ALEXANDRE ALMEIDA DEL SAVIO

A COMPONENT METHOD MODEL FOR SEMI-RIGID STEEL JOINTS
INCLUDING BENDING MOMENT-AXIAL FORCE INTERACTION

Ph.D. Thesis

Thesis presented to the Post-graduate Program in Structural Engineering of Department of Civil Engineering, PUC-Rio, as partial fulfillment of the requirements for the Ph.D. Degree in Structural Engineering.

Supervisors: Prof. Sebastião Arthur Lopes de Andrade
Prof. Pedro Colmar Gonçalves da Silva Vellasco
Prof. David Arthur Nethercot

Rio de Janeiro
June, 2008
ALEXANDRE ALMEIDA DEL SAVIO

A COMPONENT METHOD MODEL FOR SEMI-RIGID STEEL JOINTS
INCLUDING BENDING MOMENT-AXIAL FORCE INTERACTION

Thesis presented to the Post-graduate Program in Structural Engineering, of Department of Civil Engineering, PUC-Rio, as partial fulfillment of the requirements for the Ph.D. Degree in Structural Engineering.

Dr. Sebastião Arthur Lopes de Andrade
Supervisor
Civil Engineering Department - PUC-Rio

Dr. Pedro Colmar Gonçalves da Silva Vellasco
Co-Supervisor
Structural Engineering Department - UERJ

Dr. Luiz Fernando Campos Ramos Martha
Civil Engineering Department - PUC-Rio

Dr. Luciano Rodrigues Ornelas de Lima
Structural Engineering Department - UERJ

Dr. Deane de Mesquita Roehl
Civil Engineering Department - PUC-Rio

Dr. Eduardo de Miranda Batista
COPPE - UFRJ

José Eugênio Leal
Coordinator of the Scientific Technical Centre - PUC-Rio

Rio de Janeiro, 13th June 2008
All rights reserved. It is prohibited to reproduce either all or part of this work without authorisation from the university, author and supervisor.

Alexandre Almeida Del Savio

B.Sc. by University of Passo Fundo (2002) and M.Sc. by Pontifical Catholic University of Rio de Janeiro (2004). Ph.D. academic visitor at Imperial College of Science, Technology and Medicine, London (2006-2007). The author is a structural engineer with main interests in: steel structures; semi-rigid joints; non-linear formulations and analysis; mechanical model; component method and finite element method. The author has a number of papers published in international journals and conferences related to the structural engineering field.

Card Catalog

Del Savio, Alexandre Almeida

A component method model for semi-rigid steel joints including bending moment-axial force interaction / Alexandre Almeida Del Savio; supervisors: Prof. Sebastião A. L. Andrade, Prof. Pedro C. G. da S. Vellasco and Prof. David A. Nethercot.

v. 177 p. : il. ; 30 cm

Thesis (Ph.D.) – Pontifical Catholic University of Rio de Janeiro (PUC-Rio), Civil Engineering Department

This thesis includes references.

Steel structures; Semi-rigid joints; Joint behaviour; Axial versus bending moment interaction; Mechanical model; Component method; Rotational stiffness.
Dedicated to God for having illuminated me throughout my way, my wife, Janaíne, my parents, Libório and Berenice, and my sisters, Letícia and Patrícia, for their love and support.
Acknowledgements

I would like to express my sincere gratitude to my supervisor, Prof. Sebastião A. L. de Andrade, Prof. Pedro C. G. da S. Vellasco and Prof. Luiz Fernando Martha, for their brilliant joint supervision, continuous encouragement, support and overall contribution throughout the entire duration of this study.

Prof. David A. Nethercot is also gratefully thanked for his close support and expert advice during my valuable experience as an Academic Visitor at the Department of Civil and Environmental Engineering, Imperial College of Science, Technology and Medicine, London.

Furthermore, I would like to acknowledge the financial support provided for this work by the Brazilian Scientific and Technological Developing Agencies: CNPq and CAPES.

I specially thank to the Civil Engineering Department, PUC-Rio – Pontifical Catholic University of Rio de Janeiro, including its Professors and staff.

Last but not least, I am grateful to my Brazilian friends and colleagues, Fernando Ramires, Ricardo Araújo, Diego Orlando, Juliana Viana and Luciano Lima, as well as my Imperial College London’s friends, José Miguel Castro, Daisuke Saito, Stylianos Yiatros, Michal Jandera, Ken Chan, Ka Ho Nip (Alan) and Jason Treadway, for their precious help and companionship during the development of my thesis. I am also grateful to all other friends not mentioned here, but that many times contributed to my thesis.
Abstract

The correct knowledge of the joint moment-rotation characteristic is an essential prerequisite for the use of the so called semi-continuous approach to steel and composite frame design.

Although the axial force transferred from the beam is frequently low, so that its effect on the moment-rotation characteristic may often be neglect, certain circumstances do exist in which axial compression or tension forces will be sufficiently large that it is no longer reasonable to ignore their influence.

