
 48

3
Aspect-Oriented Software Development

As pointed out in the first chapter, this work is going to tackle the issue of

using concern-driven measurement in order to assess the modularity of aspect-

oriented design. The goal of this chapter is, therefore, to present the concepts of

aspect-oriented software development (Filman et al., 2005). During the rest of this

thesis we will refer to the concepts introduced here.

This chapter is structured in three parts. The first part introduces aspect-

oriented programming and key abstractions and mechanisms that constitute an

aspect-oriented detailed design. The second part concentrates on aspect-oriented

software architecture, as our approach targets the assessment of aspect-oriented

architectural design. The last part describes existing metrics for conventionally

assessing aspect-oriented design modularity. It complements Chapter 2, with a

discussion of modularity metrics specific to aspect-oriented design.

3.1.
Aspect-Oriented Programming

Separation of concerns is a fundamental principle that addresses the

limitations of human cognition for dealing with complexity. It advocates that to

master complexity, one has to deal with one important issue (or concern) at a time

(Dijkstra, 1976). In software engineering, the principle of separation of concerns

is usually related to system decomposition and modularization (Parnas, 1972):

complex software systems should be decomposed into smaller, clearly separated

modular units, each dealing with a single concern. The expected benefits are

improved comprehensibility and increase on the potential for evolution and reuse

in complex software systems.

In software development, the achievement of separation of concerns

depends largely on the suitability of abstractions and compositions mechanisms of

languages, methods and tools used throughout the software lifecycle. Classes,

objects, and methods are examples of classical abstractions in object-oriented

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 49

software engineering. For instance, a simple concern can be modularized as a

class or as a single method. Inheritance and polymorphism are examples of

mechanisms that enable modularization and composition of software concerns.

However, object-orientation has some limitations for dealing with concerns

that address requirements involving global constraints and systemic properties,

such as synchronization, persistence, error handling, and logging mechanisms,

among many others. These concerns have been called crosscutting concerns since

they naturally crosscut the boundaries of modular units that implement other

concerns. Without proper means for separation and modularization, crosscutting

concerns tend to be scattered over a number of modular units and tangled up with

other concerns. The natural consequences are lower cohesion and stronger

coupling between modular units, reduced comprehensibility, evolvability and

reusability of code artifacts.

Aspect-Oriented Programming (AOP) (Kiczales et al., 1997) is an emerging

technology that supports a new flavor of separation of concerns at the source code

level. It introduces new modularization abstractions and composition mechanisms

to improve separation of crosscutting concerns at the implementation level. AOP

promotes a new modular unit, called aspect, for separating crosscutting concerns

and provides new mechanisms for composing aspects with other modular units at

well-defined points called join points. In the following we briefly describe the

main aspect-oriented abstractions and mechanisms. Then we illustrate the use of

AOP in the light of an example in AspectJ (The AspectJ Team, 2007; Kickzales et

al., 2001), the most well-known AOP language.

Aspects

Aspect is the term used to denote the abstraction that aims to support

improved isolation of crosscutting concerns. Aspects are modular units of

crosscutting concerns that are associated with a set of classes or objects. An aspect

can affect, or crosscut, one or more classes and/or objects in different ways.

Aspect-oriented system designs are decomposed into classes and aspects; aspects

modularize crosscutting concerns and classes modularize non-crosscutting

concerns. In addition to conventional attributes and methods, an aspect includes

pointcuts and pieces of advice as described bellow.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 50

Join Points and Pointcuts

Essential to the process of composing aspects and classes is the concept of

join points, the elements that specify how classes and aspects are related. Join

points are well-defined points in the dynamic execution of a system. Examples of

join points are method calls, method executions, attributes sets and reads, and

object initialization. Each aspect defines one or more first-order logic expressions,

called pointcut expressions (or just pointcuts), to select the join points that will be

affected by the aspect’s crosscutting behavior.

Advice

When program execution reaches a join point selected by some pointcut

expression, a body of code, called advice, can be executed before, after or around

it. Advice is a special method-like construct attached to pointcuts. There are

different kinds of advice: (i) a before advice runs whenever a join point is reached

and before the actual computation proceeds, (ii) an after advice runs after the

computation under the join point finishes, i.e. after the method body has run, and

just before control is returned to the caller, and (iii) an around advice runs

whenever a join point is reached, and has explicit control whether and when the

computation under the join point is allowed to run at all.

