

Rafael Martinez Rodriguez

Estudo Teórico e Experimental de Agregados Iônicos (NH₃)_nNH_m[±] Dessorvidos de Amônia Sólida Bombardeada por Íons de 65 MeV

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor em Física pelo Programa de Pós-Graduação em Física da PUC-Rio.

Orientador: Prof. Enio Frota da Silveira

Rio de Janeiro, agosto de 2007

Rafael Martinez Rodriguez

Estudo Teórico e Experimental de Agregados Iônicos (NH₃)_nNH_m[±] Dessorvidos de Amônia Sólida Bombardeada por Íons de 65 MeV

Tese apresentada ao Programa de Pós–graduação em Física do Departamento de Física do Centro Técnico Científico da PUC–Rio como requisito parcial para obtenção do título de Doutor em Física. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Enio Frota da Silveira Orientador PUC-Rio

Profa. Heloísa Maria Boechat-Roberty UFRJ

> Prof. André Silva Pimentel PUC-Rio

Prof. Lucio Sartori Farenzena UFSC

Prof. Welles Antonio Martinez Morgado PUC-Rio

Profa. Maria Oswald Machado de Matos PUC-Rio

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 30 de agosto de 2007

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Rafael Martinez Rodriguez

Formado pela Universidad Nacional de San Agustin (Arequipa, Peru) em Engenharia Química. Defendeu o Mestrado em Física Atômica e Molecular no Departamento de Física da Pontifícia Universidade Católica do Rio de Janeiro, em 2003.

Ficha Catalográfica

Martinez Rodriguez, Rafael.

Estudo Teórico e Experimental de Agregados lônicos (NH₃)_nNH_m[±] Dessorvidos da Amônia Sólida Bombardeada por Íons de 65 MeV/ Rafael Martinez Rodriguez; orientador: Prof. Enio Frota da Silveira - Rio de Janeiro: PUC, Departamento de Física, 2007

v., 129 f: il. ; 30 cm

Tese (Doutorado) - Pontifícia Universidade Católica de Rio de Janeiro, Departamento de Física.

Inclui referências bibliográficas.

Física – Tese;
Emissão Íons Secundários;
Dessorção Iônica;
Amônia Sólida;
Agregados Iônicos;
Fragmentos de Fissão;
Tempo de Vôo;
Velocidades Iniciais;
Distribuições de Energia;
PDMS.

PUC-Rio - Certificação Digital Nº 0321142/CA

Aos meus pais em sinal de eterno agradecimento

Aos meus irmãos

Agradecimentos

Ao meu orientador, Professor Enio Frota da Silveira, pelos conhecimentos transmitidos, pela paciência e esforço conjunto e por guiar o desenvolvimento do presente trabalho, o que o converte em um verdadeiro orientador.

A minha família, pelo apoio brindado em todo momento.

Ao grupo de pesquisa todo: à Cássia pela preparação dos substratos utilizados no LNLS e pelas correções do texto dos artigos que fazem parte desta tese. Pela ajuda durante a realização das experiências e pelos comentários e sugestões a esta tese, obrigado Lucio, Manoel Gustavo, Peter, Paquito e Eduardo.

Aos funcionários do Laboratório Van de Graaff: Edson, Sérgio, Nélio, Nilton, Nestor, Jorge e Tânia, pela ajuda e suporte oferecido.

A todos os professores do Laboratório e do Departamento de Física, que contribuíram a minha formação acadêmica.

Aos meus colegas, expresso minha satisfação pelos momentos agradáveis vividos.

Ao CNPq e à PUC-Rio pelos auxílios concedidos durante o doutorado.

