

Janaina Oleinik Moura Rosa

Um Estudo de Compactação de Dados para Biosseqüências

Dissertação de Mestrado

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio.

Orientador: Sérgio Lifschitz

Janaina Oleinik Moura Rosa

Um Estudo de Compactação de Dados para Biosseqüências

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Informática da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

Sérgio Lifschitz Orientador PUC-Rio

Fernanda Araújo Baião UNIRIO

Luiz Fernando Bessa Seibel PUC-Rio

Rubens Nascimento Melo PUC-Rio

Prof. José Eugenio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 6 de setembro de 2006

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Janaina Oleinik Moura Rosa

Graduou-se em Engenharia Informática na Universidade Católica "Nstra. Sra de la Asunción", PY, em 1998. Atuou em empresas como Analista de Sistemas e Administrador de dados. Lecionou no curso de Administração e Tuning de Banco de Dados do CCE PUC-Rio.

Ficha Catalográfica

Rosa, Janaina Oleinik Moura

Um estudo de compactação de dados para biossequências / Janaina Oleinik Moura Rosa ; orientador: Sérgio Lifschitz. – Rio de Janeiro : PUC, Departamento de Informática, 2006.

135 f.: il.; 30 cm

Dissertação (mestrado) – Pontifícia Universidade Católica do Rio de Janeiro, Departamento de Informática.

Inclui bibliografia.

Informática – Teses. 2. BLAST. 3.
 Compactação. 4. Bioinformática. I. Lifschitz, Sérgio. II.
 Pontifícia Universidade Católica do Rio de Janeiro.
 Departamento de Informática. III. Título.

CDD: 004

Aos meus pais pelo apoio incondicional. Ao meu marido, José Antônio, por incentivo e carinho constantes. E ao meu pequeno Antônio que chegou para dar mais alegria e motivação.

Agradecimentos

Ao professor Sérgio Lifschitz pela orientação e empenho na leitura e revisão do texto.

Ao professor Eduardo Laber pela colaboração com materiais e dicas sobre algoritmos de compressão de dados.

Ao meu marido José Antônio pelas inúmeras contribuições ao trabalho. Suas revisões e orientações foram fundamentais. Agradecimentos pela companhia carinhosa, mesmo que virtual em alguns momentos, não importando nem mesmo o fuso-horário. E principalmente por acreditar que seria possível.

Ao amigo Eduardo Morelli pelo companheirismo e amizade desde as primeiras disciplinas até a entrega deste documento, e principalmente pelas palavras otimistas nos momentos difíceis.

À amiga Michelle, pelo seu ponto de vista sempre tão prático e espirituoso.

Aos amigos Simone, Ciro e Maíra pelos momentos de descontração.

À minha família, meus pais, Rui e Leila, e irmãos, Ruizinho, Rafaela e Gabriela pelo amor e apoio incondicional em todos os momentos.

Ao meu filho Antônio que trouxe motivação e alegria extras na reta final.

Resumo

Oleinik Moura Rosa, Janaina; Lifschitz, Sérgio. Um Estudo de Compactação de Dados para Biossequências. Rio de Janeiro, 2006. 135p. Dissertação de Mestrado - Departamento de Informática, Pontifícia

Universidade Católica do Rio de Janeiro.

A família de algoritmos BLAST é a mais utilizada pelos biólogos para a busca de similaridade entre biossequências, e por esta razão, melhoras nestes algoritmos, em suas estruturas de dados ou em seus métodos de acesso à memória secundária são muito importantes para o avanço das descobertas biológicas. Nesta dissertação, foi estudada detalhadamente uma versão do programa BLAST, analisando as suas estruturas de dados e os algoritmos que as manipulam. Além disso, foram realizadas medições de desempenho com o intuito de identificar os possíveis gargalos de processamento dentro das fases de execução do BLAST. A partir das informações obtidas, técnicas de compactação de dados foram utilizadas como uma estratégia para redução de acesso à memória secundária com o objetivo de melhorar o desempenho para a execução do BLAST. Finalmente, foi gerada uma versão modificada do BLAST no ambiente Windows, na qual foi alterado diretamente o código do programa. Os resultados obtidos foram comparados com os resultados obtidos na execução do algoritmo original.

