
1
Introduction

Modularity is considered an essential concept of modern software design

thought. It is defined by the IEEE Standard Glossary of Software Engineering

Terminology (IEEE, 1990) as the degree to which a system program is composed

of discrete components such that a change to one component has minimal impact

on other components. A high degree of modularity is claimed to bring a series of

benefits to software design, such as comprehensibility, changeability, adaptability,

reusability, and so forth (Parnas, 1972; Booch, 1994; Meyer, 1997). Modularity

should be, and usually is, applied at all stages of design, ranging from architecture

specification (Bass et al., 2003; Clements et al., 2003) to detailed design and code

levels of abstraction. Software engineers consider modularity as a key principle

when comparing design alternatives and analyzing architecture degeneration (Eick

et al, 2001, Lindvall et al., 2002).

The systematic assessment of modularity plays a pivotal role in the realm of

software design. Moreover, assessment and improvement of early design

modularity is even more challenging, since early design decisions strongly

influence the next stages of development. Therefore, quantitative assessment

techniques are needed for evaluating architecture alternatives. Software metrics

are a powerful means to provide modularity indicators of software design

(Dobrica & Niemela, 2002, Fenton & Pfleeger, 1997). The software metrics

community has consistently used notions of module coupling, cohesion and

interface size to derive measures of modularity (Briand et al., 1993; Chidamber &

Kemerer, 1994; Fenton & Pfleeger, 1997; Lung & Kalaichelvan, 1998; Martin,

1997). Nowadays, a number of tools (e.g. Eclipse plugins (Eclipse Foundation,

2007a)) provide support for measuring these attributes. Also, books on lessons

learned and the importance of using metrics in practice have been recently

published (Lanza & Marinescu, 2006).

In fact, the conception of the right architectural decomposition is still a deep

bottleneck to the software design process, since a number of widely-scoped

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 25

concerns need to be simultaneously modularized. A concern is any important

property or area of interest of a system that we want to treat in a modular way

(Elrad et al., 2001; Tarr et al., 1999). Typical concerns in a software project

include features, business rules, non-functional requirements, architectural

patterns and design patterns (Elrad et al., 2001; Robillard & Murphy, 2007). Apart

from the last category, all the other concerns need to be considered from the

architecture design. Distribution, persistence, transaction management, security

and caching are examples of concerns found in many software systems.

Much of the complexity of software design is derived from the inadequate

modularization of concerns. In practice, it is not trivial to well modularize

concerns in a system due to a variety of reasons, including: inadequate initial

design of widely-scoped concerns (Robillard & Murphy, 2007); limitations

imposed by composition and decomposition mechanisms (Kiczales et al., 1997;

Tarr et al., 1999); the emergence of unforeseen concerns as a system evolves

(Robillard & Murphy, 2007); and the decay of design structures following

repeated changes (Eick et al., 2001; Belady & Lehman, 1976; van Gurb & Bosch,

2001).

In addition, software designers tend to naturally give priority or focus on the

modularization of certain concerns, while choosing a certain combination of

existing architecture styles or relying on a particular way for design

decomposition. As a consequence, a number of concerns end up having a

crosscutting impact on the system architectural decomposition, thus

systematically affecting the boundaries of several design elements, even elements

at the architectural level, such as components and their interfaces (Zhang &

Jacobsen, 2004; Greenwood et al., 2007a; Garcia & Lucena, 2008; Kulesza et al.,

2006).

When a concrete usage scenario requires the adaptation or reuse of a

concern, its adaptability or reusability is hindered if the concern is not well

modularized. For instance, Zhang & Jacobsen (2004) claim that the goal of

customizing certain concerns in middleware systems had been unattainable

because these concerns did not have clear modular boundaries and were tangled

with other concerns.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 26

1.1.
Problem Statement

Although typical modularity problems are related to the inadequate

modularization of concerns, most of the current quantitative assessment

approaches do not explicitly consider concern as a measurement abstraction. A

number of design quantitative assessment methods are targeted at guiding

decisions related to modularity, without calibrating the measurement outcomes to

the driving concerns. It imposes certain shortcomings, such as the ineffective

identification of desirable and undesirable couplings. For instance, coupling

among modules addressing different concerns might hamper reusing or

maintaining these concerns separately. On the other hand, coupling among

modules addressing the same concern might not hinder the reusability or

maintainability of that concern.