Resumo

Martinez Rodriguez, Rafael; da Silveira, E. F. **Estudo Teórico e Experimental de Agregados Iônicos (NH₃)_nNH_m[±] Dessorvidos de Amônia Sólida Bombardeada por Íons de 65 MeV.** Rio de Janeiro, 2007. 129p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Um espectrômetro de massa tipo tempo-de-vôo, montado no Laboratório Nacional de Luz Síncrotron (Campinas – SP), foi utilizado para analisar os íons dessorvidos de uma amostra de amônia condensada (temperaturas de análise: 25 a 150 K) ao ser impactada por fragmentos de fissão do 252 Cf. O espectrômetro permite identificar e determinar as abundâncias das espécies iônicas dessorvidas. Quanto à parte teórica, foram feitos cálculos para determinar as estruturas mais estáveis dos agregados de NH₃ e para determinar suas dinâmicas de emissão de íons secundários observados na parte experimental.

A amônia foi escolhida por sua semelhança com a água, uma molécula muito bem estudada. Outra razão é o atual interesse em determinar a formação de compostos orgânicos nas superfícies de corpos interestelares, uma vez que está comprovada a presença da amônia naquelas superfícies. Nos espectros obtidos observa-se a formação de agregados de amônia que podem ser representados por $(NH_3)_nNH_m^{\pm}$ com n = 0-30 e m = 0-5, para íons positivos, e com n = 0-3 para íons negativos. Uma forma de evidenciar a possibilidade de formação de novos compostos foi realizar experiências com a mistura NH₃-CO, com a mesma montagem experimental utilizada para a amônia. Observa-se no espectro obtido (antes da sublimação do CO a 30 K) linhas de massa resultantes de reações primárias que correspondem a íons moleculares híbridos com estrutura $C_nO_mH_l^+$.

Os cálculos teóricos referentes às estruturas dos agregados foram realizados através do programa Jaguar 5.5 e Jaguar 6.0. O objetivo é determinar as estruturas mais estáveis dos agregados iônicos da amônia através da teoria DFT (Teoria do Funcional de Densidade) por meio da minimização da energia. Encontrou-se uma relação direta entre as estabilidades determinadas e as abundâncias relativas no espectro de massa. Finalmente foram realizados cálculos com o modelo teórico de dessorção iônica induzida por elétrons. Os resultados de distribuição de velocidades e energias foram comparados com os dados experimentais dos agregados da amônia (n = 0, 4), apresentando uma concordância razoável em valor absoluto, mas moderada em forma.

Palavras-chave

 Física – Tese; 2. Emissão Íons Secundários; 3. Dessorção Iônica; 4. Amônia Sólida; 5. Agregados Iônicos; 6. Fragmentos de Fissão; 7. Tempo de Vôo; 8. Velocidades Iniciais; 9. Distribuições de Energia; 10. PDMS.

Abstract

Martinez Rodriguez, Rafael. Experimental and theoretical analysis of $(NH_3)_n NH_m^{\pm}$ ion clusters desorbed from solid ammonia bombarded by 65 MeV ion projectiles. Rio de Janeiro, 2007. 129p. PhD. Theses - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

A time-of-flight mass spectrometer, mounted at the Laboratório National de Luz Síncrotron (Campinas - SP), was used to analyze desorbed ions of a condensed ammonia sample (analyzing temperatures: 25 - 150 K) being impacted by 252 Cf fission fragments. The spectrometer allows identifying and determining the relative yields of ionic desorbed species. Besides, it had been made theoretical calculations to determine the most stable cluster structures as well as to determine the emission dynamics of NH₃ clusters observed in the experimental part.

The ammonia was chosen because of its similarity with the water molecule (very well studied). Another reason is the current interest in determining the organic compounds formation in the interstellar surfaces, now that it is proven the presence of ammonia in those surfaces. The measured spectra show the formation of ammonia clusters that can be represented by $(NH_3)_nNH_m^{\pm}$ with n = 0 - 30 and m = 0 - 5 for positive ions, and n = 0 - 3 for negative ones. One way to evidence the formation possibility of new compound is to perform experiments with CO-NH₃ mixture samples, using the same experimental set up used for the ammonia. In the spectrum measured before CO sublimation (30 K), mass lines, product of primary reactions, corresponding to hybrid molecular ions having the $C_nO_mH_l^+$ structure were observed.

