferenças claras, primeiro o efeito da fase

¹Também chamado de canal de ouro.

 $^{^2}$ O efeito de sinergia consiste no ato simultâneo de diversos agentes para o mesmo fim, onde o efeito resultante é superior ao valor do conjunto, se atuassem individualmente.

 δ é maior para L = 3000km com e sem efeito NSI do que para L = 7200km. As elipses com NSI, exceto com $\varepsilon_{e\mu}$ estão coberto dentro desta região. Isso é claramente a causa do problema da confusão entre θ_{13} e ε 's onde encontramos quando tentamos medir as regiões permitidas entre θ_{13} e δ com o efeito NSI. Na Fig. 8.4 podemos ver que o impacto dos sinais dos ε 's não são completamente visíveis, menos para o caso $\varepsilon_{e\mu}$, o qual nada mais é do que uma conseqüência das duas fases δ e ϕ discutidas na seção anterior.

Portanto quando tentamos determinar as sensibilidades dos ε 's não são boas, porque podemos ter severas confusões entre NSI e o efeitos dos parâmetros de oscilação padrão como, $\theta_{13} \in \delta$ a L = 3000 km. Por outro lado, a L = 7000 km a sensibilidade para ε 's é grande e a não tem sensibilidade para δ . Portanto, podemos admitir que a combinação dos dados simulados nos dois detetores são fundamentais mesmo tempo sondar os parâmetros de oscilação, $\theta_{13} \in \delta$, juntamente com os parâmetros NSI.

O comportamento das elipses no espaço de bi-probabilidade entre os sistemas $\varepsilon_{e\mu}$ e $\varepsilon_{e\tau}$ a $L \simeq 3000$ km é dado pela diferença entre os terceiros termos das expressões analíticas das fórmulas (C-22) e (C-24). Notamos o camportamento quase idêntico entre os sistemas com $\varepsilon_{e\mu}$ e $\varepsilon_{e\tau}$ a $L \simeq 7000$ km, e a diferença com $L \simeq 3000$ km é interessante para comparar suas sensibilidades com esses dois comprimentos. Nós veremos que a sensibilidade para $\varepsilon_{e\mu}$ é melhor determinada para $L \simeq 3000$ km enquanto $\varepsilon_{e\tau}$ é melhor pela combinação dos comprimentos $L \simeq 3000$ km e $L \simeq 7000$ km.

8.6 Método de análise

Nesta tese estamos considerando um intenso fluxo de múons no anel de armazenamento que entrega 10^{21} decaimento de múons por ano. A energia do múon é admitida 50 GeV e supomos 4 anos de exposição para neutrinos e também para anti-neutrinos. Admitimos também, dois detetores de ferro magnetizados, um a L = 3000 km e outro a $L \simeq 7000$ km, $(L_{magic})^3$. Cada detetor tem suposta massa fiducial de massa 50 Ktoneladas. Vamos considerar o canal $\nu_e \rightarrow \nu_{\mu}$ e $\bar{\nu}_e \rightarrow \bar{\nu}_{\mu}$ e por simplicidade, a densidade de matéria constante, sendo igual a 3,6g/cm³ e 4,5g/cm³ para L = 3000 km e L = 7000km, respectivamente. Consideramos, também, a fração de elétrons $Y_e = 0.5$. Acreditamos que se usassem o perfil da densidade da Terra mais realístico não haveria grandes mudanças nos resultados.

Em maior parte da nossa análise fizemos as seguintes simplificações:

³Nó admitiremos que o detetor remoto está próximo ao L_{magic} MB, pois a verdadeira localização depende de alguns parâmetros exatos, como por exemplo a densidade da Terra, onde neste tese estamos admitindo ser constante.

- 1 Ignoramos todos os ruídos devido à má identificação dos múons carregados e outras causas;
- 2 Desprezamos os erros sistemáticos, isto é, os erros relacionados com a natureza dos detetores, desde que a detecção dos múons a altas energias é suposto ser extremamente limpo nos detetores de ferro magnetizados.
- 3 Consideramos a hieraquia de massa normal e analisaremos apenas dois ε 's ao mesmo tempo, além dos parâmetros de oscilação fase de violação de CP δ e o ângulo de mistura θ_{13} .

8.7 Tratamento Estatístico

Definimos a função χ^2 como:

$$\chi^{2} \equiv \min |_{\theta_{13},\delta,\varepsilon} \sum_{i=1}^{3} \sum_{j=1}^{2} \sum_{k=1}^{2} \frac{\left[N_{i,j,k}^{obs} - N_{i,j,k}^{teo}(\theta_{13},\delta,\varepsilon)\right]^{2}}{N_{i,j,k}^{teo}(\theta_{13},\delta,\varepsilon)}$$
(8-7)

onde $N_{i,j,k}^{obs}$ é o número de eventos observado ou simulado para um dado conjunto de parâmetros de entrada e $N_{i,j,k}^{teo}$ é o número de eventos esperados teoricamente, para o qual varrem livremente os parâmetros de mistura e NSI. Como ignoramos as incertezas sistemáticas, o denominador em (8-7) representa incertezas estatísticas apenas. Os somatórios com respeito a i, j, k representa energia (bins), comprimentos dos detetores em relação a fonte (3000 km ou 7000 km) e o tipo de neutrino (neutrino ou anti-neutrino), respectivamente. Os três intervalos dos bins são; 4-8 GeV, 8-20 GeV e 20-50 GeV para neutrinos e, 4-15 GeV, 15-25 GeV e 25-50 GeV para anti-neutrinos.