The current thesis is centred on the development of a generalised component-based model for semi-rigid beam-to-column joints including the full axial force versus bending moment interaction. The detailed formulation of the proposed analytical model is fully described in this work, as well as all the analytical expressions used to evaluate the model properties. Detailed examples demonstrate how to use this model to predict moment-rotation curves for any axial force level. Numerical results, validated against experimental data, were also performed in order to verify the accuracy and validity of the proposed model. A tri-linear approach to characterise the force-displacement relationship of the joint components is also proposed to model the joint model structural response. Comparisons of the present development to key prior studies of this topic was also made and commented in detail.

A series of parametric and sensitivity studies were executed varying several key parameters that influence on the joint structural behaviour. The axial force-bending moment interaction was also carefully analysed and the axial force effect on the joint response was discussed. The proposed model and associated analytical studies form the basis of important design considerations, involving the presence of the axial force, which are suggested in this work to be included in future improvements of structural design codes.

Finally, in addition to the proposed model and due to the fact of relatively
few experimental results have been reported to investigate the axial force effect, an alternative method is presented herein. This alternative approach extends the range of application of available experimental data to generate moment-rotation characteristics that implicitly make proper allowance for the presence of significant levels of either tension or compression at the adjacent beams. The applicability and validity of the proposed methodology is demonstrated through comparisons against several tests on endplate joints and baseplate arrangements.

Keywords

Steel structures; Semi-rigid joints; Joint behaviour; Axial versus bending moment interaction; Mechanical model; Component method; Rotational stiffness.
Resumo

A compreensão correta da curva característica momento-rotação de uma ligação é uma condição essencial para a utilização das chamadas abordagens semi-contínuas para o aço e o projeto de estruturas mistas.

Embora a força axial proveniente da viga seja frequentemente baixa de modo que o seu efeito sobre a curva característica momento-rotação da ligação possa muitas vezes ser negligenciado, existem certas circunstâncias nas quais as forças axiais de compressão ou tração serão suficientemente grandes, não sendo mais possível ignorar sua influência.

Esta tese é centrada no desenvolvimento de um modelo mecânico generalizado, baseado no método das componentes para conexões semi-rígidas do tipo viga-cola incluindo a interação completa entre a força axial e o momento fletor. A formulação detalhada do modelo analítico proposto é descrita totalmente neste trabalho bem como todas as expressões analíticas utilizadas para avaliar as propriedades do modelo mecânico. Exemplos detalhados demonstram como utilizar este modelo para prever curvas momento-rotação para qualquer nível de força axial. Resultados numéricos validados contra dados experimentais também foram realizados a fim de verificar a exatidão e a validade do modelo proposto. Uma abordagem tri-linear para caracterizar a relação força-deslocamento das componentes de uma ligação também é proposta para modelar a resposta estrutural do modelo de conexões. Comparações do atual desenvolvimento com estudos fundamentais realizados anteriormente sobre este tema também foram feitas e comentadas em detalhes.

Uma série de estudos paramétricos e sensitivos foram executados variando os parâmetros principais que influenciam no comportamento estrutural da conexão. A interação força axial-momento fletor também foi cuidadosamente analisada e seu efeito sobre a resposta da ligação foi discutido. O modelo proposto
associado aos estudos analíticos formaram a base para as considerações, que envolvem a presença da força axial, sugeridas neste trabalho para ser incluídas em futuras melhorias de normas de projetos estruturais.

Por fim, além do modelo proposto e devido ao fato de que relativamente poucos resultados experimentais foram relatados investigando o efeito da força axial, um método alternativo é apresentado. Este método estende o leque de aplicações dos dados experimentais disponíveis para gerar curvas características momento-rotação que consideram implicitamente a presença de níveis significativos de tração ou compressão nas vigas adjacentes. A aplicabilidade e validade da metodologia proposta é demonstrada através de comparações com vários ensaios de ligações com placas de extremidade e com placas de base.

Palavras-Chave

Estruturas metálicas; Ligações semi-rígidas; Comportamento estrutural de ligações; Interação momento fletor versus força axial; Modelo mecânico; Método das componentes; rigidez rotacional.
Table of Contents

Acknowledgements 5

Abstract 6

Resumo 8

List of Figures 14

List of Tables 20

Notation 22

1 Introduction 32
 1.1. Background 32
 1.2. Scope of the Present Work 35
 1.3. Thesis Layout 36

2 Literature Review 38
 2.1. Introduction 38
 2.2. Conventional Design Practice 38
 2.2.1. Global Analysis 38
 2.2.2. Classification of the Joints 39
 2.2.2.1. Classification by Stiffness 39
 2.2.2.2. Classification by Strength 40
 2.2.3. Design Moment-Rotation Characteristic of Joints 40
 2.2.4. Component method 41
 2.2.4.1. Welded Connections 44
 2.2.4.2. Bolted Connections 44
 2.2.4.3. Equivalent T-stub 46
2.2.4.3.1. Equivalent T-stub in Tension 46
2.2.4.3.2. Equivalent T-stub in Compression 50
2.2.4.4. Design of the Joint Basic Components 50
2.2.4.4.1. Column Web Panel in Shear 50
2.2.4.4.2. Column Web in Transverse Compression 51
2.2.4.4.3. Column Web in Transverse Tension 55
2.2.4.4.4. Column Flange in Transverse Bending 56
2.2.4.4.5. Endplate in Bending 59
2.2.4.4.6. Beam Flange and Web in Compression 62
2.2.4.4.7. Beam Web in Tension 63
2.2.4.4.8. Bolts in Tension 63
2.2.4.5. Axial Force 64
2.3. Theoretical Models 64
2.3.1. Mathematical Formulations (Empirical Models) 65
2.3.2. Simplified Analytical Models 67
2.3.3. Finite Element Analysis 69
2.3.4. Mechanical Models 72
2.4. Experimental 80