Palayras-chave

BLAST; compactação; Bioinformática

Abstract

Oleinik Moura Rosa, Janaina; Lifschitz, Sérgio. A Study of Biosequence Data Compression. Rio de Janeiro, 2006. 135p. Master Thesis - Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

The BLAST is the sequence comparison strategy mostly used in computational biology. Therefore, research on data structures, secondary memory access methods and on the algorithm itself, could bring important optimizations and consequently contributions to the area. In this work, we study a NCBI BLAST version by analyzing its data structures and algorithms for data manipulating. In addition, we collect performance data for identifying processing bottleneck in all the BLAST execution phases. Based on this analysis, data compress techniques were applied as a strategy for reducing number of secondary memory access operations. Finally, a modified version of BLAST was implemented in the Microsoft Windows environment, where the program was directly altered. Finally, an analysis was made over using the results of execution of original BLAST against modified BLAST.

Keywords

BLAST; data compression; Bioinformatics

Sumário

1	Introdução	13
1.1	Bioinformática e Banco de Dados	13
1.2	Objetivos da Dissertação	14
1.3	Estrutura da Dissertação	15
2	Preliminares	17
2.1	Contexto Biológico	17
2.2	Operações sobre Biosseqüências	18
2.3	Persistência de Biosseqüências	20
2.4	Problemas com o armazenamento de biosseqüências	21
2.5	Trabalhos relacionados	23
2.6	Conclusão	25
3	Análise do programa BlastP	27
3.1	Descrição do Funcionamento do BLAST	27
3.2	Descrição da implementação do NCBI-BLAST	30
3.3	Análise do desempenho	34
3.3.1	Metodologia de Análise	34
3.3.2	Análise	37
3.4	Conclusão	43
4	Compactação de dados	45
4.1	Compactação	45
4.1.1	Classificações	47
4.1.2	Algoritmos de compressão reversível	49
4.2	Compactação em SGBDs	51
4.3	Compactação de biosseqüências	55
4.4	Considerações Finais	57
4.5	Conclusão	58
5	Uma proposta de compactação para o BlastP	60
5.1	A solução proposta	61

5.2	Detalhamento da Proposta de Solução	63
5.3	Conclusão	70
6	Resultados experimentais	71
6.1	Metodologia de análise de resultados	71
6.2	Análise de resultados	76
6.2.1	Resultados e Análises do Cenário 1- Testes de T1 a T5	77
6.2.2	Resultados e Análises do Cenário 2 – Testes de T6 a T10	82
6.3	Conclusão	86
7	Conclusão e Trabalhos Futuros	88
7.1	Revisão dos Objetivos e Resultados da Tese	88
7.2	Trabalhos Futuros	90
Referé	èncias	93
APÊN	DICE A - Características das biosseqüencias	99
Propri	edades de uma biosseqüência	102
APÊN	DICE B – Operações sobre Biosseqüencias	104
Comparação de seqüências		104
Geração de Anotações		106
Monta	gem de fragmentos	107
APÊN	DICE C – Operações sobre Biosseqüencias	110
Como	as biosseqüências são armazenadas	110
Banco	os de biosseqüencias	111
Persis	tência em gerenciadores de bancos de dados comerciais e específicos	121
Outras	s propostas de persistência para biosseqüências	124
APÊN	DICE D – Algoritmo BWT	129
Exemplo		130
APÊNDICE E – Implementação da solução		131