O número de eventos esperado ou teórico é calculado (95) como:

$$N^{\text{teo}}(\theta_{13}, \delta, \varepsilon) \tag{8-8}$$
$$= n_{\mu} TM \frac{10^{9} N_{A} E_{\mu}^{2}}{m_{\mu}^{2} \pi L^{2}} \int_{E_{\text{min}}}^{E_{\text{max}}} g(E) \sigma_{\nu_{\mu}(\bar{\nu})}(E) P(\nu_{e} \rightarrow \nu_{\mu}(\bar{\nu}_{e} \rightarrow \bar{\nu}_{\mu}))(E, \theta_{13}\delta, \varepsilon) dE$$

onde n_{μ} é o número de decaimentos de múons por ano, T é o tempo de exposição, M é a massa do detector em Ktoneladas, N_A é o número de Avogrado, m_{μ} é a massa do múon, E_{μ} é a energia do múons, L, é a distância do detetor a fonte, $\sigma_{\nu_{\mu}(\bar{\nu}_{\mu})}$ (126) é a seção de choque de corrente carregada para $\nu_{\mu} \in \bar{\nu}_{\mu}$; e $P(\nu_e \rightarrow \nu_{\mu}(\bar{\nu}_e \rightarrow \bar{\nu}_{\mu}))$ é a probabilidade de oscilação. A função g(E) (95) é dada por:

$$g(E) \equiv 12 \frac{E^2}{E_\mu^3} \left(1 - \frac{E}{E_\mu} \right) \tag{8-9}$$

onde na ausência de oscilação de ν_e ou $\bar{\nu}_e$ a função g(E) é normalizado a 1. A eficiência f é esperado por ser 100%. Negligenciamos também a função resolução de energia⁴ nos detetores visto que os número de bins sejam pequeno, três, a sua inclusão não alterará significativamente os resultados.

O número de eventos observados é calculado numericamente usando a Eq.(8-8). Definimos as sensibilidades ou regiões permitidas pela condição $\Delta \chi \equiv \chi^2 - \chi^2_{min} = 2.3, 6.18 \ e \ 11.83$ o que corresponde respectivamente, 1σ , $2\sigma \in 3\sigma$ CL para 2 graus de liberdade (DOF).

8.8 Sensibilidades dos Parâmetros NSI

Devido à complexidade dos parâmetros NSI, vamos estudar os efeitos da ssensibilidades dos parâmetros de oscilação $\delta \in \theta_{13}$ simultaneamente com os parâmetros NSI: $\varepsilon_{e\tau} - \varepsilon_{ee}$, $\varepsilon_{e\tau} - \varepsilon_{\tau\tau}$, $\varepsilon_{\tau\tau} - \varepsilon_{ee}$, $\varepsilon_{e\mu} - \varepsilon_{ee}$, $\varepsilon_{e\mu} - \varepsilon_{e\tau}$, $\varepsilon_{e\tau} - \varepsilon_{e\mu}$.

Em sistemas com muitos parâmetros NSI, isto é com mais de dois ε 's, são muito complicados e temos que analisá-los passo a passo. No apêndice C, derivamos uma fórmula exata e fórmulas aproximadas para as probabilidades de oscilações $P(\nu_e \rightarrow \nu_{\mu})$ em dois sistemas: $\varepsilon_{e\tau} - \varepsilon_{ee}$ e $\varepsilon_{e\mu} - \varepsilon_{ee}$. Para obtermos as fórmulas das probabilidades, usamos expansões pertubativas em termos desses parâmetros, com $s_{13} \simeq \delta_{21} \simeq \varepsilon_{e\tau}$ ou $\varepsilon_{e\mu}$ que admitimos ser da ordem de ~ 10^{-2} , onde δ_{21} está definido no apêndice C. Por simplicidade, coletivamente chamamos sua correção em termos de ϵ para não confundir com os parâmetros NSI. Para diferentes tratamentos pertubativos, podemos ver nas refs. (99, 127, 128, 96, 129) a expressão analítica para a probabilidade de oscilação $P(\nu_e \rightarrow \nu_{\mu})$ com correção da ordem de ϵ^2 e , que reduz a expressão de Cervera *et al* Ref. (74) quando os parâmetros NSI forem desligados. Podemos fazer alguns comentários das fórmulas obtidas de $P(\nu_e \rightarrow \nu_{\mu})$ nas eqs (C-22) e (C-24), o qual podemos fazer algumas análises para entendimento melhor os nossos resultados.

Para discutir simultaneamente os sistemas com $\varepsilon_{e\tau} - \varepsilon_{ee} \in \varepsilon_{e\mu} - \varepsilon_{ee}$, usamos a notação $\varepsilon_{\alpha\beta}$ para $(\alpha\beta)=(e\mu)$ ou $(e\tau)$ desde que o parâmetro fora da diagonal possa ser uma nova fonte de violação de CP que adiciona para δ na matriz de mistura como enfatizado em (99).

Neste contexto notamos que $\varepsilon_{\alpha\beta}$ vem via 3 formas:

a) $\varepsilon_{\alpha\beta}$ aparece dentro da fórmula com sua fase, $\phi_{\alpha\beta}$, na forma $\delta + \phi$ na matriz U_{MNS};

⁴ A função resolução de energia corresponde a diferença de energia media com a verdadeira energia do neutrino.Por exemplo se a distribuição de espectro de energia for uma gaussiana, a função resolução de energia elimina as caldas dessa distribuição, pois na cauda a diferença entre a energia medida com a energia real (pico) da distribuição é maior.