In addition, these shortcomings become more apparent in an age that a

number of different approaches of design decompositions, such as aspect-oriented

software development (Filman et al., 2005), are emerging. Aspect-oriented

software development (AOSD) (Filman et al., 2005; Kickzales et al., 1997) is a

new paradigm which aims at enhancing design modularization through new

compositions mechanisms. However, the achievement of modular aspect-oriented

(AO) designs is far from being trivial as the separation of certain concerns based

on AO mechanisms can bring more harmful them good results (Filho et al., 2006,

2007; Garcia et al., 2006b). The lack of concern-specific modularity indicators

makes it difficult to quantify the impact of contemporary modularization

approaches, such as aspect-oriented software development, on system’s concerns.

Software engineers, therefore, need quantitative assessment approaches to

support them in the identification of modularity anomalies related to (in)adequate

modularization of concerns. The lack of a concern-driven quantitative assessment

hinders the design modularity analysis, because it makes the analysis of the

overall influence of widely-scoped concerns on the software design difficult. The

modularity analysis is hindered already from the architectural design. A number

of concerns come from the requirements specification, and the architecture is the

artifact on which the requirements are first treated. In fact, a number of case

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 27

studies have pointed out that detection of certain design flaws can be observed at

early design stages (Kulesza et al., 2006; Soares et al., 2002; Filho et al., 2006).

1.2.
Limitation of Conventional Measurement Approaches

Current quantitative design assessment approaches (e.g. Chidamber &

Kemerer, 1994; Briand et al., 1993; Lung & Kalaichelvan, 1998; Martin, 1997)

usually rely on conventional abstractions such as component (or module) and its

interfaces in order to undertake the measurements. Based on these abstractions,

they define and use metrics for quantifying attributes such as coupling between

components, component cohesion, interface complexity, and so forth. Figure 1

depicts an architecture that will serve as a running example throughout this thesis,

and as an illustration for the limitations of conventional design metrics. It shows a

partial, simplified UML 2.0 (OMG, 2005) representation of the component-and-

connector view (Bass et al., 2003) of the architecture description of a real Web-

based information system, called Health Watcher (Soares et al., 2002). The design

is structured mainly following the layer architectural style (Buschmann et al.,

1996). Further information about the Health Watcher system is given in Section

7.3.

In an architecture specification, a concern is addressed (or realized) by a

number of architecture elements, such as components, interfaces and operations.

The gray boxes in Figure 1 represent the concerns addressed by the Health

Watcher architecture elements. For instance, the business concern is addressed by

the Business_Rules component and its interfaces, except the useTransaction

interface, which addresses the persistence concern. Persistence is also an

architectural concern in Health Watcher architecture which is realized by:

• the Data_Manager and Transaction_Control components,

• the useTransaction required interface of the Business_Rules component,

and

• the operations transactionExceptionEvent and repositoryExceptionEvent

that represent events raised or captured in a number of interfaces, such as

savingService.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 28

The exception handling concern is reified by the operations

transactionExceptionalEvent, repositoryExceptionalEvent and

communicationExceptionalEvent. In the light of this example, the next

subsections discuss the limitations of current architecture metrics.

TRANSACTION
CONTROL

GUI_ELEMENTS

DISTRIBUTION_MANAGER

BUSINESS_RULES

DATA_MANAGER

requestFacade

factoryFacade

saveEntity

distributedSaving
Service

requestDistributed
Facade

getFacade

saveDistributed
Entity

saving
Service

use
Transaction

transService

initPersistence

initPersistence
Service

saveInfo

savingInfoService

distributeSavingService
{

save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();
communicationExceptionalEvent();

}

savingService
{
save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();