Lista de Tabelas

Tabela 1 – Tipos de Programas BLAST	28
Tabela 2 – Passos do Algoritmo BLAST	29
Tabela 3 - Configuração da execução do BlastP para estudo do código.	30
Tabela 4 - Dados de entrada da execução do BLAST.	39
Tabela 5 - Dados de entrada da execução do BLAST Tabela 6 - Resultados da execução do BLAST com a base nr captados pelo	40
PFMon. Tabela 7 - Resultados da execução do BLAST com a base env_nr captados pelo AQTime.	42 43
Tabela 8 - Comparação de programas de compressão de dados	58
Tabela 9 - Configuração de Hardware e Software Básico	72
Tabela 10 - Cenários de execução	74
Tabela 11 - Planejamento experimental	76
Tabela 12 - Configuração do testes T1 a T5	77
Tabela 13 - Resumo dos resultados para o primeiro cenário	79
Tabela 14 - Resultados do teste T1	80
Tabela 15 - Resultados do teste T2	80
Tabela 16 - Resultados do teste T3	81
Tabela 17 - Resultados do teste T4	81
Tabela 18 - Resumo dos teste T5	82
Tabela 19 - Configuração dos testes T6 à T10	82
Tabela 20 - Resultados testes T6 à T10.	84
Tabela 21- Codificação para ambigüidades na leitura de nucleotídeos	99
Tabela 22 - Lista de aminoácidos	100
Tabela 23 - Matriz ordenada resultante da BWT	130

Lista de Figuras

Figura 1 - Alinhamento entre sequências	1/
Figura 2 - Módulos Principais do NCBI-BLAST	31
Figura 3 - Árvore de chamada das funções do BLAST.	33
Figura 4 - Execução do PFMon para analisar page faults do BLAST	35
Figura 5 - Exemplo da informação captada com o utilitário FileMon.	36
Figura 6 - Interface do aplicativo AQTime Figura 7 - Exemplo de funcionamento da primeira e segunda fase do BLAST.	37 38
Figura 8 - Padrão de acesso ao arquivo de seqüências em uma execução do BLAST.	40
Figura 9 - Padrão de acesso ao arquivo de seqüências em uma execução do BLAST	41
Figura 10 - Acesso aleatório ao arquivo de seqüências em uma execução do BLAST.	42
Figura 11 - Linha de código onde são acessados os dados de uma Biosseqüências	43
Figura 12 - Fórmula para Cálculo de Taxa de Compressão	48
Figura 13 - Principais Componentes da Solução Proposta	62
Figura 14 - Módulos Globais	63
Figura 15 - Compactação dos Dados de Biosseqüências	65
Figura 16 - Módulo Compactador	66
Figura 17 - Seqüência das Chamadas das Funções de Compactador	66
Figura 18 - Gerência de Memória	67
Figura 19 - Interação entre BLAST e Gerente de Memória	69
Figura 20 - Componentes do Cenário de Execução	73
Figura 21 - Número de operações de E/S para as execuções do cenário	78
Figura 22 - Tempo de execução total para as execuções do cenário 1	79
Figura 23 - Número de operações de E/S para as execuções do cenário 2.	83
Figura 24 - Tempo total de execução para as execuções do cenário 2.	84
Figura 25 - Resultados da execução do teste T6	85
Figura 26 - Resultados da execução do teste T7	85
Figura 27 - Resultados da execução do teste T8	85
Figura 28 - Resultados da execução do teste T9	86
Figura 29 - Resultados da execução do teste T10	86
Figura 30 - Alinhamento entre seqüências	103

Figura 31 - Exemplo de intercalação na montagem de fragmentos	108
Figura 32 - Exemplo de uma seqüência guardada no DDBJ Figura 33 - Arquivo ASN.1 representando uma seqüência registrada no	
GenBank	115
Figura 34 - Esquema de uma saída em XML obtida da execução do BLAST	117
Figura 35 - Uma seqüência em um arquivo FASTA gerado pelo NCBI	119
Figura 36 - Exemplo de um arquivo de entrada para o sistema ACeDB	123
Figura 37 - Árvore de sufixo.	124
Figura 38 - Passos do BWT	129