- b) $\varepsilon_{\alpha\beta}$ aparece na forma de $\Re(\varepsilon_{\alpha\beta})$ ou $\Im(\varepsilon_{\alpha\beta})$;
- c) $\varepsilon_{\alpha\beta}$ aparece na amplitude, $|\varepsilon_{\alpha\beta}|^2$, sem a fase.

Os termos dos tipos (a) e (c) sobrevivem mesmo quando o termo solar Δm_{21}^2 é desligado, enquanto o termo do tipo (b) surge apenas quando acompanhada por Δm_{21}^2 .

Sugerimos um intuitivo entendimento que as fases $\phi_{\alpha\beta}$ e δ aparecem juntas quando Δm_{21}^2 é desligado. O sistema sem Δm_{21}^2 contêm efetivamente apenas duas gerações de neutrinos e a nível fundamental a fase de violação CP deve ser única. No entanto, as duas fases começam a ter papéis diferentes quando o termo de massa solar é ligado, como na forma (b) acima e a segunda linha da fórmula de Cervera *et al* fórmula (C-23), como visto em (C-22) e (C-24).

Nós esperamos dois tipos de confusões entre essas fase:

- Visto que elas aparecem como combinação $\phi_{\alpha} + \delta$, os dados permitem apenas a determinação da soma. Essa combinação não pode ser resolvida mesmo se o canal anti-neutrino estiver combinado, a não ser que o parâmetro $|\varepsilon_{\alpha\beta}|$ seja relativamente grande por causa dos termos com Δm_{21}^2 .
- O termo que contém as fases na (C-22) e (C-24) toma a seguinte forma:

$$A|\varepsilon_{\alpha\beta}|\cos(\eta) + B|\varepsilon_{\alpha\beta}|\sin(\eta) = |\varepsilon_{\alpha\beta}|K\cos(\eta - \xi)$$
(8-10)

onde $K = \sqrt{A^2 + B^2}$, $\eta = \phi_{\alpha\beta} + \delta$ e tan $\xi = \frac{B}{A}$. Portanto, a variação da magnitude do elemento NSI pode ser compensado pelo ajuste da fase $\varepsilon_{\alpha\beta}$. Os coeficientes A e B são diferentes entre as probabilidades de oscilação de neutrino e anti-neutrino e são derivados do apêndice C.

Vamos discutir as sensibilidades dos parâmetros de oscilação θ_{13} e δ na presença dos ε 's em dois detetores idênticos com comprimentos diferentes, L=3000km e 7000km. Inicialmente vamos tomar os valores de entrada com os ε 's nulos e varemos livremente todos os parâmetros θ_{13} , δ , ε_1 e ε_2 . Na seção 8.9 estudaremos as sensibilidades com os dados de entrada com os ε 's não nulos.

Para demostrar a sinergia devido a combinação dos dois detetores, mostramos as sensibilidades dos ε 's em cada detetor e depois os combinamos. Com valores típicos de sin² $2\theta_{13} = 10^{-3} - 10^{-4}$, mostramos como a sensibilidade depende de θ_{13} com dois valores de δ , $\pi/4$ e $3\pi/2$.

Nas Figs. 8.5-8.8, apresentamos restrições ao NSI que podem ser imposta pela fábrica de neutrinos definida na seção anterior com várias combinações

Figura 8.5: As regiões permitidas dentro do plano de dois parâmetros NSI, $\varepsilon_{ee} - \varepsilon_{e\mu}$ (paineis esquerdos), $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ (painel do centro) e $\varepsilon_{ee} - \varepsilon_{\tau\tau}$ (painel da direita) que corresponde o caso onde os dados de entrada são sin² $2\theta_{13}$ =0.001 e $\delta = \pi/4$ e os parâmetros NSI nulos. Estamos considerando E_{μ} =50GeV e os comprimentos L=3000 km (painéis superiores), L=7000 km (painéis do centro) e combinação (painéis inferiores). As linhas pontinhadas representam os valores de de $\varepsilon_{\alpha\beta}$ nulo. O ajuste foi conseguido variando 4 parâmetros θ_{13} , δ e 2 ϵ 's com θ_{13} , δ maginalizados, isto é, minimizados. O número de decaimento de múons por anos é de 10^{21} , o tempo de exposição é de 4 anos para neutrino e antineutrino, e cada detetor tem massa de 50kt. Estamos considerando apenas 3 bins. Os demais parâmetros de oscilações são fixados como: $\Delta m_{23}^2 = 2.5 \times 10^{-3} eV^2$, $\sin^2 \theta_{23} = 0.5$ e $\Delta m_{12}^2 = 8.0 \times 10^{-5}$ e $\sin^2 \theta_{12} = 0.31$.

Figura 8.6: O mesmo da Fig. 8.5, mais com diferentes combinações dos ε 's, $\varepsilon_{ee} - \varepsilon_{e\mu}$ (painel esquerdo), $\varepsilon_{\tau\tau} - \varepsilon_{e\mu}$ (painel do centro) e $\varepsilon_{e\mu} - \varepsilon_{e\tau}$ (painel direito).

de dois ε 's. Nas Figs 8.5 e 8.6, usa-se $\delta = \pi/4$ enquanto que nas Figs 8.7 e 8.8, tem-se $\delta = 3\pi/2$. As colunas da esquerda, do meio e a da direita das Figs 8.5 e 8.7 (8.6 e 8.8) são combinações mostradas no plano dos parâmetros NSI: $\varepsilon_{ee} - \varepsilon_{e\tau}$, $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$, $\varepsilon_{ee} - \varepsilon_{\tau\tau}$ ($\varepsilon_{ee} - \varepsilon_{e\mu}$, $\varepsilon_{\tau\tau} - \varepsilon_{e\mu}$, $\varepsilon_{e\tau} - \varepsilon_{e\mu}$). Os painéis do alto, meio e de baixo correspondem às distâncias de 3000 km, 7000 km e 3000 km+7000 km (combinado), respectivamente. E as curvas azul, vermelha e verde correpondem as curvas que limitam as sensibilidade a 1 σ , 2σ e 3σ para 2 DOF, respectivamente.