3 Generalised Mechanical Model for Beam-to-Column Joints Including the Axial-Moment Interaction 81
3.1. Introduction 81
3.2. Characterisation of the Joint Components 82
3.3. Generalised Mechanical Model Formulation 84
3.3.1. Analytical Expressions: Displacements and Rotations 87
3.3.2. Limit Bending Moments 89
3.3.3. Moments that Cause the Joint Rows and the Joint to Yield and Failure 90
3.4. Prediction of Bending Moment versus Rotation Curve for any Axial Force Level 92
3.5. Lever Arm d 93
3.5.1. Lever Arm Evaluation for the Complementary Cases Disregarding Axial Forces and/or Considering Tensile Forces Applied to the Joint 94
3.5.2. Lever Arm Evaluation for Compressive Forces Applied to the Joint

4 Application of the Proposed Mechanical Model and Its Validation against Experimental Tests
4.1. Introduction 96
4.2. Application of the Proposed Generalised Mechanical Model 96
4.2.1. Extended Endplate Joints 97
4.3. Results and Discussion 107

5 Parametric Investigations 109
5.1. Introduction 109
5.2. Joint Layout 109
5.3. Preliminary Studies 110
5.3.1. Discussion of the Results 114
5.4. Joint Key Parameters 119
5.5. Beam Profile Investigations 120
5.5.1. Discussion of the Results 124
5.6. Column Profile Investigations 125
5.6.1. Discussion of the Results 129
5.7. Endplate Thickness Investigations 130
5.7.1. Discussion of the Results 134
5.8. Bolt Investigations 136
5.8.1. Discussion of the Results 139
5.9. Axial Force Effect 140
5.10. Notes about the Incremental Solution of the Analytical Bending Moment versus Axial Force Interaction Diagram 142

6 An Alternative Methodology to Extend the Range of Application of Available Experimental Data so as to Produce Moment-Rotation Characteristics 143
6.1. Introduction 143
6.2. General Concepts of the Correction Factor 143
6.3. Extension of the Correction Factors for Both Bending Moment and Rotation Axes 144
6.4. An alternative methodology 146

7 Applicably and Validity of the Proposed Alternative Methodology 149
 7.1. Introduction 149
 7.2. Application of the Alternative Methodology 149
 7.2.1. Flush endplate joints 150
 7.2.2. Column bases 155
 7.3. Results and Discussion 161
 7.3.1. Flush Endplate Joints 161
 7.3.2. Column Bases 162

8 Summary and Conclusion 164
 8.1. Generalised Mechanical Model 164
 8.2. Alternative Methodology 167
 8.3. Design Considerations 168
 8.4. Main Contributions and Developments of the Present Investigation 169
 8.5. Future Research Recommendations 170

References 172
List of Figures

Figure 1 - Schematic illustration of a typical staggered-truss system and the structural system, Ritchie et al. (1979). 33
Figure 2 - Pitched-roof portal frame joint, Lima (2003). 33
Figure 3 - Sub-structural levels for progressive collapse assessment. (a) Bays adjacent to the lost column; (b) Floors above the lost column; (c) Single floor system; (d) Individual beams. Vlassis et al. (2006). 34
Figure 4 - Structural progressive collapse real example. Nethercot et al. (2007). 34
Figure 5 - Design moment-rotation characteristic for a joint. 41
Figure 6 – Joints and their associated mechanical models. 43
Figure 7 - T-stub identification and orientation for bolted extended endplate connections. 46
Figure 8 – Failure modes of a T-stub. 48
Figure 9 – Dimensions of an equivalent T-stub flange (EC3-1-8, 2005). 48
Figure 10 – Collapse mechanisms of the bolt-row outside the beam flange (Faella et al., 2000). 49
Figure 11 – Yield line models of bolt row group (Faella et al., 2000). 49
Figure 12 – Forces and moments acting on the joint. Direction of forces and moments are considered as positive in relation to equations presented in this section. 52
Figure 13 - Transverse compression on an unstiffened column. 54
Figure 14 - Definitions of e, e_{min}, r_c and m. 57
Figure 15 - Modelling an extended endplate as separate T-stubs. 60
Figure 16 – Values of α for stiffened column flanges and endplates. 61
Figure 17 - Bolt elongation length. 64
Figure 18 - Connection and mechanical model for web cleat connections, Wales & Rossow (1983). 72
Figure 19 - Mechanical model for flange and web cleated connections, Chmielowiec & Richard (1987). 73
Figure 20 - Mechanical model for full welded joints, Tschemmernegg (1988). 74
Figure 21 - Mechanical model for bolted joints, Tschemmernegg & Humer (1988).

Figure 22 - Idealization of beam-to-column connection, Madas (1993).

Figure 23 - Mechanical model, Jaspart el al. (1999).

Figure 24 - Spring model for extended endplate joints, Lima (2003).