Theoretical calculations referring to cluster structures had been carried out using the programs Jaguar 5,5 and Jaguar 6.0. The objective is to determine the most stable structures of the ammonia clusters through the Density Functional Theory (DFT) by means of energy minimizations. A direct relation between the computed stabilities and the relative abundances in the mass spectra was found. Finally calculations with the Secondary Electron Induced Desorption (SEID) model had been carried out. Results of velocity and energy distributions had been compared with the experimental data of ammonia clusters (n = 0, 4), presenting a good agreement in absolute values but moderate agreement in shape.

Keywords

1. Physics - These, 2. Secondary Ion Emission, 3. Ion Desorption, 4. Solid Ammonia, 5. Ionic Clusters, 6. Fission Fragments, 7. Time-of-Flight, 8. Initial Velocities, 9. Energy Distributions, 10. PDMS

Sumario

1. Introdução	1
1.1. Motivação	2
1.2. Objetivos	2
2. Amônia	5
2.1. Estrutura da molécula de NH ₃	5
2.1.1. Algumas propriedades	6
2.2. Interesse astrofísico – Amônia gelo	6
2.2.1. Amônia sólida	7
2.3. Agregados	10
2.3.1. Definição	10
2.3.2. Formação de agregados	11
a) Nucleação de Agregados	11
b) Crescimento de Agregados	12
2.3.3. Variação das propriedades dos agregados com o seu tamanho	12
Classificação por número de constituintes	13
2.4. Agregados Moleculares	14
2.4.1. Ionização de Agregados Moleculares	14
2.5. Agregados da Amônia	15
3. Gelo de NH ₃ bombardeado por íons pesados e rápidos	17
3.1. A câmera de análise	17
3.2. Espessura do alvo	18
3.3. Experiências	18
3.3.1. Análise de Íons Secundários	20
a) Método da Emissão por Transmissão.	20
b) Método da Emissão por Reflexão.	20
3.3.2. Análise das Espécies Neutras Dessorvidas	21
3.4. Resultados	23
3.4.1. Espectros de massa ²⁵² Cf-PDMS-TOF	23
a) Íons Positivos:	23
b) Íons Negativos:	25

c) Distribuições de Velocidades e de Energias Iniciais:	26
3.4.2. Dependência do Rendimento de Agregados sobre a Nucleação	27
3.4.3. Variação da Dessorção Iônica com a Temperatura do Alvo	28
3.5. Discussão	32
3.5.1. $(NH_3)_n NH_4^+$ ou $(NH_3)_{n+1} H^+$	33
3.5.2. Rendimentos dos íons positivos e negativos	34
3.5.3. Rendimento de dessorção dos agregados em função de n e T	35
3.6. Modelo de emissão de agregados	38
i) O regime de recombinação (regime F)	39
ii) O regime de fragmentação (regime S)	40
3.7. Conclusões	40
4. Gelo de CO-NH ₃ bombardeado por FF: Íons Moleculares Híbridos	42
4.1. Introdução	42
4.2. Método Experimental	43
4.3. Resultados	43
4.3.1. Íons Específicos do CO	46
4.3.2. Íons Específicos do NH_3	47
4.3.3. Íons Moleculares Híbridos (IMH)	50
O Grupo C _n H _m	53
Íons $C_n O_m H_l^+$	53
Os íons (NH) _n CO ⁺ e (NH) _n OH ⁺	54
4.4. Discussão	55
4.5. Conclusões	59
5. Cálculos Teóricos: Estabilidade	61
5.1. Porquê utilizar Mecânica Quântica?	61
5.1.1. Cálculos em Orbitais Moleculares Simples	62
5.1.2. Aproximação Born Oppenheimer	65
5.1.3. Hartree-Fock	65
a) Conjunto de Bases:	66
b) Correlação Eletrônica:	67
5.2. Teoria do Funcional de Densidade (DFT)	68
5.3. Detalhes Computacionais	70
5.4. Resultados	72