Observamos que, entre os resultados apresentados nas figs. 8.5-8.8, o detetor a L = 3000 km sozinho não dá boa resolução para possíveis existências dos parâmetros NSI, exceto para $\varepsilon_{e\mu}$, pois esse parâmetros é especial porque seu impacto na probabilidade de oscilação é muito grande, conforme mostra a Fig.

 $\epsilon_{\tau\tau}$

0

-0.2

-0.4

-0.2

-0.1

0 E_{ee} 0.1

0.2

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos 92

Figura 8.7: O mesmo da 8.5 mas com $\delta = 3\pi/2$.

-0.2

-0.4

0.2

0.4

0

 $\epsilon_{\tau\tau}$

້ອີ

-0.01

-0.02

1σ

2σ

3σ

0.2

0.1

8.3, o que parece consistente com os resultados da Ref. (96). Exceto os casos que envolvem $\varepsilon_{e\mu}$, o efeito na presença de dois ε 's é manifestado no aparecimento de ilhas, cujas formas precisas das regiões dependem da combinação dos ε 's e dos valores dos dados de entrada usados. Um tratamento similar se aplica para L=7000 km, mas a correlação entre os ε 's é quase unidimensional para a maioria das combinações embora mostre estrutura de ramos no caso $\varepsilon_{ee} - \varepsilon_{e\tau}$. Vemos que a restrição para $\varepsilon_{ee} \in \varepsilon_{\tau\tau}$ é muito pior em a relação $\varepsilon_{e\tau} \in \varepsilon_{e\mu}$.

O efeito do NSI nas sensibilidades quando combinamos os comprimentos (L=3000 km+7000 km) nas regiões espalhadas nos painéis do topo (L=3000 km+7000 km)3000 km) e do meio (L = 7000 km), torna-se uma região muito pequena, como podem ser vistos nos painéis de inferiores nas figs. 8.5-8.8. Podemos observar que, embora mencionado acima todas as características permanecem inalteradas para diferentes valores de δ , no entanto, a sensibilidade resultante para os ε 's são fortemente vinculados com os valores da fase de violação CP e

ε^τ

-0.01

-0.02 L. -0.2

-0.1

ε_{ee}

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos 93

Figura 8.8: O mesmo da 8.6 mas com $\delta = 3\pi/2$.

podemos comparar as Figs. 8.5-8.7.

Podemos questionar porque as curvas de sensibilidades nos painéis superiores e do centro apresentam regiões espalhadas, enquanto que as combinadas (painéis inferiores), apresentam regiões muito pequenas, a resposta disso é devido ao efeito da fase de violação CP, δ . Pois a maioria das regiões sobrepõem entre os painéis superiores e do centro tem uma falsa competição no valor de δ e não sobrevive quando as duas restrições dadas pelos detetores são combinadas. Esse efeito é chamado de *sinergia*, onde as curvas de sensibilidades na combinação desses dois detetores são mais significativos do que os considerarmos separadamente. Lembramos que estamos considerando apenas dois ε 's simultaneamente, pois uma análise completa está fora de questão ainda, devido a complexidade do sistema.

A sensibilidade para $\theta_{13} \in \delta$ na presença de NSI pode ser vista nas figs. 8.9-8.12, onde tomamos como dados de entrada sin² $2\theta_{13} = 10^{-3} \in \delta = \pi/4$ para as figs. 8.9 e 8.10, enquanto que nas figs. 8.10 e 8.11, $\delta = 3\pi/2$. A organização é a mesma para as Figs. 8.5-8.8.

Observando o painel do alto para o detetor L = 3000 km, claramente vemos o fenômeno de degenerescência na presença de NSI, em particular para o caso de $\delta = 3\pi/2$. O NSI pode minimizar o efeito de θ_{13} não nulo desde que a região permitida se estenda para um valor pequeno de θ_{13} . Entretanto essa característica muda muito quando estamos considerando L = 7000 km, pois é altamente sensível para o efeitos NSI e poderá nos ajudar a resolver essa degenerescência entre NSI e θ_{13} . Depois de combinar as informações dos detetores temos uma fina região no espaço $\sin^2 2\theta_{13} - \delta$, como podemos observar nos painéis inferiores das figs. 8.9 e 8.12. Assim, a degenerescência entre NSI e θ_{13} pode ser resolvida pela combinação desses dois detetores.

Agora vamos discutir como a sensibilidade depende do ângulo de mistura θ_{13} . Vejamos a sensibilidade muda quando tomamos um valor muito pequeno de θ_{13} , por exemplo, $\sin^2 2\theta_{13} = 0.0001$. Nas Figs. 8.13 e 8.14, mostramos as sensibilidades para os parâmetros NSI o qual pode ser comparado com as correspondentes fig. 8.7 e 8.8 para o caso de $\sin^2 2\theta_{13} = 0,001$. Para nossa surpresa, todas as características das curvas de sensibilidades são parecidas entre esses dois casos. Apenas algumas notáveis mudanças: no sistema $\varepsilon_{ee} - \varepsilon_{\tau\tau}$ as sensibilidades para esses parâmetros é pior por um fator 3 ou 4, mas nos três sistemas que envolve $\varepsilon_{e\mu}$, como $\varepsilon_{ee} - \varepsilon_{e\mu} \varepsilon_{\tau\tau} - \varepsilon_{e\mu}$ e, $\varepsilon_{e\tau} - \varepsilon_{e\mu}$, as sensibilidades para $\sin^2 2\theta_{13} = 0.0001$. A sensibilidade para $\varepsilon_{e\tau}$ é melhorada por um fator 2 no sistema com $\varepsilon_{e\mu} - \varepsilon_{e\tau}$ a $\delta = \pi/4$. A sensibilidade para $\varepsilon_{e\mu}$ é particularmente boa a L = 3000km e produz efeito de *sinergia* muito forte.