Currently, AspectJ (The AspectJ Team, 2007; Kickzales et al., 2001) is the

most well-known general-purpose language for AOP. It is an extension to the Java

programming language. The aforementioned concepts – aspects, pointcuts, join

points, advice – constitute a common standard vocabulary for AOP adopted from

AspectJ (The AspectJ Team, 2007). Additionally, aspects in AspectJ can provide

intertype declarations, which are attributes and methods that will be inserted into

classes.

Figure 3 shows an example of an aspect obtained in the AspectJ

Programming Guide (The AspectJ Team, 2007). The FaultHandler aspect consists

of an inter-type declaration which introduces an attribute in the Server class (line

03), two conventional methods (lines 05-07 and 08-10), a pointcut (line 12) and

two pieces of advice (lines 14-16 and 17-20). This covers the basics of what

aspects can contain. The pointcut, named services, defines as join points the call

to any public method of objects of type Server. This is specified by the clausule

call(public * * (..)). It also allows any piece of advice using the services pointcut to

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 51

access the Server object whose method is being called. This is specified by the

clausule target(s).

The piece of advice in lines 14-16 specifies that the piece of code in line 15

is executed when instances of the Server class have their public methods called,

as specified by the pointcut services. More specifically, it runs when those calls

are made, just before the corresponding methods are executed. The piece of

advice in lines 17-20 defines another piece of code that is also executed on the

services pointcut. However, in this case, the piece of code is executed after the

called method throw exception of type FaultException.

01 aspect FaultHandler {
02
03 private boolean Server.disabled = false;
04
05 private void reportFault() {
06 System.out.println(“Failure! Please fix it!.”);
07 }
08 public static void fixServer(Server s) {
09 s.disabled = false;
10 }
11
12 pointcut services(Server s): target(s) && call(public * * (..));
13
14 before(Server s): services(s) {
15 if (s.disabled) throw new DisabledException();
16 }
17 after(Server s) throwing (FaultException e): services(s) {
18 s.disabled = true;
19 reportFault();
20 }
21 }

Figure 3: Example of an aspect in AspectJ

Figure 4 presents a didactic example that shows the difference between Java

and AspectJ implementations of the same program (The AspectJ Team, 2007). It

shows the code of a simple program to manage graphical elements. The Java

solution (left side of Figure 4) encompasses the classes Point, Line and Display

(the latter is not shown in the figure). The AspectJ implementation (right side of

Figure 4) comprises the same classes plus the DisplayUpdating aspect. This

example shows that the method update of the class Display must be called after

every call to methods setX and setY of the class Point and methods setP1 and

setP2 of the class Line. In the Java implementation, the call to Display.update is

spread over the four methods since it is explicitly done at the end of each of them

(lines 9, 13, 25 and 19). In the AspectJ solution, this call is localized only in the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 52

DisplayUpdating aspect (line 37) and is executed when the join points defined by

the move pointcut (lines 30-34) are reached.

01 class Point {
02 private int x = 0, y = 0;
03
04 int getX() { return x; }
05 int getY() { return y; }
06
07 void setX(int x) {
08 this.x = x;
09 Display.update();
10 }
11 void setY(int y) {
12 this.y = y;
13 Display.update();
14 }
15 }
16
17 class Line {
18 private Point p1, p2;
19
20 Point getP1() { return p1; }
21 Point getP2() { return p2; }
22
23 void setP1(Point p1) {
24 this.p1 = p1;
25 Display.update();
26 }
27 void setP2(Point p2) {
28 this.p2 = p2;
29 Display.update();
30 }
31 }

01 class Point {
02 private int x = 0, y = 0;
03
04 int getX() { return x; }
05 int getY() { return y; }
06
07 void setX(int x) {
08 this.x = x;
09 }
10 void setY(int y) {
11 this.y = y;
12 }
13 }
14
15 class Line {
16 private Point p1, p2;
17
18 Point getP1() { return p1; }
19 Point getP2() { return p2; }
20
21 void setP1(Point p1) {
22 this.p1 = p1;
23 }
24 void setP2(Point p2) {
25 this.p2 = p2;
26 }
27 }
28
29 aspect DisplayUpdating {
30 pointcut move():
31 call(void Line.setP1(Point))||
32 call(void Line.setP2(Point))||
33 call(void Point.setX(int)) ||
34 call(void Point.setY(int));
35
36 after() returning: move() {
37 Display.update();
38 }
39 }

Figure 4: Java (left side) and AspectJ (right side) version of the same program.