	5.4.1. $(NH_3)_n NH_4^+$	72
	5.4.2. $(NH_3)_n NH^+$	74
	5.4.3. $(NH_3)_n NH_2^-$	76
	5.5. Discussão	77
	5.5.1. Análise da Estabilidade	80
	5.6. Conclusões	84
6.	Simulação do Processo de Dessorção Induzida por Elétrons Secundários	
	(SEID) da Amônia Sólida	86
	6.1. O Modelo SEID	86
	6.1.1. Interação Projétil-Alvo	87
	6.1.2. Transferência de Energia	89
	- Modelo de Bohr	89
	- Software CasP	90
	6.1.3. Modelo do Potencial do Traço	94
	6.1.4. Formação de Íons Secundários na Superfície	97
	6.2. Predições do Modelo	99
	6.2.1. Trajetórias dos Íons Secundários	100
	6.2.2. Velocidades dos Íons Secundários	100
	6.3. Comparação entre resultados teóricos e experimentais	104
	6.3.1. Metodologia	104
	6.3.2. Densidade Superficial de Íons σ_I	105
	6.3.3. Distribuição da energia cinética	106
	6.4. Discussão e Conclusões	107
7.	Conclusões	109
	7.1. Resultados Experimentais	110
	7.2. Resultados Teóricos	111
	7.3. Perspectivas	113
R	eferências Bibliográficas	115
A	pêndice	120

Lista de tabelas

Tabela 2.1: Propriedades da amônia	6
Tabela 2.2: Propriedades cristalografias do sólido glacial da amônia I [36]	9
Tabela 2.3: Freqüências correspondentes aos picos fundamentais da amônia nas	
fases cristalina, metaestável e amorfa.	10
Tabela 3.1: Parâmetros das contribuições Rápida (F) e Lenta (S) a 61 K aos	
rendimentos de dessorção das séries de agregados iônicos da amônia e	
da água ($k_m = k/M$, onde M é a massa do monômero)	36
Tabela 4.1: Rendimentos iônicos integrais (íon/impacto) dos íons positivos mais	
representativos, medidos para o gelo CO-NH3 antes e depois da	
sublimação do CO.	49
Tabela 4.2: Rendimentos (íon/impacto) dos IMH positivos.	52
Tabela 5.1: Resultados teóricos para agregados da amônia com NH_4^+ . E_T é a	
energia total ($E_T = E_{SCF} + ZPE^*$) e Eb é a energia de ligação.	73
Tabela 5.2: Resultados teóricos para agregados da amônia com NH ⁺	75
Tabela 5.3: Resultados teóricos para agregados da amônia com NH ₂ ⁻	77
Tabela A.1: Energias de ligação de orbitais moleculares	124

Lista de Figuras

Fig. 2.1: Estrutura de uma molécula de amônia	5
Fig. 2.2: Diagrama de fases da amônia sólida. Note que as fases V e VI são	
especulativas até hoje em dia [28]	8
Fig. 2.3: Células unitárias: a) Amônia I (esquerda) e b) Amônia IV (direita)	9
Fig. 2.4: Classificação dos fragmentos segundo seus tamanhos, obtidos por divisão	
sucessiva do material [36].	10
Fig. 2.5: Intensidades observadas por fotoionização dos agregados iônicos da	
amônia, protonados e não protonados, em função do tamanho do agregado	
n	16
Fig. 3.1: Configuração experimental utilizada para a produção e analise de íons e	
neutros secundários dessorvidos de gases congelados	19
Fig. 3.2: Espectro de massa dos íons positivos dessorvidos do gelo de NH ₃ a 61 K,	
irradiados por FF durante 1 h.	24
Fig. 3.3: Espectro de massa dos íons negativos dessorvidos do gelo de NH ₃ a 61 K,	
irradiados por FF durante 1 h.	25
Fig. 3.4: Distribuições da componente axial das velocidades iniciais para agregados	
iônicos dessorvidos da amônia condensada. A parte negativa de v_{zo} é	
explicada pelo "jitter" eletrônico.	26
Fig. 3.5: Distribuições das energias iniciais para agregados iônicos dessorvidos da	
amônia condensada	26
Fig. 3.6: Dependência do rendimento iônico dos agregados positivos e negativos	
com o numero de constituintes n (numero de moléculas de NH_3)	28
Fig. 3.7: Rendimento de dessorção dos agregados iônicos $(NH_3)_n NH_4^+$ em função	
da temperatura do alvo. Para maior clareza, para $n > 4$ foram desenhados	
apenas os rendimentos de agregados com \mathbf{n} múltiplos de quatro.	29
Fig. 3.8: Rendimentos dos agregados iônicos para a serie $(NH_3)_n NH_4^+$ em função do	
numero de constituintes n , para diferentes temperaturas do gelo.	30
Fig. 3.9: Espectro de massa dos gases residuais, obtido com o espectrômetro de	
quadrupolo durante aquecimento do alvo. O eixo vertical representa a	
corrente dos íons no quadrupolo (unidades arbitrárias proporcionais à	
pressão parcial das moléculas neutras).	31