A sensibilidade de θ_{13} e δ torna-se pior para sin² $2\theta_{13} = 0.0001$ como mostra as figs. 8.15 e 8.16. A degenerescência θ_{13} -NSI torna-se acentuada para L=3000 km, onde podemos ver comparando as figs. 8.15 e 8.16 com as figs. 8.11 8.12. Uma nova região surge nos sistemas $\varepsilon_{ee} - \varepsilon_{e\tau}$ e $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ a L = 3000km.

Em experimentos de fábrica de neutrinos com dois detetores idênticos colocados a L = 3000 km L = 7000 km é mais relevante sondar os parâmetros NSI com pequenos valores de θ_{13} .

Vamos comparar as sensibilidades de θ_{13} e δ para os casos com e sem NSI. Na Fig. 8.17 apresentamos os resultados sem NSI, onde os resultados são comparados com aquelas nas figs. 8.9-8.12. As sensibilidades resultantes para θ_{13} e δ são extremamente boas comparadas com aquelas obtidas para os casos com NSI.

Agora vamos comentar os efeitos de ruídos e os erros sistemáticos nas sensibilidades. Para termos uma idéia desses possíveis efeitos, repetimos os cálculos com $\delta = \pi/4$ para vários valores de θ_{13} em $\varepsilon_{ee} - \varepsilon_{e\tau}$, $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ e $\varepsilon_{ee} - \varepsilon_{\tau\tau}$, o que correspondem às figs. 8.5 e 8.9. Estimamos o número de eventos de ruídos a partir do número total de decaimento usado em nosso trabalho (54). Atribuímos 20% de incertezas para o número de eventos de ruídos, e também tomamos 2.5% como incerteza sistemática nas medidas.

Para $\sin^2 2\theta_{13} = 0.0001$, encontramos que a introdução de incertezas sistemáticas e ruído leva a diminuição na sensibilidade de $\varepsilon_{e\tau}$ por $\simeq 30\%$. Esse efeito é menos visto a $\sin^2 2\theta_{13} = 0.001$ mas torna-se grande a $\sin^2 2\theta_{13} = 0.0001$, fazendo a sensibilidade piorar por um fator 2.

Por outro lado, a sensibilidade para $\delta e \sin^2 2\theta_{13}$ piora por 30% - 40% e 50%, respectivamente, para $\sin^2 2\theta_{13} = 0.001$. Uma característica interessante da sensibilidade para $\delta e \theta_{13}$ é que o efeito dos erros sistemáticos dimunuem, a $\sin^2 2\theta_{13} = 0.0001$. Portanto, o impacto de incluir erros sistemáticos para a sensibilidade de $\delta e \sin^2 2\theta_{13}$ é limitada. Estamos ignorando as incertezas sistemáticas pois o seu entendimento vai depender do conhecimento da performace do detetor.

Figura 8.9: As regiões permitidas projetada no plano de $\sin^2 2\theta_{13} - \delta$ correspondendo o caso onde o parâmetro de entrada são $\sin^2 \theta_{23}=0.001$ e $\delta = \pi/4$ e os parâmetros NSI nulos. Para $E_{\mu}=50$ GeV e o comprimento L = 3000km (painéis superiores), L = 7000km (painéis do centro) e combinação (painéis inferiores). O ajuste foi calculado variando livremente θ_{13} , δ e NSI, onde esses parâmetros foram marginalizados, $\varepsilon_{ee} - \varepsilon_{e\tau}$ (painel esquerdo), $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ (painéis do meio) e $\varepsilon_{ee} - \varepsilon_{\tau\tau}$ (painéis da direita). O mesmo parâmetro de entrada e ajuste da Fig. 8.5

Figura 8.10: A mesma Fig. 8.9 mais para diferentes combinações de dois ε 's. Temos as combinações $\varepsilon_{ee} - \varepsilon_{e\mu}$ (painéis da esquerda), $\varepsilon_{\tau\tau} - \varepsilon_{e\mu}$ (painéis do meio) e $\varepsilon_{e\mu} - \varepsilon_{e\tau}$ (painéis da esquerda).

Figura 8.11: O mesmo da Fig. 8.9 mas com $\delta = 3\pi/2$.

Figura 8.12: O mesmo da Fig.8.10 mas com $\delta = 3\pi/2$.

Figura 8.13: O mesmo da Fig. 8.7 mas com sin² $2\theta_{13}$ =0.0001.

Figura 8.14: O mesmo da Fig. 8.8 mas com sin² $2\theta_{13}{=}0{,}0001.$

Figura 8.15: O mesmo da Fig.8.11 mas com sin² $2\theta_{13}$ =0.0001.

