
 62

4
Concern-Driven Metrics

In the first chapter we identified a set of limitations that hinders the

evaluation of modularity by means of conventional metrics. These limitations are

caused by the fact that the metrics currently used for evaluating design modularity

mainly rely on abstractions, such as components, classes, and aspects, derived

from the syntax of either programming or design specification languages. As a

consequence, existing measurement approaches disregard the concerns that drive

the system design.

This chapter and Chapter 5 present our proposed measurement approach for

closing this gap between quantitative modularity assessment and the concerns that

drive the design. The approach is based on concern-driven metrics for assessing

architecture and detailed design. This chapter defines our suite of concern-driven

architecture metrics. It starts introducing the notion of concerns and the categories

of concerns we consider in our approach (Section 4.1). Section 4.2 depicts the

model of concern representation upon which the metrics are defined. Section 4.3

defines our suite of concern-driven architecture metrics. Section 4.4 complements

the definition of the metrics in the light of a theoretical measurement framework

tailored for concern-oriented metrics. Finally, Section 4.5 discusses the interplay

of our proposal and related work.

4.1.
Classification of Software Concerns

The term concern has been loosely defined as any property or part of the

problem that stakeholders of a software system want to consider as a conceptual

unit and treat in a modular way (Elrad et al., 2001; Tarr et al., 1999; Robillard &

Murphy, 2007). Concerns can range from high-level notions like security and

quality of service to low-level notions such as caching and buffering (Elrad et al.,

2001). They can be functional, like business rules or features, or non-functional,

such as synchronization and transaction management (Elrad et al., 2001). Typical

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 63

concerns in software systems capture (Elrad et al., 2001; Robillard & Murphy

2007; Hannemann & Kickzales, 2002):

• features from a feature list of a product line;

• functional requirements from a requirements specification document;

• non-functional requirements from a requirements specification document;

• roles from architectural patterns (e.g. the view role from the model-view-

controller pattern (Buschmann et al. 1996));

• roles from design patterns (e.g. the subject role from the Observer design

pattern (Gama et al., 1995)); and

• implementation mechanisms (e.g. caching).

In fact, this list is not exhaustive. The design of a system encompasses

several concerns which come directly from the requirements specification or

emerge during the architecture or detailed design conception. In the example of

the Health Watcher architecture (Figure 8)2, there are a number of architecturally-

relevant concerns such as GUI, Business, Distribution, Persistence and Exception

Handling. As mentioned before, in a software design, a concern is realized by a

set of design elements. In an architectural design a concern can be addressed, for

instance, by components, interfaces and operations. In an aspect-oriented detailed

design, a concern can be realized by classes, aspects, methods, attributes, pieces of

advice and intertype declarations.

Our measurement approach focuses on concerns that eventually evolve into

concrete pieces of code and contribute directly to the functionality of the system.

Persistence and exception handling are examples of concerns that evolve into

pieces of code. Our metrics do not rely on concerns that influence how the system

is built but do not trace to any specific piece of code. In particular, we do not

focus on concerns that are not observable when the system executes, such as

maintainability.

2 Figure 8 is the same as Figure 1 (Section 1.2). We repeat it here to facilitate the reader to

refer to it.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 64

TRANSACTION
CONTROL

GUI_ELEMENTS

DISTRIBUTION_MANAGER

BUSINESS_RULES

DATA_MANAGER

requestFacade

factoryFacade

saveEntity

distributedSaving
Service

requestDistributed
Facade

getFacade

saveDistributed
Entity

saving
Service

use
Transaction

transService

initPersistence

initPersistence
Service

saveInfo

savingInfoService

distributeSavingService
{

save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();
communicationExceptionalEvent();

}

savingService
{
save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();

}

Legend:

component
provided interface
required interface

Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S

G

D

E
E

E
P

P
D

B

B

P P

P

D

E P
E P

Figure 8: Simplified representation of the Health Watcher software architecture

4.2.
Concern Representation

Our measurement approach is based on a concern-to-design mapping. This

means that we have two domains related to each other through a mapping

relationship. The source domain is a set of concerns and the target domain is a set

of design elements, as illustrated in Figure 9. The mapping consists of assigning a

concern to the corresponding design elements that realize it. For instance, in the

architecture of Figure 8, the persistence concern is realized by the following

elements: the Data_Manager and Transaction_Control components and their

interfaces; the useTransaction required interface; and the

transactionExceptionalEvent and repositoryExceptionalEvent operations. The last

two elements represent persistence-specific exceptional events.