3.2.
Aspect-Oriented Architecture Design

Aspect-oriented abstractions and related composition mechanisms have

been also discussed with the goal of supporting the separation of crosscutting

concerns in other phases of the software life cycle. In the context of software

architecture, a number of aspect-oriented architecture description languages have

been proposed to allow the representation of aspect-oriented abstractions at the

architectural design level. Architecture description languages (ADLs) are

modeling notations to support architecture-based development (Medvidovic &

Taylor, 2000). An ADL focuses on the high-level structure of the overall software

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 53

rather than the implementation details of any specific source component

(Medvidovic & Taylor, 2000).

DAOP-ADL (Pinto et al., 2003), Fractal ADL (Pessemier et al., 2004), AO-

ADL (Pinto & Fuentes, 2007) and AspectualACME (Garcia et al., 2006a) are

examples of aspect-oriented ADLs. Moreover, some graphical notations, such

AOGA (Garcia, 2004; Kulesza et al., 2004) and AO Visual Notation

(Tekinerdoğan et al., 2006) provide graphical notations for modeling aspect-

oriented component-and-connector (C&C) views (Bass et al., 2003). This section

describes existing approaches for specifying aspect-oriented architectures. Some

of these approaches are later used in our empirical studies (Chapter 7), namely

AOGA and AO Visual Notation, and supported by our measurement tool (Section

6.2), namely AO-ADL.

A C&C view (Bass et al., 2003) is an architecture view in which the

elements are components and connectors. Components are main units of

computation; connectors are the communication means between components.

Components and the connectors are attached to each other. C&C views consist of

the major executing components and how they interact. Architectural aspects (or

aspectual components) can be defined both to modularize architectural

crosscutting concerns and to separate them from other architectural components.

Architectural aspects may affect components at well-defined architectural join

points. For instance, an architectural join point can be the invocation of an

operation of some component interface.

Most aspect-oriented ADLs are motivated by the integration of existing

ADL concepts (e.g. component, interface, and connector) with new AO

abstractions (e.g. aspect, join point, pointcut and advice) in order to address the

modeling of crosscutting concerns in architecture. Navasa et al (2002) define a set

of requirements which current ADLs need to address to allow the management of

crosscutting concerns using architectural connection abstractions. The

requirements are: (i) definition of primitives to specify join points in functional

components, (ii) definition of the aspect abstraction as a special kind of

component, and (iii) specification of connectors between joinpoints and aspects.

The authors suggest the use of existing coordination models to specify the

connectors between functional components and aspects.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 54

Pinto et al (2003) propose DAOP-ADL which considers components and

aspects as first-order elements. Aspects can affect the components’ interfaces by

means of: (i) an evaluated interface which defines the operations that aspects are

able to affect, and (ii) a target event interface responsible for describing the events

that an aspect can capture. The connection between components and aspects is

supported by a set of aspect evaluation rules. They define when and how the

aspect behavior is executed.

Pessemier et al (2004) extend the Fractal ADL with aspect components.

Aspect components are responsible for specifying existing crosscutting concerns

in the software architecture. Each aspect component can affect components by

means of a special interception interface. Two kinds of connections between

components and aspect components are offered: (i) a direct crosscut connection by

declaring the component references, and (ii) a crosscut connection using pointcut

expressions based on component names, interface names and service names.

AspectualACME (Garcia et al., 2006a) is a simple and seamless extension

of the ACME ADL (Garlan et al., 1997) to support the modular representation of

architectural aspects and their multiple composition forms. AspectualACME

promotes a natural blending of aspects and architectural abstractions by

employing a special kind of architectural connector, called Aspectual Connector,

to encapsulate aspect-component connection details.