Figure 25 - Spring model for flush endplate joints, Lima (2003).

Figure 26 - Nonlinear spring connection model, Ramli-Sulong (2005).

Figure 27 - Moment-rotation curves for the extended endplate joints tested by Lima (2003) and obtained from numerical simulations, Lima (2003).

Figure 28 - Moment-rotation curves for the flush endplate joints tested by Lima (2003) and obtained from numerical simulations, Simões da Silva et al. (2004).

Figure 29 - Proposed generalised mechanical model for semi-rigid joints.

Figure 30 - Constitutive laws of the endplate joint components, Simões da Silva et al. (2002).

Figure 31 - Force-displacement curve for components in tension and compression.

Figure 32 - Proposed prediction of the bending moment versus rotation curve for any axial force level.

Figure 33 - Proposed generalised mechanical model for semi-rigid joints – lever arm d.

Figure 34 - Extended endplate joint, Lima et al (2004).

Figure 35 - Proposed mechanical model.

Figure 36 - Proposed mechanical model for each analysis stage.

Figure 37 - Comparison between experimental EE1 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 38 - Comparison between experimental EE2 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 39 - Comparison between experimental EE3 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.
Figure 40 - Comparison between experimental EE4 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 41 - Comparison between experimental EE6 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 42 - Comparison between experimental EE7 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 43 - Prediction of six moment-rotation curves for different axial force levels.

Figure 44 - Extended endplate joint, Lima et al (2004).

Figure 45 - Proposed mechanical model.

Figure 46 - Comparison between experimental EE1 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 47 - Comparison between experimental EE2 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 48 - Comparison between experimental EE3 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 49 - Comparison between experimental EE4 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 50 - Comparison between experimental EE6 moment-rotation curve (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 51 - Comparison between experimental EE7 moment-rotation curves (Lima et al., 2004) and predicted curve by using the proposed mechanical model.

Figure 52 - Prediction of six moment-rotation curves for different axial force levels.
Figure 53 - Prediction of the bending moment versus axial load interaction diagram using the proposed mechanical model for the joint yield and ultimate resistances.

Figure 54 - Investigated EE1 (N = 0.0 kN) moment-rotation curves involving the beam profile variations.

Figure 55 - Investigated EE2 (N = +10% N_{pl} = 135.95 kN) moment-rotation curves involving the beam profile variations.

Figure 56 - Investigated EE3 (N = +20% N_{pl} = 193.30 kN) moment-rotation curves involving the beam profile variations.

Figure 57 - Investigated EE4 (N = +27% N_{pl} = 259.20 kN) moment-rotation curves involving the beam profile variations.

Figure 58 - Investigated EE6 (N = -10% N_{pl} = -127.20 kN) moment-rotation curves involving the beam profile variations.

Figure 59 - Investigated EE7 (N = -20% N_{pl} = -257.90 kN) moment-rotation curves involving the beam profile variations.

Figure 60 - Analytical moment-axial load interaction diagram at different beam profiles.

Figure 61 - Investigated EE1 (N = 0.0 kN) moment-rotation curves involving the column profile variations.

Figure 62 - Investigated EE2 (N = +10% N_{pl} = 135.95 kN) moment-rotation curves involving the column profile variations.

Figure 63 - Investigated EE3 (N = +20% N_{pl} = 193.30 kN) moment-rotation curves involving the column profile variations.

Figure 64 - Investigated EE4 (N = +27% N_{pl} = 259.20 kN) moment-rotation curves involving the column profile variations.

Figure 65 - Investigated EE6 (N = -10% N_{pl} = -127.20 kN) moment-rotation curves involving the column profile variations.

Figure 66 - Investigated EE7 (N = -20% N_{pl} = -257.90 kN) moment-rotation curves involving the column profile variations.

Figure 67 - Analytical moment-axial load interaction diagram at different column profiles.

Figure 68 - Investigated EE1 (N = 0.0 kN) moment-rotation curves involving the endplate thickness variations.
Figure 69 - Investigated EE2 (N = +10% N_{pl} = 135.95 kN) moment-rotation curves involving the endplate thickness variations. 132

Figure 70 - Investigated EE3 (N = +20% N_{pl} = 193.30 kN) moment-rotation curves involving the endplate thickness variations. 132

Figure 71 - Investigated EE4 (N = +27% N_{pl} = 259.20 kN) moment-rotation curves involving the endplate thickness variations. 133

Figure 72 - Investigated EE6 (N = -10% N_{pl} = -127.20 kN) moment-rotation curves involving the endplate thickness variations. 133

Figure 73 - Investigated EE7 (N = -20% N_{pl} = -257.90 kN) moment-rotation curves involving the endplate thickness variations. 134

Figure 74 - Analytical moment-axial load interaction diagram at different endplate thicknesses. 134

Figure 75 - Investigated EE1 (N = 0.0 kN) moment-rotation curves involving the bolt variations. 136

Figure 76 - Investigated EE2 (N = +10% N_{pl} = 135.95 kN) moment-rotation curves involving the bolt variations. 137

Figure 77 - Investigated EE3 (N = +20% N_{pl} = 193.30 kN) moment-rotation curves involving the bolt variations. 137