A systematic concern mapping process for consistently identifying the

design elements realizing each concern is essential for the success of the proposed

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 65

measurement approach. In our empirical studies (Chapters 7 and 8), we followed a

specific guideline in order to systematically map concerns to design elements.

This guideline, which is inspired on the guidelines proposed by Eaddy et al

(2007), states that a concern should be assigned to a design element if the

complete removal of the concern requires with certainty the removal or

modification of the element. In Figure 8, for instance, the useTransaction required

interface in the Business_Rules component only encompasses three operations,

namely beginTransaction(), commitTransaction() and rollbackTransaction() (not

shown in the figure). These operations are totally dedicated to invoke transaction

control services for persisting information. Therefore, removing the persistence

concern would lead to the removal of the useTransaction interface. Thus,

according to the aforementioned guideline, the persistence concern should be

assigned to this interface. Section 7.1 describes other measures we took during our

empirical studies in order to make the concern mapping sufficiently systematic for

the goals of our studies.

Concerns
(Source)

Design Elements
(Target)

concern 1 concern 2 concern 3

Figure 9: Mapping between concerns and design elements

The notion of concern representation (or simply, concern) is, therefore,

linked to an underlying design model. The design model specifies which

information about a system design can be captured by a concern representation.

Our measurement approach aims at quantifying the modularization of concerns in

both architectural and detailed designs. Therefore, before defining how a concern

is represented, the next subsection defines the representation of architectural

design (Section 4.2.1) adopted by our approach. We left to present the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 66

representation of detailed design in Chapter 5, because it is used in the definition

of detailed design metrics, which are presented in the same chapter.

4.2.1.
Architectural Design

Our measurement approach is rooted at component-and-connector views

(Bass et al., 2003) of the system architecture. Component-and-connector views are

the models adopted by a plethora of ADLs and, more notably, by UML 2.0

(OMG, 2005). Moreover, a number of aspect-oriented ADLs have been developed

recently (Section 3.2). The examples based on the component-and-connector

views are described in this thesis using UML 2.0 (OMG, 2005). This section

defines the terminology and formalism regarding component-and-connector views

used for expressing our architectural metrics. In order to facilitate the

understanding of the definitions, an informal example of each definition is

presented based on Figure 8 and Figure 10.

Component-and-Connector View

The terminology presented here is based on the definition of component-

and-connector views presented by Bass et al (2003). However, for the sake of

simplicity, we focus only on the architectural elements needed for defining our

metrics, namely components, interfaces and operations. Our metrics suite does not

distinguish between conventional components and aspectual components, thus the

terminology does not need this distinction either.

Definition 1: Components and Interfaces. Let S be the architecture of a

system. The component-and-connector view of S consists of a set of components

C(S). C(S) includes both conventional and aspectual components. Each

component c ∈ C(S) contains a set of interfaces I(c). Each interface can be a

provided interface or a required interface. Therefore, each component c ∈ C(S)

contains a set of provided interfaces PI(c) ⊆ I(c), and a set of required interfaces

RI(c) ⊆ I(c), so that I(c) = PI(c) ∪ RI(c). Each interface i ∈ I(c) encompasses one

or more operations denoted as O(i). These operations also include events. We also

define:

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 67

(i) the set of all operations of a component c, represented as U
)(

)()(
cIi

iOcO
∈

= ,

(ii) the set of all interfaces of an architecture S, represented as U
)(

)()(
SCc

cISI
∈

= ,

(iii) the set of all operations of an architecture S, represented as U
)(

)()(
SIi

iOSO
∈

= .

Example. The Health Watcher architecture in Figure 8 consists of five

components – GUI_Elements, Distribution_Manager, Business_Rules,

Transaction_Control, and Data_Manager. The Distribution_Manager component

has a provided interface called distributedSavingService, which is connected to a

required interface of the GUI_Elements component, called saveEntity. The

distributedSavingService interface has four operations.