Figura 8.16: O mesmo da Fig. 8.12 mas com $\sin^2 2\theta_{13}{=}0.0001$

8.9

Determinação dos parâmetros NSI

Nesta seção vamos discutir a questão dos valores dos parâmetros NSI que podem ser determinado pelos dois detetores e simultaneamente medir θ_{13} e δ . Podemos atribuir valores de entrada para valores de NSI não nulos, onde examinaremos os seguintes sistemas: $\varepsilon_{ee} - \varepsilon_{e\tau}$, $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ e $\varepsilon_{ee} - \varepsilon_{\tau\tau}$. Aqui não incluiremos $\varepsilon_{e\mu}$, porque queremos tomar os valores NSI abaixo dos limites atuais. Consideramos os valores de entrada para θ_{13} , $\delta \in \varepsilon$; $\sin^2 2\theta_{13} = 10^{-3}$, $\delta = 3\pi/2$, $\varepsilon_{e\tau} = 0.01$, $\varepsilon_{ee} = 0.1$ e $\varepsilon_{\tau\tau} = 0.2$, onde apenas dois deles ($\varepsilon_{\alpha\beta}$) são ligados aos mesmo tempo.

Na Fig. 8.18 a sensibilidade para NSI é dada com os dados de entrada com NSI não-nulos e notamos que a sensibilidade praticamente é a parecida para o caso em que o NSI for nulos, vide Fig.8.7. Nota-se que a determinação exata varia em cada caso, mais significativamente, o tamanho da região permitida de $\varepsilon_{e\tau}$, ε_{ee} e $\varepsilon_{\tau\tau}$ piora por um fator 2 em relação aos sistemas $\varepsilon_{ee} - \varepsilon_{e\tau}$ e $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$. Entretanto, a exata determinação de $\varepsilon_{e\tau}$ e $\varepsilon_{\tau\tau}$ a $\delta = \pi/4$ aumenta por um fator 2 com os valores dos dados de entradas com NSI nulos. A degenerescência para L = 3.000 Km é suave para $\delta = \pi/4$ e mais suave para $\delta = 3\pi/2$ comparado com os dados de entrada com NSI nulos. Portanto, o grau de degenerescência depende muito de δ , quando temos dois detetores essa dependê para ser também para ε . Para $\delta = 3\pi/2$, a incerteza no $\sin^2 2\theta_{13}$ é menor para o caso dos dados de entrada com NSI não nulos do que para os com NSI nulo no sistema $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$. E ao contrário, para o sistema com $\varepsilon_{ee} - \varepsilon_{e\tau}$ é interessante observar que para os dados de entrada com NSI não nulos, essencialmente não causa distúrbios nas sensibilidades para determinação dos parâmetros NSI mais também nas sensibilidades para $\theta_{13} \in \delta$.

8.10 Parâmetros de degenerescência com e sem NSI

Nesta seção vamos fazer algumas observações nas degenerescências associadas com as medidas dos parâmetros NSI, assim como θ_{13} e δ . Na fig. 8.18 observamos duas separações ou ilhas na região permitida pelo detetor L = 7000 km, (painel do meio) para os sistemas $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ e $\varepsilon_{ee} - \varepsilon_{e\tau}$. Esta degenerescência é causada pela invariância da mudança de sinal de $\varepsilon_{e\tau}$, que pode ser absorvido pela rotação de δ por π . O fato de que a simetria existe apenas no MB pode ser facilmente vista pela comparação Eqs. (C-22) e (8-6). Desde que δ é marginalizado, as duas cópias aparecem na região permitida no plano: $\varepsilon_{\tau\tau} - \varepsilon_{e\tau}$ e $\varepsilon_{ee} - \varepsilon_{e\tau}$. Quando medimos nos dois detetores e combinamos os dados, obtém-se uma única região de sensibilidade, portanto a degenerescência é resolvida. Isso

Figura 8.17: As regiões permitidas projetada no plano de $\sin^2 2\theta_{13} - \delta$ para o caso de oscilação padrão sem o NSI, para valores de entrada $\sin^2 \theta_{13}=0.001$ e $\delta = \pi/4$ (painéis da esquerda) e $\delta = 3\pi/4$ (painéis da direita). A região permitida foi calculada com 2 DOF. A condição experimental é a mesma da Fig. 8.9.

se deve por que não existe simetria no expressão da probabilidade completa, vide as Eqs. (C-22) e (C-24).

Vamos fazer uma breve análise dos parâmetros de degenerescência convencional (130, 131, 132) que poderia afetar a sensibilidade dos parâmetros de mistura. A degenerescência para $\theta_{13} - \delta$ é duplicada devido ao sinal da hieraquia de massa de Δm_{31}^2 . A razão para essa observação é que as soluções clonadas têm uma significativa diferença para diferentes valores de δ da solução verdadeira, aproximadamente, $\delta_{clonado} \approx \pi - \delta_{verdadeiro}$. As razões são: primeiro, a degenerescência intrísica é resolvida pela análise dos dados combinados devido a *sinergia* e segundo, com um grande comprimento, a hierarquia de massa pode ser determinada.

8.11 Análise dos alcances para NSI

Nesta seção vamos resumir as sensibilidades para NSI, $\theta_{13} \in \delta$ que pode ser conseguidos em fábrica de neutrinos com dois detetores idênticos. Entretanto, reconhecemos que as sensibilidades depende muito dos valores de entradas de $\theta_{13} \in \delta$ e por isso, precisamos mostrar as sensibilidades em função de ambos os parâmetros simultaneamente.