Figure 78 - Investigated EE4 (N = +27% N_{pl} = 259.20 kN) moment-rotation curves involving the bolt variations. 138

Figure 79 - Investigated EE6 (N = -10% N_{pl} = -127.20 kN) moment-rotation curves involving the bolt variations. 138

Figure 80 - Investigated EE7 (N = -20% N_{pl} = -257.90 kN) moment-rotation curves involving the bolt variations. 139

Figure 81 - Analytical moment-axial load interaction diagram at different bolts. 139

Figure 82 - Evaluation of the design bending moments (M_{int} & M_{max}) and rotations (\phi_{int} & \phi_{max}). 145

Figure 83 - Correction Factor strategy method using a three segment division of the M-\phi curve. 146

Figure 84 - Approximate M-\phi curve using three Correction Factor pairs. 146

Figure 85 - Tri-linear representation of the M-\phi curve methodology. 147

Figure 86 - Flush endplate joint layout, Simões da Silva et al. (2004). 150
Figure 87 - Experimental moment versus rotation curves, Simões da Silva et al. (2004).

Figure 88 - Flush endplate bending moment versus axial force interaction diagram, Simões da Silva et al. (2004).

Figure 89 - Tri-linear strategy used for the experimental M-ϕ curves.

Figure 90 - Paths used to define the procedure to determine any M-ϕ curve present within these limits.

Figure 91 - FE8 M-ϕ curve approximation, considering a tensile force of 10% of the beam’s axial plastic resistance.

Figure 92 - FE3 M-ϕ curve approximation, considering a compressive force of 4% of the beam’s axial plastic resistance.

Figure 93 - FE4 M-ϕ curve approximation, considering a compressive force of 8% of the beam’s axial plastic resistance.

Figure 94 - The whole set of predicted M-ϕ curves by using the proposed methodology.

Figure 95 - Baseplate configurations, Guisse et al. (1996).

Figure 96 - PC2.15 experimental M-ϕ curves and the tri-linear reference M-ϕ curves.

Figure 97 - PC2.30 experimental M-ϕ curves and the tri-linear reference M-ϕ curves.

Figure 98 - PC4.15 experimental M-ϕ curves and the tri-linear reference M-ϕ curves.

Figure 99 - PC4.30 experimental M-ϕ curves and the tri-linear reference M-ϕ curves.

Figure 100 - PC2.15.600 M-ϕ curve approximation.

Figure 101 - PC2.30.600 M-ϕ curve approximation.

Figure 102 - PC4.15.400 M-ϕ curve approximation.

Figure 103 - PC4.30.400 M-ϕ curve approximation.

Figure 104 - First-order approximations error magnitudes versus joint rotation.
List of Tables

Table 1 - Joint basic components. 42
Table 2 - Design resistance $F_{T,Rd}$ of a T-stub flange (EC3-1-8, 2005). 47
Table 3 – Reduction factor ω for interaction with shear. 52
Table 4 - Approximate values for the transformation parameter β. 53
Table 5 - Effective lengths for an unstiffened column flange. 58
Table 6 - Effective lengths for an endplate. 60
Table 7 - Summary of the mechanical models to predict the joint behaviour. 79
Table 8 - Values adopted for the strain hardening coefficients, μ. 84
Table 9 - Steel mechanical properties. 98
Table 10 - Theoretical values of the resistance and initial stiffness of the extended endplate joint components, Figure 34, evaluated according to Eurocode 3:1-8 (2005). 99
Table 11 - Characterisation of the extended endplate joint components, Figure 34, according to the approach given in Chapter 3 - section 3.2. 100
Table 12 - Load situations applied to the joint and their respective mechanical models. 102
Table 13 - Applicability of each model, M_{lim}, and evaluation of lever arm d according to the experimental axial force levels. 102
Table 14 - Values evaluated for the prediction of the moment-rotation curves for different axial force levels. 104
Table 15 - Comparisons between the experimental and the proposed model initial stiffness and the experimental and the proposed model design moment. 108
Table 16 - Comparisons between the experimental and analytical points obtained for the extended endplate joint. 115
Table 17 - Mechanical model row stiffness for the joint ultimate bending moment resistance. 117
Table 18 - Row-component yield and failure sequence. 118
Table 19 – Main elements of the joint and their respective basic components. 120
Table 20 - Investigated beam profiles and their main dimensions. 120
Table 21 - The weakest component of the mechanical model rows for each analysed case with $N = 0.0$. 124
Table 22 - Evaluated ultimate bending moments at different beam profiles. 125
Table 23 - Investigated column profiles and their main dimensions. 126
Table 24 - The weakest component of the mechanical model rows for each analysed case with $N = 0.0$. 130
Table 25 - Evaluated ultimate bending moments at different column profiles. 130
Table 26 - Investigated endplate thicknesses and their dimensions. 131
Table 27 - The weakest component of the mechanical model rows for each analysed case with $N = 0.0$. 135
Table 28 - Evaluated ultimate bending moments at different endplate thicknesses. 135
Table 29 - Investigated grade 10.9 bolts and their main dimensions. 136
Table 30 - The weakest component of the mechanical model rows for each analysed case with $N = 0.0$. 140
Table 31 - Evaluated ultimate bending moments at different bolt diameters. 140
Table 32 - Values evaluated for the reference M-ϕ curves. 152
Table 33 - Values evaluated for three tri-linearly approximated M-ϕ curves. 153
Table 34 - Nomenclature of the tests and their parameters, Guisse et al. (1996). 156
Table 35 - Values evaluated for the reference M-ϕ curves. 157
Table 36 - Values evaluated for three tri-linearly approximated M-ϕ curves. 158
Table 37 - Comparisons between the experimental and the proposed methodology in terms of initial stiffness and design moment capacity for flush endplate joints. 162
Table 38 - Comparisons between the experimental and the proposed methodology in terms of initial stiffness and design moment capacity for baseplate joints. 163
Notation