Component Interaction

We consider that there are two kinds of component interaction in an aspect-

oriented architecture. In the first kind, a component c invokes an operation from

another component c’. We say that c uses c’. In this case, a required interface of c

is linked to a provided interface of c’ by means of a conventional connector

(Section 3.2). In Figure 8, the GUI_Elements component uses the

Distribution_Manager component.

The second kind of interaction occurs between an aspectual component and

a component. In this kind of interaction, a provided interface of an aspectual

component c is linked to either a required or a provided interface of a component

c’ by means of an aspectual connector (Section 3.2). The aspectual component c

executes one of its operations when the component c’:

(i) invokes an operation of another component (c is linked to a required

interface of c’); or

(ii) has an operation invoked by another component (c is linked to a provided

interface of c’).

We say that c affects c’. In order to illustrate this kind of component interaction,

Figure 10 shows an aspect-oriented alternative to the Health Watcher architecture,

described based on the AOGA notation (Section 3.2.1). As in Figure 8, this is a

simplified representation.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 68

In this example, part of the persistence concern, namely the transaction

control service, is addressed by the Transaction_Control aspectual component.

The transService interface of this component is connected to the savingService

interface of the Business_Rules component by means of a crosscuts relationship

(or aspectual connector in the AO Visual Notation (Section 3.2.2)). This means

that an operation of the transService interface is executed whenever an operation

of savingService is invoked. This is an example of the “affects” interaction: the

Transaction_Control component affects the Business_Rules component.

In order to define the metrics for concern-sensitive coupling (Section 4.3.4)

and coupling between components (Section 4.3.6), it is necessary to define first

the set of components used and affected by a given component. It is also

necessary to define the set of components used by a given required interface.

GUI_ELEMENTS

BUSINESS_RULES

DATA_MANAGER

requestFacade saveEntity

getFacade
saving
Service

transService

initPersistence

initPersistence
Service

saveInfo

savingInfoService

Legend:
component
provided interface
required interface

DISTRIBUTION
MANAGER

TRANSACTION
CONTROL

exceptionService

aspectual component

crosscuts relationship

distribution
Service

Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S

crosscutting interface

G
E

D

E

P

P

E

E

E
E

B

Figure 10: Aspect-oriented design alternative of Health Watcher architecture

Definition 2: Used Components per Required Interface. We define the set of

components used by a required interface i as UC(i). Let S be the architecture of a

system, c ∈ C(S) be a component of S, and i ∈ RI(c) be a required interface of c.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 69

Then c’ ∈ UC(i) ⇔ ∃i’ ∈ PI(c’) such that i is connected to i’ by means of a

conventional connector.

Example. In Figure 8, Transaction_Control is the component used by the

useTransaction required interface.

Definition 3: Used Components per Component. We define the set of

components used by a component c as UC(c). Let S be the architecture of a

system, c ∈ C(S) be a component of S. Then U
)(

)()(
cRIi

iUCcUC
∈

= .

Example. In Figure 8, Transaction_Control and Data_Manager are the

components used by the Business_Rules component.

Definition 4: Affected Components per Component. We define the set of

components affected by a component c as AC(c). Let S be the architecture of a

system, and c ∈ C(S) be a component of S. Then c’ ∈ AC(c) ⇔ ∃i ∈ PI(c) ∧ ∃i’

∈ I(c’) such that i is connected to i’ by means of an aspectual connector.

Example. In Figure 10, Business_Rule and Data_Manager are the

components affected by the Transaction_Control component.

The definitions presented in this section are used in the definition of

architectural concern adopted in our approach (Section 4.2.2). Now, it is possible,

for instance, to define the sets of components, interfaces and operations to which a

concern is mapped. In addition, some of the definitions presented here are also

directly used in the metrics definitions (Section 4.3).

4.2.2.
Architectural Concern

With the definition of the elements of the architectural design representation

considered in our approach (Section 4.2.1), it is possible to define the notion of

architectural concern representation (or simply, architectural concern). A concern

con consists of a list of architecture elements assigned to it. These elements can be

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 70

components, interfaces or operations. An architectural element can be responsible

for realizing more than one concern, or parts of more than one concern. Therefore,

an architectural element can be assigned to more than one concern.