}

Legend:

component
provided interface
required interface

Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S

G

D

E
E

E
P

P
D

B

B

P P

P

D

E P
E P

Figure 1: Architecture of the Health Watcher system

1.2.1.
Inaccuracy on Identifying Non-localized Concerns

When choosing certain architecture abstractions, styles and mechanisms for

decomposition, architects may not modularize some concerns. These concerns are

not satisfactorily captured in separate modular units in the architecture description

and, as a consequence, are not localized within components with well defined

interfaces. The architecture presented in Figure 1 shows that the exception

handling concern is partially addressed by abnormal events, such as

transactionExceptionalEvent and repositoryExceptionalEvent, exposed in a

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 29

number of interfaces of the components. In this system, it is important to well

modularize the exception handling strategies because they are similarly applied

over several operations defined by the system architecture.

Conventional architecture metrics are not able to highlight that the exception

handling concern has a wide impact on several interfaces. The main problem is

that they do not rely on the identification of the architectural elements related to

each concern, thereby causing a number of false negatives in the architecture

assessment process. This is because typical architecture metrics are not able to

explicitly capture this kind of modularity-related drawback as, for instance,

exception handling is an architectural property typically diffused all over the

architecture elements. As a result, existing metrics are often inaccurate to support

the identification of non-localized architectural concerns.

1.2.2.
Inaccuracy on Identifying Dependence between Concerns

The dependence between system concerns is a pivotal information for

software architects in order to support design change management. Changes on a

concern may impact concerns that depend on it. However, current coupling

metrics are inaccurate to identify architectural inter-concern dependencies.

Coupling architecture metrics quantify the dependence between components, thus

only assess the dependence between primary concerns modularized within

components.

Figure 1 shows that the Business_Rules component depends on two other

components, namely Transaction_Control and Data_Manager. One component,

the Distribution_Manager, depends on it. However, concerns which are not

entirely modularized by the architecture abstractions do not have modular

boundaries, in the sense that their boundaries are not well defined by component

interfaces. Hence the dependence between such non-modularized concerns or

even between non-modularized and modularized concerns cannot be measured by

traditional measures. Therefore, these metrics cannot support the assessment of

the impact of non-modularized concerns on other architectural concerns. Figure 1

shows that the distribution concern depends on the persistence concern because

the Distribution_Manager component includes operations representing

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 30

persistence-related exceptional events, which are not modularized by any

component. Moreover, the exception handling concern interacts with the

persistence concern because the transactionExceptionEvent and

repositoryExceptionEvent operations are related to both concerns.

1.2.3.
Inaccuracy on Identifying Instabilities

Conventional metrics are also inaccurate to identify potential unstable

architecture elements. A design element is typically unstable if it is influenced by

a high number of concerns. This means that changes related to several concerns

impact on that design element (Greenwood et al., 2007a; Figueiredo et al., 2008b;

Eaddy et al., 2008a). Architecture stability is conventionally measured by the

dependence between components (Martin, 1997). A component that depends upon

no other component is considered to be stable, as changes in any other

components are unlikely to be propagated to it and cause it to change. Therefore,

current architecture metrics evaluate the stability of a component by measuring its

coupling with other components (Martin, 1997).

Figure 1 shows that the Distribution_Manager component depends upon the

Business_Rules component, thus changes in the latter can be propagated to the

former. However, since some concerns are not totally modularized within

components but cut across several components, the stability of a component has

also to do with the number of concerns that affect it. The more concerns affect a

component the more unstable that component is, because it can be changed due to

changes related to those concerns. Figure 1 shows that the Distribution_Manager

component is affected by the exception handling and persistence concerns, once

its interface encompasses exceptional events related to persistence – the

transactionExceptionEvent and repositoryExceptionEvent operations. This same

reasoning is also valid for interface stability: the more concerns affect an interface

the more unstable that interface is, because it can be modified due to changes

related to those concerns. Since the current metrics do not take into account the

number of concerns that affect the architecture elements, they are not able to

capture this dimension of architecture stability.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 31

1.2.4.
The Tyranny of Dominant Modularity Attributes

Software architecture measurement also suffers from what we call the

tyranny of the dominant architectural modularity principles. The fact that the

assessment of certain principles, such as low coupling and narrow interfaces, are

overemphasized, and other equally important design principles, such as separation

of concerns, have been neglected in architecture and detailed design measurement

processes. This hampers modularity design assessment because it prevents the

understanding of how the separation of certain concerns influence other

modularity attributes. For instance, there are cases in which high coupling or

large interfaces are caused by inadequate separation of concerns.