All symbols used in this thesis are defined as they first appear. For the reader’s convenience, the principal meanings of the commonly used notations are contained in the list below.

Roman Symbols

- a: modelling parameter
- a_b: throat thickness of the beam flange-to-column flange weld
- a_c: throat thickness of the column web-to-flange weld
- a_j: least-square curve fitting coefficient
- a_p, a_pf: throat thickness of the weld between the beam flange and the endplate
- b_1: bar 1: rigid bar representing the beam end
- b_2: bar 2: rigid bar representing the column flange centreline
- b_b: width of the beam cross section
- b_c: width of the column cross section
- $b_{eff,c,wc}$: effective width of column web in compression
- $b_{eff,t,wb}$: effective width of beam web in tension
- $b_{eff,t,wc}$: effective width of column web in tension
- b_j: least-square curve fitting coefficient
- $bfwc$ (7): beam flange and web in compression
- b_p: width of the plate welded to an I or H section
- bt (10): bolts in tension
- bwt (8): beam web in tension
- c_j: modelling parameter
- c_{fb} (4): column flange in bending
- cwc (2): column web in compression
cws (1) column web in shear

cwt (3) column web in tension

d lever arm: distance from the loading application centre to the rigid link

d_b bolt diameter

d_h bolt head diameter

d_i system displacements, i=1..4: u_{b1}, \theta_{h1}, u_{b2}, \theta_{h2}

d_n nut diameter

d_w washer diameter; width across points of the bolt head or nut

d_{wc} clear depth of the column web

e distance from the loading application centre to the beam bottom flange

epb (5) endplate in bending

e_w \frac{d_w}{4}

f_{bc,i}^y yield strength of the joint bolt-row i

f_{cp}^y joint component yield capacity

f_{cp}^u joint component ultimate capacity

f_i force in spring/row i

f_i^y yield capacity of spring/row i

f_i^u ultimate capacity of spring/row i

f_{y,bp} yield strength of the backing plates

f_{y,f} yield strength of the flange of the I or H section

f_{y,p} yield strength of the plate welded to the I or H section

f_{u,p} ultimate strength of the plate welded to the I or H section

f_{y,wc} yield strength of the beam web

f_{y,wc} yield strength of the column web

h_b depth of the beam cross section; beam height

h_c depth of the column cross section; column height
\(h_{ep} \) endplate height
\(h_p \) depth of the plate
\(h_r \) distance of bolt-row \(r \) from the compressive centre
\(h_i \) lever arm
\(k \) non-dimensional stiffness parameter
\(k_1 \) stiffness coefficient of the column web panel in shear
\(k_2 \) stiffness coefficient of the column web in compression
\(k_3 \) stiffness coefficient of the column web in tension
\(k_4 \) stiffness coefficient of the column flange in bending
\(k_5 \) stiffness coefficient of the endplate in bending
\(k_7 \) stiffness coefficient of the beam flange and web in compression
\(k_8 \) stiffness coefficient of the beam web in tension
\(k_{10} \) stiffness coefficient of the bolts in tension
\(k_b \) factor that depends on the frame type
\(k_{bbf} \) elastic stiffness of the bottom flange of the beam
\(k_{br1} \) elastic stiffness of bolt-row 1
\(k_{br2} \) elastic stiffness of bolt-row 2
\(k_{br3} \) elastic stiffness of bolt-row 3
\(k_{btf} \) elastic stiffness of the top flange of the beam
\(k_{cp}^r \) joint component elastic stiffness
\(k_{cp}^p \) joint component plastic stiffness
\(k_{cp}^u \) joint component reduced strain hardening stiffness
\(k_{eff,r} \) effective stiffness coefficient of bolt-row \(r \)
\(k_{eq} \) equivalent stiffness coefficient
\(k_{i,r} \) stiffness coefficient representing basic component \(i \) in bolt-row \(r \)
\(k_{k,bbf} \) elastic stiffness of the compressive rigid link referred to the bottom flange of the beam
\(k_{kq} \) elastic stiffness of the compressive rigid link referred to the top flange of the beam

\(k_t \) elastic stiffness of the tensile rigid link referred to the lever arm

\(k_{tl1} \) elastic stiffness of tensile rigid link 1 referred to bolt-row 1

\(k_{t2} \) elastic stiffness of tensile rigid link 2 referred to bolt-row 2

\(k_{t3} \) elastic stiffness of tensile rigid link 3 referred to bolt-row 3

\(k_{wc} \) reduction factor that accounts for the influence of the vertical normal stress