Fig. 3.10: Comparação dos dados experimentais com as predições do modelo	
hidrodinâmico desenvolvido na ref. [61]	37
Fig. 3.11: Distribuição dos agregados iônicos $(NH_3)_{n-1}NH_2^+$ produzidos por impacto	
de elétrons de um feixe molecular supersônico de agregados neutros de	
amônia [11]	37
Fig. 4.1: Espectros de massa de íons positivos do gelo CO-NH ₃ obtidos antes da	
sublimação do CO durante elevação da temperatura do alvo de 25 a 29	
K, 30-40 min depois de ter sido interrompida a dosagem.	44
Fig. 4.2: Região de massas altas do espectro de gelo CO-NH ₃ . Os espectros	
superior e inferior correspondem respectivamente às medidas obtidas	
antes e depois da sublimação de CO.	45
Fig. 4.3: Curvas TTY (Time-Temperature-Yield): rendimentos dos agregados	
ionicos em função do tempo/temperatura	46
Fig. 4.4: Dependencia tempo/temperatura dos rendimentos dos agregados	
iônicos $C_n C^+$.	47
Fig. 4.5: Espectro de barras dos íons ejetados do CO-NH ₃ gelo no intervalo de	
temperatura de 40–65 K, depois da sublimação do CO	48
Fig. 4.6: Região de massa baixa do espectro de barras do CO-NH ₃ gelo. Linhas	
finas: medidas entre 25-29 K; barras abertas: depois da sublimação do	
gelo, a T > 30 K.	50
Fig. 4.7: Curvas TTY de varios íons positivos entre 25 e 45 u. Os simbolos cheios	
pertencem aos íons especificos do NH3; os abertos aos íons do CO ou	
IMH.	52
Fig. 4.8: Curvas TTY para 22 íons tendo provavelmente a estrutura $C_nO_mH_l^+$.	
Cada grupo foi normalizado a uma curva meia do grupo	54
Fig. 4.9: Espectro de massa de íons negativos obtido antes da sublimação do CO	
(T = 25 K). Propõe-se uma fórmula química para as espécies acima de	
36 u.	58
Fig. 5.1: Alguns orbitais atômicos	62
Fig. 5.2: Interação entre orbitais atômicos	62
Fig. 5.3: Abundancias relativas dos agregados positivos com estrutura do tipo	
$(NH_3)_n NH_m^+$, em função do numero de constituintes.	71
Fig. 5.4: Geometrias otimizadas do (NH ₃) _n NH ₄ ⁺ , no nível B3LYP/6-31G**	72