As shown in Figure 1, the exception handling concern affects the

distributedSavingService and savingService interfaces, as they have to expose

exceptional events. The operations representing these events contribute to increase

the size of those interfaces. Even though the traditional metrics can provide

information about the interface size, they do not support the architects to reason

about the fact that the exception handling concern is the main contributor for that

complexity. Hence, the identification of the impact of architectural concerns on

traditional attributes is hindered.

1.3.
Proposed Solution

The goal of this work is to develop techniques that improve the quantitative

assessment of software design modularity by promoting the concept of concern as

a modularity measurement abstraction. In this context, the central focus of this

work is to define a measurement approach targeted at complementing

conventional modularity-related metrics by explicitly relying on concern-based

metrics. A complementary goal of this work is to define such approach in a

manner that makes it useful for assessing modularity of aspect-oriented software

designs. This is because, although the aspect-oriented paradigm promises superior

modularization of concerns, the inadequate use of its abstractions and mechanisms

may hinder design modularity even more (Section 1.1).

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 32

 In order to reach these goals we defined a concern-sensitive measurement

approach for assessing design modularity. The proposed approach aims at

supporting the software engineers to: (i) anticipate modularity problems caused by

architecturally-relevant concerns, (ii) detect detailed design flaws caused by the

inadequate modularization of key concerns, and (iii) compare aspect-oriented and

conventional alternatives of design solutions with respect to their ability to

modularize distinct sets of concerns.

Our approach relies on evaluating the modularization of a system’s concerns

from architectural to detailed design. Therefore, it includes two suites of metrics:

one defined upon architectural design abstractions and the other defined upon

detailed design abstractions. In order to cope with each of the conventional

metrics’ limitations depicted in Section 1.2, both suites comprise metrics for

quantifying: (i) a concern’s degree of scattering over design elements, (ii)

dependence between non-localized concerns in terms of shared design elements,

(iii) cohesion based on the amount of concerns addressed by a component, (iv) the

contribution of a concern to the degree of coupling of a component, and (v) the

contribution of a concern to the interface size of a component. In addition, since

the interpretation of the detailed design metrics is fine-grained, we developed a

suite of concern-driven heuristics rules. These rules combine the results of

different metrics and enable the comparison of these results against configurable

threshold values in order to support the identification of potential design flaws.

In order to consider concern as an abstraction in the measurement process,

there is a need to explicitly document the concerns in the design. Therefore, our

approach also includes a notation and a tool to support the architect with the

documentation of the driving architectural concerns. Using this notation, the

architect can assign every architecture element (components, interfaces, and

operations) to one or more concerns. Also, our approach evaluates how a

particular concern realization affects traditional attributes such as coupling

between components and interface complexity. Hence it includes metrics for

assessing these attributes.

In summary, the proposed concern-driven measurement approach is

composed by: (i) a suite of concern-driven architectural metrics, (ii) a suite of

concern-driven detailed design metrics, (iii) a suite of concern-driven design

heuristic rules, (iv) the notion of concern templates as a notation for documenting

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 33

the concern-to-design mapping, and (v) a concern-oriented measurement tool,

called COMET.

The concern-driven architectural metrics are defined upon the concern

abstraction. These metrics allow the identification of architectural design flaws

and degeneration caused by the poor modularization of architecturally-relevant

concerns, and the comparison of alternatives of architecture design solutions in

terms of how well architecturally-relevant concerns are modularized. They can be

applied to the architecture description of systems, more specifically to component-

and-connector views (Clements et al., 2003). They can be applied to all types of

software architecture, including aspect-oriented software architectures.