\(l_{eff} \) effective length

\(l_{ep} \) length of the endplate over the beam flange

\(l_i \) distance from joint spring/row \(i \) to the beam bottom flange centre

\(m \) number of knots (junction of multi-part curve)

\(\bar{m} \) non-dimensional moment resistance parameter

\(n \) shape factor

\(n_r \) total number of bolt-rows in tension

\(nbr \) number of bolt-rows

\(nc \) row/spring component number

\(ns \) system spring/row number

\(n_w \) number of washers

\(r_a \) radius of the fillet of the angle legs

\(r_c \) radius of the fillet of the web-to-flange connection of the column

\(r_i \) effective stiffness of model spring/row \(i \)

\(r_i^e \) elastic effective stiffness of spring/row \(i \)

\(r_i^p \) plastic effective stiffness of spring/row \(i \)

\(r_i^{sh} \) reduced strain hardening effective stiffness of spring/row \(i \)

\(s \) length that depends on if the column section is rolled or welded

\(s_p \) length obtained by dispersion at 45° of the compressive action through the endplate thickness

\(t_a \) angle thickness
\(t_{bp} \) thickness of the backing plates
\(t_{ep} \) thickness of the endplate
\(t_f \) thickness of the flange of an I or H section
\(t_{fb} \) thickness of the beam flange
\(t_{fc} \) thickness of the column flange
\(t_h \) thickness of the bolt head
\(t_n \) thickness of the nut
\(t_p \) thickness of the plate (under the bolt or the nut)
\(t_w \) thickness of the web of an I or H section
\(t_{wb} \) thickness of the beam web
\(t_{wc} \) thickness of the column web
\(t_{wh} \) thickness of the washer
\(u_{bi} \) first bar displacement
\(u_{b2} \) second bar displacement
\(u_i \) absolute displacement of spring/row \(i \) (first bar)
\(ul_i \) absolute displacement of spring/row \(i \) (second bar)
\(z \) lever arm
\(z_{eq} \) equivalent lever arm

Capital letter
\(A_s \) tensile stress area of the bolt
\(A_{ic} \) shear area of the column
\(C \) constant that controls the curve slope
\(C_1; C_2; C_3 \) curve-fitting constants
\(C_i \) spring/row \(i \) vertical coordinates
\(CF_M \) correction factor for the moment axis
\(CF_\phi \) correction factor for the rotation axis
\(E \) elastic modulus of structural steel
\(F \) internal loading vector
\(F_{bbf} \) row compressive yield capacity (beam bottom flange)
$F_{c,wc,Rd}$: design resistance of the column web in compression

$F_{c,wc,Rd,br}$: design buckling resistance of the column web in compression

$F_{c,wc,Rd,cr}$: design crushing resistance of the column web in compression

$F_{c,ws,Rd}$: design resistance of the column web in shear

F_{link}: rigid link tensile capacity that joins the second bar to the supports

$F_{Rd,\min}$: smallest design resistance of the basic components

$F_{t,Rd}$: design tension resistance of a bolt

$F_{T,Rd}$: design tension resistance of a T-stub flange

$F_{1,wc,Rd}$: design resistance of the column web in tension

$F_{w,Rd}$: effective tension resistance of bolt-row r

I_b: second moment of the area of the supported beam section

K: model stiffness matrix; parameter that depends on the geometrical and mechanical properties of the connection details

K_b: ratio of the relative rigidity of all beams at the top of the storey

K_c: ratio of the relative rigidity of all columns at the top of the storey

K_i: initial stiffness

K_{ij}: terms of the system stiffness matrix, $i=1..4$ and $j=1..4$

K_p: strain hardening stiffness

L_b: span of the supported beam; bolt elongation length taken equal to the grip length (total thickness of material and washers) plus half the sum of the height bolt head and the height of the nut.

M: bending moment applied to the joint

$M - \phi$: bending moment versus rotation curve

$M_{\chi\phi(0)}$: moment-rotation curve disregarding the axial force effect

$M_{\chi\phi(N_j)}$: moment-rotation curve considering the axial force N_j

$M(\theta)$: moment-rotation relationship

M^f: bending moment referred to a 0.05-radian joint final rotation

M^u: bending moment that leads the joint to the failure

M^y: bending moment that leads the joint to the yield
M_0 initial moment; reference moment

$M_{0,p}$ bending moment on the reference $M - \phi$ curve disregarding the axial force at point p

$M_{b1,Ed}$ joint internal bending moments

$M_{b2,Ed}$ joint internal bending moments

$M_{br,i}^u$ bending moment that leads to the failure of the joint spring/row i, located between the first and second bars

$M_{br,i}^y$ bending moment that leads to the yield of the joint spring/row i, located between the first and second bars

$M_{c,Rd}$ design moment resistance of the beam cross-section

M_d design bending moment

$M_{fr,i}^u$ bending moment that leads to the failure of the joint spring/row i, located between the second bar and supports

$M_{fr,i}^y$ bending moment that leads to the yield of the joint spring/row i, located between the second bar and supports

M_{int} design bending moment considering the axial force N_i

M_j upper bound moment in the j-th part of the curve

$M_{j,\lim}$ limit bending moment of spring/row j, located between the first and second bars