Pinto & Fuentes (2007) proposed a XML-based aspect-oriented ADL called

AO-ADL. The structural organization of AO-ADL is based on the fact that the

main difference of architectural crosscutting and non-crosscutting concerns is in

the role they play in a particular composition binding and not in the internal

behavior itself. Therefore, differently from the previously mentioned ADLs, AO-

ADL does not include a new element to model aspects. Components in AO-ADL

model either crosscutting or non-crosscutting behavior. This is called a symmetric

approach. Thus, a component is considered an aspect when it participates in an

aspectual interaction. In this context, another contribution of AO-ADL is the

extension of the semantic of conventional connectors to represent the crosscutting

effect of “aspectual” components. This means that AO-ADL connectors provide

support to describe not only typical communication as in traditional ADLs, but

also crosscutting influence among components.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 55

The aforementioned aspect-oriented ADLs can be classified in two

categories: symmetric and asymmetric approaches. The asymmetric ADLs, such

as DAOP-ADL (Pinto et al., 2003) and Fractal ADL (Pessemier et al., 2004),

include a special abstraction to represent “aspectual components” at the

architecture description. Aspectual components comprise special kinds of

interfaces to specify the points at the architecture affected by it. We could say that

the pointcuts are specified in the interfaces, such as the DAOP-ADL “evaluated

interface”.

On the other hand, symmetric aspect-oriented ADLs, such as AO-ADL

(Pinto & Fuentes, 2007) and AspectualACME (Garcia et al., 2006a) do not define

any special kind of component to model aspects. Instead, crosscutting and non-

crosscutting concerns are captured by conventional components without any

special kind of interface. These ADLs rely on a special kind of connector to

represent crosscutting relationship between components playing the role of

aspects and the other components. In this case, we could say that the pointcuts are

specified in the connectors.

In our empirical studies (Chapter 7), we used graphical notations to

represent the architectures under assessment. In particular, we used an asymmetric

notation provided by AOGA (Garcia, 2004; Kulesza et al., 2004) in the first study

and a symmetric notation, called AO Visual Notation (Tekinerdoğan et al., 2006),

in the last two studies. In the following sections, we describe these notations.

3.2.1.
AOGA

AOGA is a graphical notation for describing C&C views of aspect-oriented

architectures. In AOGA, the architect has modeling support to distinguish

between normal components and aspectual components. Aspectual components

are aspects at the architectural level. An aspectual component is represented like a

UML 2.0 component (OMG, 2005) with a diamond on the top of it, as shown in

Figure 5. Each aspectual component can be related to more than one conventional

or aspectual component, representing its crosscutting nature.

In AOGA models, interfaces are attached to the architectural components.

The interfaces are categorized in three groups: provided interfaces, required

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 56

interfaces and crosscutting interfaces. Figure 5 illustrates AOGA notation for

architectural components and interfaces. Provided and required interfaces are

represented as defined in UML 2.0 (OMG, 2005). Crosscutting interfaces are

represented as small gray circles. Each interface has a name, which is placed next

to it. Each architectural component has one or more interfaces.

AspectB

AspectA

ComponentA

ComponentB

Legend:
conventional component

provided interface
required interface

aspectual component

crosscuts relationship

crosscutting interface

CI2

CI1

PI1 PI2

RI1 RI2

Figure 5: AOGA architecture elements

Crosscutting interfaces specify which architectural components are affected

by aspectual components. However, they do not declare how the components are

affected. A crosscutting interface is different from a provided interface. The latter

only provides services to other components. Besides providing services,

crosscutting interfaces also specify when an architectural aspect affects other

architectural components. An aspectual component conforms to a set of

crosscutting interfaces. The operations declared in an interface represent the

services provided by it.

A crosscutting interface can be attached to either internal elements of the

architectural components or other interfaces by means of crosscuts relationships.