Nas Figs 8.21-8.24 apresentamos contornos de um particular observável O no plano pelos valores de entrada θ_{13} e δ . Definimos as incertezas da medida do observável O como $\Delta O \equiv (O_{max} - O_{min})/2$, exceto para o caso de $\sin^2 2\theta_{13}$, isto é a incerteza fracional $\delta(\sin^2 2\theta_{13})/\sin^2 2\theta_{13}$. Para todos os casos apresentamos os contornos com 2σ CL (2 DOF). As sensibilidades para os parâmetros NSI, θ_{13} e δ pela análise de 6 combinações dos parâmetros NSI examinados nesta tese: $\varepsilon_{ee} - \varepsilon_{e\mu}$, $\varepsilon_{ee} - \varepsilon_{e\tau}$, $\varepsilon_{ee} - \varepsilon_{\tau\tau}$, $\varepsilon_{e\mu} - \varepsilon_{e\tau}$, $\varepsilon_{e\mu} - \varepsilon_{\tau\tau}$ e $\varepsilon_{e\tau} - \varepsilon_{\tau\tau}$. Então precisamos 12 painéis para as sensibilidades dos parâmetros NSI e mais 12 para os parâmetros de oscilação padrão, sendo 6 para θ_{13} e 6 para a fase δ .

Vamos primeiro analisar as Figs. 8.20 e 8.21 onde mostramos a sensibilidade dos parâmetros para valores típicos de $\sin^2 2\theta_{13} = 0,001$ as sensibilidades para $\varepsilon_{\tau\tau}$, ε_{ee} , $\varepsilon_{e\tau} \in \varepsilon_{e\mu}$ são 10 - 20%, 2 - 10%, 0.1 - 0.4% e 0,01 - 0,04% respectivamente. Discutimos nas seções anteriores que os parâmetros NSI fora da diagonal tem muito mais impacto do que os parâmetros na diagonal, como ε_{ee} , $\varepsilon_{\mu\tau}$, e $\varepsilon_{\tau\tau}$. Confirmamos aqui que de fato, eles podem ser significativamente mais restringidos pelos dados. Observamos que a sensibilidade para os parâmetros fora da diagonal não é afetado pela presença de outro paraâmetro NSI não nulo. Enquanto isso não é verdade para as sensibilidades dos parâmetros NSI na diagonal. Suspeitamos que esse comportamento pode

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos 107

continuar a ser verdadeiro, mesmo quando ligamos mais ε 's simultaneamente.

Uma da características desse contorno é que pode ser entendido do gráfico do espaço de bi-probabilidade dado pela Fig. 8.3. Por exemplo, do painel (b2) da figura 8.20 e os painéis (d2) e (f1) da fig. 8.21, observamos que a sensibilidade para $\varepsilon_{e\tau}$ é melhor a $\delta = 0$ e $\delta = \pi$ e pior a $\delta = \pi/2$ e $\delta = 3\pi/2$. Isso é exatamente o que esperamos do painel superior direito da Fig. 8.3, a saber, os pontos no espaço em $P - \bar{P}$ correspondendo para $\delta = \pi/2$ (marcada pelo quadrado) e $\delta = 3\pi/2$ (marcada pelo losângulo) com $\varepsilon_{e\tau}$ não zero podem ser confundidos com aquele caso padrão sem o efeito de NSI (região laranja). Podemos também entender que esse efeito não depende de θ_{13} .

Com relação aos contornos para este ε_{ee} tem uma estrutura mais complicada, onde podemos observar no painel superior esquerdo da Fig. 8.3 a melhor sensibilidade para $\delta \simeq 0 - \pi/4$ e pior para $\delta \simeq \pi$. Isso pode ser confirmado pelos painéis (a1), (b1) e (c1) da Fig. 8.20.

A sensibilidade para $\varepsilon_{e\mu}$ mostra intrínseca dependência em $\delta \in \theta_{13}$ como visto nas Fig. 8.20, no painel (a2) e Fig.8.20 nos paineis (d1) e (e1). A sensibilidade é pior em torno de $\delta \pi/2$ e $\delta \pi/4$ para sin² $2\theta_{13} \simeq 10^{-2}$, e a em $\delta \approx \pi$ para sin² $2\theta_{13} \simeq 10^{-3}$. A sin² $2\theta_{13} \simeq 10^{-4}$, a sensibilidade não tem uma dependência significativa para $\varepsilon_{e\mu}$, onde para os casos mais complicados temos a sensibilidade dominantemente para $\varepsilon_{e\mu}$ a L = 3000 km, como indicados nas Figs. 8.6, 8.8 e 8.14. Então, isso deve ser possível para entendermos os comportamentos a sin² $2\theta_{13} \simeq 10^{-3}$ do gráfico da bi-probalilidade mostradas pelas elipses para sin² $2\theta_{13} \simeq 10^{-2}$ dado pela Fig. 8.4.

Agora vamos discutir os alcances das sensibilidades de θ_{13} e δ com e sem efeitos NSI. Na Fig. 8.22 nós mostramos os iso-contornos de incertezas na determinação da fase CP no painel superior e sin² $2\theta_{13}$ no painel inferior pelos valores (verdadeiro) de entrada de θ_{13} e δ na ausência do efeito NSI. Esses resultados podem ser comparados com o caso com o efeito NSI.

Na Fig. 8.23, mostramos contornos de δ na presença do parâmetro NSI para 6 combinações diferentes com dois ε 's que consideramos nesta tese. Para valores típicos de entrada $\sin^2 2\theta_{13} \simeq 10^{-3}$ a sensibilidade piora quando inserimos os parâmetros NSI. Todavia, a mudança é $\Delta \delta \simeq 0.05 - 0.1$ rad sem NSI e, para NSI $\Delta \delta \simeq 0.1 - 0.15$ rad, em todos os seis casos. Portanto a diferença entre as sensibilidades de δ com ou sem NSI não é drástica.