$M_{j,Ed}$ design moment action

$M_{j,Rd}$ design moment resistance of the joint, the design plastic moment resistance of the connected member

M_{\max} design bending moment disregarding the axial force

$M_{N=0}$ bending moment referred to $Mx\phi(0)$ curve

$M_{N,p}$ bending moment on the reference $M - \phi$ curve considering the axial force at point p

M_p plastic moment; bending moment evaluated for the target $M - \phi$ curve at point p

$M_{pl,Rd}$ design plastic moment resistance of the connected member
M_u ultimate moment; idealised elastic-plastic mechanism moment

N shape parameter obtained through the least square method

N_u axial load that leads the joint to the failure

N_y axial load that leads the joint to the yield

$N_{b1,Ed}$ joint internal normal forces

$N_{b2,Ed}$ joint internal normal forces

N_i axial force present in interaction i

N_{pl} beam’s axial plastic capacity

P axial load applied to the joint

$R(\Delta)$ load-deformation relationship

R_0 reference load

S_j secant stiffness

$S_{j,ini}$ initial rotational stiffness of the joint

$V_{b1,Ed}$ joint internal shear forces

$V_{b2,Ed}$ joint internal shear forces

$V_{wp,Rd}$ design shear force of the column web in shear

Greek Symbols

$\alpha_{1,2,3,4}$ coefficients of Eq. 3.41

β transformation parameter which account for the possible influence of the web panel in shear

γ_{M0} partial safety factor for resistance of cross-section whatever the class is

γ_{M1} partial safety factor for resistance of members to instability assessed by member checks

γ_{M2} partial safety factor for resistance of cross-sections in tension to fracture

δu_{b1} first bar virtual displacement

δu_{b2} second bar virtual displacement

δU internal virtual work
\(\delta W \)
external virtual work

\(\delta \theta_{b1} \)
first bar virtual rotation

\(\delta \theta_{b2} \)
second bar virtual rotation

\(\delta \Delta \)
virtual displacement field

\(\delta \Delta_i \)
virtual displacement of spring \(i \)

\(\eta_{1,2,3,4} \)
coefficients of Eq. 3.41

\(\theta \)
joint rotation

\(\theta^p \)
joint rotation capacity necessary to develop the joint plastic bending moment

\(\theta^y \)
joint rotation capacity necessary to develop the joint yield bending moment

\(\theta^f \)
joint final rotation (assumed to be equal to 0.05 radians)

\(\theta_0 \)
reference rotation

\(\theta_{b1} \)
first bar rotation

\(\theta_{b2} \)
second bar rotation

\(\kappa \)
stiffness coefficient (Eq. 3.18)

\(\lambda \)
stiffness coefficient (Eq. 3.18)

\(\bar{\lambda}_p \)
plate slenderness

\(\mu \)
stiffness ratio \(S_{j,ini}/S_j \) that accounts for the joint non-linear behaviour

\(\mu^p \)
plastic stiffness strain hardening coefficient

\(\mu^u \)
ultimate stiffness strain hardening coefficient

\(\xi \)
stiffness coefficient (Eq. 3.23)

\(\rho \)
reduction factor for plate buckling; stiffness coefficient (Eq. 3.18)

\(\nu \)
stiffness coefficient (Eq. 3.26)

\(\phi_{0,p} \)
rotation on the reference \(M - \phi \) curve disregarding the axial force at point \(p \)

\(\phi_{Cd} \)
design rotation capacity

\(\phi_d \)
design rotation

\(\phi_{Ed} \)
rotation between connected members of the joint
\(\phi_{\text{int}} \) design rotation considering the axial force \(N_i \)

\(\phi_{\text{max}} \) design rotation disregarding the axial force

\(\phi_{\Phi=0} \) rotation referred to \(M_{\Phi}(0) \) curve

\(\phi_{\Phi,p} \) rotation on the reference \(M-\phi \) curve considering the axial force at point \(p \)

\(\phi_p \) rotation evaluated for the target \(M-\phi \) curve at point \(p \)

\(\varphi \) stiffness coefficient (Eq. 3.27)

\(\chi_1 \) stiffness coefficient (Eq. 3.23)

\(\chi_2 \) stiffness coefficient (Eq. 3.20)

\(\psi \) stiffness coefficient (Eq. 3.20); coefficient that depends on the connection type

\(\omega \) reduction factor to allow for the possible effects of interaction with shear in the column web panel

\(\omega_1 \) stiffness coefficient (Eq. 3.23)

\(\omega_2 \) stiffness coefficient (Eq. 3.20)

Capital letter

\(\Delta \) relative displacement field

\(\Delta_i \) spring/row \(i \) relative displacement

\(\Delta_{br,i} \) spring/row \(i \) relative displacement located between the first and second bars

\(\Delta_{fr,i} \) spring/row \(i \) relative displacement located between the second bar and the supports

\(\Delta' \) relative displacement that leads to the yield of the model spring/row \(i \)

\(\Delta'' \) relative displacement that leads to the failure of the model spring/row \(i \)

\(Z \) stiffness coefficient (Eq. 3.25)

\(X \) stiffness coefficient (Eq. 3.22)

\(\Omega \) stiffness coefficient (Eq. 3.22)