The first case means that the architectural aspect directly affects the internal

structure or dynamic behavior of the target component. The second case means

that the aspectual component affects the operations defined by other interfaces.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 57

3.2.2.
AO Visual Notation

The AO Visual Notation (Tekinerdoğan et al., 2006) extends the set of

architecturally-relevant abstractions and respective graphical elements of UML

2.0 (OMG, 2005), such as components, interfaces, and connectors. AO Visual

Notation is a symmetric approach, thus, both crosscutting and non-crosscutting

concerns are represented by components. The distinction is made at the connector

level.

The AO Visual Notation provides support for architecture-level crosscutting

compositions by means of the notion of aspectual connectors. The authors claim

that conventional connector types, available in UML 2.0, are not appropriate to

capture the notion of crosscutting compositions. The reason is that conventional

connectors must only be defined from a required interface to a provided interface.

This rule violates a typical composition property of crosscutting collaborations,

which specifies that an aspectual component and affected components can be

linked through their both provided interfaces (Garcia et al., 2006a; Kulesza et al.,

2004).

Figure 6 shows how aspectual connectors are represented in the AO Visual

Notation. The use of the stereotype is optional. The aspectual connector is a

component-like graphical notation with elements to specify the “crosscutting

collaboration” between the involved architectural elements.

Figure 6: AO Visual Notation: Aspectual Connectors

Aspectual connectors (Figure 6) are basically formed by base and

crosscutting roles. These roles consist of two types of connector’s interfaces, and

define the role the connected components are playing in a crosscutting

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 58

composition. A crosscutting role defines which component is playing the role of

“aspect” in the architecture decomposition. Crosscutting roles are represented by

triangles “cutting across” the connector boundaries. Base roles are associated with

different join points affected by the components associated with the crosscutting

roles. They are represented by small rectangles in the opposite extreme of an

aspectual connector (Figure 6).

Crosscutting relationships define how the connectors and components are

attached. They are equivalent to attachments in conventional ADLs, such as

ACME (Garlan et al., 1997). Their graphical representation is a dashed line. The

dashed lines associate crosscutting or base roles with component interfaces. The

set of join points of interest in a certain crosscutting composition are

conventionally indicated by visual (and sometimes, textual) elements associated

with a crosscutting relationship. The three interfaces of the component on the left

of Figure 6 are associated with crosscutting relationships. These three interfaces

are join points affected by the component on the right of the figure, which plays

the role of an aspect.

When a component interface is touched by a line, it means that one or more

of the interface operations are affected by an aspectual connector. Whenever it is

required, a sequencing operator can be associated with a crosscutting relationship.

It specifies when or how the connector is affecting the operation(s). The notation

includes graphical elements for three sequencing operators: before, after, and

around (Figure 6). For the sake of scalability, a simpler notation for aspectual

connectors is available in case connector internals are not relevant (Figure 7).

<<component>>

<<component>>

Aspectual Connector
(simpler notation)

Figure 7: Simpler notation for aspectual connectors

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 59

3.3.
Aspect-Oriented Metrics

Aspect-oriented software development and AspectJ, in particular, have

received an increasing amount of attention by the measurement community.

Metrics tailored to be applied to aspect-oriented abstractions have been proposed.

In fact, most of these metrics rest upon AspectJ mechanisms. While object-

oriented metrics are defined in terms of classes, methods and attributes, aspect-

oriented metrics have been defined in terms of aspects, advice, pointcuts and

intertype declarations. Aspect-oriented programs also include classes, methods

and attributes, thus the definition of aspect-oriented metrics also consider these

abstractions.

Most of the aspect-oriented metrics for quantifying modularity-related

attributes, such as coupling and cohesion, are extensions of existing object-

oriented metrics (Ceccato & Tonella, 2004; Sant’Anna et al., 2003; Zhao, 2002,

2004; Zhao & Xu, 2004). These metrics can be considered as conventional as

object-oriented metrics in the sense that they are defined upon module-like

abstractions, such as classes and aspects. Therefore, existing aspect-oriented

metrics suffer from the same limitations of existing object-oriented metrics – they

are not calibrated by the system’s concerns (Section 1.2). In the following

subsections, we briefly describe three relevant representative suites of aspect-

oriented metrics, in order to show the new dimensions of conventional modularity

measurement that are imposed by aspect-oriented design. The last subsection

(Section 3.3.4) discusses a new type of connection considered by aspect-oriented

coupling metrics.