Por outro lado, estimamos a sensibilidade para $\sin^2 2\theta_{13}$, comparando o painel inferior da Fig. 8.22 com a Fig. 8.24, podemos ver que para um valor típico de $\sin^2 2\theta_{13} \simeq 10^{-3}$ a incerteza fracional no $\sin^2 2\theta_{13}$ tornase grande com o NSI, isto é $\Delta(\sin^2 2\theta_{13})/(\sin^2 2\theta_{13} \simeq 10\%)$, sem NSI e $\Delta(\sin^2 2\theta_{13})/(\sin^2 2\theta_{13}) \simeq 10 - 20\%$ com NSI.

Figura 8.18: O mesmo da Fig.8.7 mas com valores de entrada de NSI ε , $\varepsilon_{ee} = 0.1$, $\varepsilon_{e\tau} = 0.01$ e $\varepsilon_{\tau\tau} = 0.2$. A linhas pontilhadas correspondem valores não nulos de $\varepsilon_{\alpha\beta}$

Figura 8.19: O mesmo da Fig.
8.11, mais com dados de entrada $\varepsilon,~\varepsilon_{ee}=0.1,~\varepsilon_{e\tau}=0.01$
e $\varepsilon_{\tau\tau}=0.2.$

Figura 8.20: Os isocontornos de 2σ CL (para 2 DOF) a sensibilidade para o parâmetro $\varepsilon_{\alpha\beta}$ em função dos valores de entrada dos parâmetros $\theta_{13} \in \delta$. Para cada ponto no plano $\theta_{13} - \delta$ a incerteza é definida por $\Delta \varepsilon \equiv (\varepsilon_{max} - \varepsilon_{min})/2$, onde ε_{max} ou ε_{min} indicam os valores máximo e mínimo para os valores de ε o qual é consistente com caso sem efeito NSI. Nos paineis superior, do meio e inferior, as sensibilidades para (a1) ε_{ee} e (a2) $\varepsilon_{e\mu}$ para o sistema $\varepsilon_{ee} - \varepsilon_{e\mu}$, b1) ε_{ee} e (b2) $\varepsilon_{e\tau}$ para o sistema $\varepsilon_{ee} - \varepsilon_{e\tau}$, e (c1) ε_{ee} e (c2) $\varepsilon_{\tau\tau}$ para o sistema $\varepsilon_{ee} - \varepsilon_{\tau\tau}$. Notamos que as incertezas para (a2) é ×100, enquanto (b2) é ×10.

Figura 8.21: O mesmo da Fig. 8.20 mas com diferença na combinaçã dos ε' . Nos paineis superior, do centro e inferior, mostram as sensibilidades para (d1) $\varepsilon_{e\mu}$ e (d2) $\varepsilon_{e\tau}$ para o sistema $\varepsilon_{e\mu} - \varepsilon_{e\tau}$, (e1) $\varepsilon_{e\mu}$ e (e2) $\varepsilon_{\tau\tau}$ para o sistema $\varepsilon_{e\tau} - \varepsilon_{\tau\tau}$, e (f1) $\varepsilon_{e\tau}$ e (f2) $\varepsilon_{\tau\tau}$ para o sistema $\varepsilon_{e\tau} - \varepsilon_{\tau\tau}$.

Capítulo 8. Sondagem do NSI usando feixes de neutrinos não convencionais: Fábrica de Neutrinos 112

Figura 8.22: No painel superior, temos iso-contornos de 2σ CL para 2 DOF para a fase CP, em radianos, é esperado por conseguir na fábrica de neutrinos na ausência do efeito de NSI no plano dos valores verdadeiros de δ e sin² $2\theta_{13}$. A incerteza é definida por $\Delta \delta \equiv (\delta_{max} - \delta_{min})/2$ (em radianos), onde δ_{max} e δ_{max} são os máximo e o mínimo dos valores de δ para cada ponto de input dado. O painel inferior tem um gráfico similar com o painel superior, mas com incerteza fracional $\Delta(\sin^2 2\theta_{13})/\sin^2 2\theta_{13}$ mostrado em percentual.

Figura 8.23: O mesmo como no painel superior da Fig. 8.22 mais para o caso onde os parâmetros NSI de entrada não nulos. Os iso-contornos de $\Delta\delta$ (em radianos) a 2σ CL para 2DOF são mostradas para 6 combinações de sistemas com dois ε : a) $\varepsilon_{ee} - \varepsilon_{e\mu}$, b) $\varepsilon_{ee} - \varepsilon_{e\tau}$, c) $\varepsilon_{ee} - \varepsilon_{\tau\tau}$, d) $\varepsilon_{e\mu} - \varepsilon_{e\tau}$ e e) $\varepsilon_{e\mu} - \varepsilon_{\tau\tau}$

Figura 8.24: O mesmo como no painel superior da Fig. 8.22 mas para o caso onde os parâmetros NSI de entrada não nulos. Os iso-contornos de $\Delta(\sin^2 2\theta_{13})/\sin^2 2\theta_{13}$ a 2σ para 2DOF são mostradas para 6 combinações de sistemas com dois ε : a) $\varepsilon_{ee} - \varepsilon_{e\mu}$, b) $\varepsilon_{ee} - \varepsilon_{e\tau}$, c) $\varepsilon_{ee} - \varepsilon_{\tau\tau}$, d) $\varepsilon_{e\mu} - \varepsilon_{e\tau}$ e e) $\varepsilon_{e\mu} - \varepsilon_{\tau\tau}$.