Fig. 5.5: Energia total E_T (acima) e ΔE_T entre isômeros (abaixo), em função do	
número de constituintes do agregado.	74
Fig 5.6: Geometrias otimizadas do (NH ₃) _n NH ⁺ , no nível B3LYP/6-311G**	75
Fig. 5.7: Variação da energia total ΔE_T entre isômeros em função do número de	
constituintes do agregado.	75
Fig. 5.8: Geometrias otimizadas do $(NH_3)_nNH_2^-$, no nível B3LYP/6-31++G**	76
Fig. 5.9: Variação da energia total ΔE_T entre isômeros em função do número de	
constituintes do agregado.	77
Figs. 5.10a,b: Desvios nos rendimentos dos agregados da amônia positivos (a,	
esquerda) e negativos (b, direita).	78
Fig 5.11: Barreira de energia para a transição da estrutura do núcleo $\{NH_3NH\}^{+*}$	
$em \{NH_2NH_2\}^+$	80
Figs. 5.12 a,b: Variação da distancia de cada átomo ao centro de massa, para os	
agregados (NH ₃) _n NH ₄ ⁺ (a, esquerda) e (NH ₃) _n NH ₂ ⁻ (b, direita), n = 0-8.	81
Fig. 5.13 : Comparação da estabilidade dos agregados $(NH_3)_{n-1}{\{NH_3NH\}}^+$ e	
$(NH_3)_{n-1}{NH_2NH_2}^+$. Dados Tabela 5.2.	83
Figs. 5.14 a,b: Variação da distancia de cada átomo ao centro de massa, para os	
agregados $(NH_3)_{n-1}{NH_3NH}^+$ (a, esquerda) e $(NH_3)_{n-1}{NH_2NH_2}^+$ (b,	
direita), para n = $0-7$	83
Fig. 6.1: Estado de carga de equilíbrio em função da velocidade do projétil (Ba^{q+})	88
Fig. 6.2a: Perda de energia eletrônica Se = $(dE/dx)_e$ (símbolo e linha) e parâmetro	
de impacto máximo b_{max} (linha) em função da energia do projétil Ba ¹³⁺	
incidindo sobre um alvo de amônia	91
Fig. 6.2b: Previsões teóricas (CasP) para a dependência do poder de freiamento	
com o estado de carga do projétil (Ba ^{q+}) interagindo com a amônia	92
Fig. 6.3: Transferência de energia do projétil ao elétron do sólido em função ao	
parâmetro de impacto, para diferentes valores de carga do projétil.	93
Fig. 6.4: Parâmetro de impacto $b_{max}(q)$ em função da carga do projétil, para a	
energia de ionização da amônia 35 eV.	93
Fig. 6.5: Geometria do modelo de dessorção	94
Fig. 6.6: Trajetórias para íons de massa 18 e 86 u desenhadas para uma dinâmica	
com intervalos de tempo crescentes (passo variável).	100
Fig. 6.7: Comportamento da velocidade axial no plano de incidência	101

Fig. 6.8: Variação da componente axial da velocidade Vz em função da posição	
inicial para energias iniciais de 1 eV (a, esquerda) e 4 eV (b, dereita)	101
Fig. 6.9: Comportamento de Vz em função da posição inicial para diferentes	
valores da energia media de ionização (I)	102
Fig. 6.10: Comportamento de Vz em função da posição inicial para energias	
iniciais diferentes, com energia de ionização I = 35 eV	103
Fig. 6.11: Gráfico 3D da variação da componente axial da velocidade Vz em	
função das posições iniciais X_0 e Y_0 , para o íon de m = 18	103
Fig. 6.12: Gráfico 3D da variação da componente axial da velocidade Vz em	
função das posições iniciais X_0 e Y_0 , para o íons de m = 86	104
Fig. 6.13: Seção de choque de ionização $\Omega(E)$ por impacto de elétrons em NH ₃	106
Fig. 6.14: Comparação das distribuições de energia dos dados experimentais e	
teóricos, os cálculos foram feitos para diferentes ângulos de emissão.	
Apresenta-se também um ajuste com uma distribuição Maxwell-	
Boltzmann.	107
Fig. A.1: Esquema de um espectrômetro TOF linear (²⁵² Cf - PDMS)	120
Fig. A.2: Região de aceleração	122
Fig. A.3: Processos de transferência de energia aos elétrons pelo projétil em função	
do parâmetro de impacto.	127
Fig. A.4: (a): Superposição da seção de choque de ionização da amônia por impacto	
de elétrons e o fluxo destes na superfície, em região próxima de $X0 = Y0 =$	
0. (b): Seção de choque de produção de íons por impacto de elétrons, para	
diferentes posições em X0 e com $Y0 = 0$.	128
Fig. A.5: Probabilidade de sobrevivência de íons saindo da superfície com	
diferentes velocidades, aumentando exponencialmente.	129