3.3.1.
Metrics by Ceccato & Tonella

Ceccato & Tonella (2004) define five coupling metrics for aspect-oriented

software: Coupling on Advice Execution (CAE), Coupling on Intercepted

Modules (CIM), Coupling on Method Call (CMC), Coupling on Field Access

(CFA), and Crosscutting Degree of an Aspect (CDA). CAE is defined as the

number of aspects containing advice that is possibly triggered by the execution of

operations in a given class or aspect. CIM is defined as the number of classes or

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 60

aspects explicitly named in the pointcuts of a given aspect. CMC is defined as the

number of classes or aspects declaring methods that are possibly called by a given

class or aspect. CFA is defined as the number of classes or aspects declaring fields

that are accessed by a given class or aspect. CDA is defined as the number of

classes affected by the pointcuts and inter-type declarations of a given aspect.

Ceccato & Tonella (2004) define one cohesion metric: Lack of Cohesion in

Operations (LCO). This metric is a direct adaptation of the Chidamber &

Kemerer’s LCOM metric (Section 2.4). It is defined as the number of pairs of

operations (methods or pieces of advice) working on different class fields minus

pairs of operations working on common fields. Response for a Module (RFM) is

another metrics defined by Ceccato & Tonella. This metric is an adaptation of

Chidamber & Kemerer’s RFC metric (Section 2.4). In addition, the RFM now

also includes aspects and take into account the pieces of advice that might be

executed due to pointcuts.

3.3.2.
Metrics by Sant’Anna et al.

Sant’Anna et al. (2003) define coupling and cohesion metrics for aspect-

oriented software1. Coupling between Components (CBC) is an extension of

Chidamber & Kemerer’s Coupling Between Object Classes (CBO) metric

(Section 2.4). A component is defined as a class or an aspect. Thus, CBC is

defined for a class or an aspect as the number of other classes or aspects to which

it is coupled. Their definition mentions pointcuts as one of the considered

coupling dimension between classes and aspects. They proposed the Lack of

Cohesion in Operations (LCOO) metric. It measures the amount of advice/method

pairs that do not access the same instance variable and is thus an extension of the

LCOM metric by Chidamber & Kemerer (Section 2.4).

1 These metrics are not contribution of this thesis. They were proposed in the context of

Sant’Anna’s master dissertation.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 61

3.3.3.
Metrics by Zhao and Xu

Zhao and Xu’s metrics (Zhao, 2002, 2004; Zhao & Xu, 2004) are based on a

dependence model for aspect-oriented software that consists of a group of

dependence graphs. The coupling metrics are: Attribute-Class Dependence,

Module-Class (member-class) Dependence, Module-Method (member-method)

Dependence, and Aspect-Inheritance Dependence. The Attribute-Class

Dependence metric relates to the dependence between attributes of an aspect and

classes. The Module-Class (member-class) Dependence measure relates to the

dependence between members of an aspect and classes. According to their

definition of members of an aspect, this measure can be subdivided into advice-

class, intertype-class, method-class and the pointcut-class dependence measure.

The Module-Method (member-method) Dependence measure relates to the

dependence between members of an aspect and methods of a class and can be

subdivided into four dimensions: advice-method, intertype-method, method-

method and pointcut-method dependence.

3.3.4.Connection between Aspects and Classes

In Section 2.4, we listed the possible types of connections in object-oriented

coupling metrics identified by Briand et al. (1999). The aspect-oriented metrics

also take into account all those types of connections, since an aspect-oriented

program consists of classes and aspects. However, new types of connections are

needed to compute aspect-oriented metrics. Based on the aforementioned suites of

aspect-oriented metrics, we can observe that there is a very relevant new type of

connection between aspects and classes which could be described as “an aspect a

affects a class c by means of a pointcut”. At the architecture design we could

define this coupling dimension as “an aspectual component a affects a component

c by means of a crosscutting relationship”. Our suite of architectural metrics also

includes coupling metrics. Our assessment approach also targets aspect-oriented

design, thus our coupling between component metrics (Section 4.3.6) take into

account this new type of connection between aspectual components and

conventional components.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