The concern-driven detailed design metrics are, as the architectural metrics,

uniformly defined upon the concern abstraction. They can be applied either to

object-oriented or aspect-oriented design, or to compare both designs. A number

of the metrics that constitute our detailed design metrics suite were proposed in

previous studies (Sant’Anna et al, 2003, 2004; Garcia et al, 2006b, Cacho et al.,

2006a). The contribution of this thesis is the extension of the existing set of

metrics. This extension focuses on the definition of metrics for quantifying the

contribution of certain concerns on the coupling and size of modules in detailed

design, such as classes and aspects.

The concern-driven design heuristic rules are defined based on the proposed

concern-driven detailed design metrics. A design heuristic rule is a composed

logical condition based on metrics by which design fragments presenting specific

problems can be detected. The proposed heuristics rules support the interpretation

of the concern-driven detailed design metrics by pointing out design fragments

that are negatively affected by the poor modularization of concerns.

The notion of concern templates is a notation for documenting architecture

elements related to each concern considered in the measurement process. Concern

templates, as well as concern metrics, are paradigm agnostic in the sense that they

can be applied to designs structured according to different software decomposition

paradigms. The Concern-Oriented Measurement Tool (COMET) is a tool that

supports the concern-driven measurement at the architectural level. COMET

supports: (i) the importation or definition of the architecture description of a

system, (ii) the assignment of concerns to design elements, and (iii) the

application of the concern-driven architectural metrics.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 34

Each component of the proposed approach is viewed as an original

contribution of this work. These contributions have been partially published in

one journal paper (Sant’Anna et al., 2008), two conference papers (Sant’Anna et

al., 2006, 2007b), and an international workshop paper (Sant’Anna et al., 2007a).

In addition, some of the proposed metrics have been used by other research

groups in the context of a controlled experiment (Eaddy et al., 2008a).

1.4.
Empirical Evaluation

A series of empirical studies was undertaken in order to evaluate the

proposed concern-driven measurement approach. The main goal of these studies

was to evaluate the usefulness, applicability and effectiveness of our concern-

driven metrics and heuristic rules on the assessment of modularity of software

architecture and design, in particular aspect-oriented design. The studies aim at

investigating how useful the approach is for: (i) comparing the modularity of

aspect-oriented and conventional software design, (ii) assessing how architecture

modularity is affected along the system evolution, and (iii) detecting specific

design flaws.

Three studies were undertaken in order to evaluate the architectural metrics

(Section 7.2, Section 7.3 and Section 7.4). Four different systems were involved

in these studies. The concern-driven architectural metrics were used to perform

modularity comparisons between conventional and aspect-oriented architecture of

the systems. One study was undertaken to evaluate the applicability and accuracy

of the design heuristic rules in order to detect flaws in both object-oriented and

aspect-oriented designs. Six systems were used in this study (Section 8.1). Finally,

a study was carried out to compare the effectiveness of conventional and concern-

driven detailed design metrics on the identification of specific design flaws

(Section 8.2). The empirical studies are also viewed as original contributions of

this thesis.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 35

1.5.
Thesis Outline

The reminder of this thesis is organized as follows. Chapter 2 defines

modularity and describes existing conventional metrics for assessing both high-

level and detailed design modularity. Chapter 3 introduces the aspect-oriented

software development paradigm as well as presents recent works on aspect-

oriented architecture and aspect-oriented metrics. Chapter 4 defines the suite of

concern-driven architectural metrics. In addition, it compares the proposed metrics

with existing concern-oriented metrics in the light of a measurement framework

specifically dedicated to concern-sensitive metrics (Figueiredo et al., 2008a).

Chapter 5 focuses on detailed design assessment. It defines the suite of

detailed design metrics and heuristic rules. Chapter 6 describes both COMET, the

tool that supports the concern-driven measurement at the architecture level, and

the notion of concern templates. Chapter 7 describes and discusses the results of

three empirical studies for evaluating the proposed architectural metrics. Chapter

8 discusses the results of studies for evaluating the detailed design metrics and

heuristic rules. Chapter 9 draws the conclusions that tie together the claims and

contributions of the thesis. Chapter 9 also discusses ongoing and future work.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