Definition 5: Architectural Concern. Let S be the architecture of a system,

for each c ∈ C(S), the set of concerns to which c is assigned is denoted as Con(c).

Let i ∈ I(c) be an interface of c, the set of concerns to which i is assigned is

denoted as Con(i). Let o ∈ O(i) be an operation of i, the set of concerns to which o

is assigned is denoted as Con(o). Con(S) is the set of all concerns in the

architecture and is represented as:

UU U UU
)()()(

)()()()(
SOoSCc SIi

oConiConcConSCon
∈∈ ∈

=

Let S be the architecture of a system, for each con ∈ Con(S), the set of

components assigned to con is denoted as:

)}()(|{)(cConconSCccconC ∈∧∈= .

Similarly, the set of interfaces assigned to con is denoted as:

)}()(|{)(iConconSIiiconI ∈∧∈= .

Finally, the set of operations assigned to con is denoted as:

)}()(|{)(oConconSOooconO ∈∧∈= .

Example. The gray boxes in Figure 8 represent the mapping of the concerns

to the Health Watcher architecture elements. In this case, if a component is

assigned to a concern, all the interfaces of this component are also considered

assigned to this concern, except those which are explicitly assigned to other

concerns. The following examples are obtained from the architecture of Figure 8:

Con(Business_Rules) = {business}, Con(useTransaction) = {persistence}, and

Con(repositoryExceptionalEvent) = {persistence, exception handling},

C(persistence) = {Transaction_Control, Data_Manager}, I(persistence) =

{savingInfoService, initPersistenceService, transService, useTransaction}. The

operations assigned to the persistence concern (O(persistence)) are: (i) all the

operations in the interfaces savingInfoService, initPersistenceService,

transService, useTransaction, (ii) the operations transactionExceptionalEvent and

repositoryExceptionalEvent of the interfaces savingService,

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 71

saveDistributedEntity, distributedSavingService and saveEntity, and (iii) the

repositoryExceptionalEvent of the saveInfo interface (this operation is not shown

in the figure).

Concern Interaction

Nevertheless, note that even though the main purpose of the

Business_Rules component is to address the business concern, it also includes

elements assigned to other concerns such as the useTransaction interface

(persistence concern) and exception handling operations. Note also that some

elements, such as the repositoryExceptionEvent operation, are assigned to more

than one concern (exception handling and persistence). This occurs because some

concerns are not well modularized and, as a consequence, are not totally localized

in components whose only purpose is to address them. As a result, concerns

interact to each other not only by means of the relationship between components,

but also because sometimes more than one concern is present in the same

architecture element. Some of the metrics in our approach target at assessing the

interaction between concerns. In order to define them, we first define here three

forms of concern interaction which the metrics take into account.

Definition 6: Component-level Interlacing. A concern con is interlaced at

the component level with another concern con’ if con and con’ have one or more

components in common. This situation can occur in several different ways:

(i) a component is assigned to both con and con’, or

(ii) a component is assigned to con, and at least one interface of the same

component is assigned to con’, or

(iii) a component is assigned to con, and at least one operation in any

interface of the same component is assigned to con’, or

(iv) at least one interface of a component is assigned to con, and at least

one interface of the same component is assigned to con’.

(v) at least one interface of a component is assigned to con, and at least

one operation in the same interface or in any other distinct interface of

the same component is assigned to con’, or

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 72

(vi) at least one operation in any interface of a component is assigned to

con, and at least one operation in any interface of the same component

is assigned to con’.

In order to represent that two concerns are interlaced at the component-

level, we define the Boolean function ComponentInterlaced(con, con’), where con

∈ Con(S) and con’ ∈ (Con(S) – con), as:

∨∈∈∃⇔))'(:)(()',(conCcconCcconconnterlacedComponentI

 ∨∈∈∃∈∃))'(:)(:)((conIicIiconCc

 ∨∈∈∃∈∃))'(:)(:)((conOocOoconCc

 ∨∈∈∈∃∈∃∈∃))'(':)(:)(':)(:)((conIiconIicIicIiSCc

 ∨∈∈∈∃∈∃∈∃))'(:)(:)(:)(:)((conOoconIicOocIiSCc

))'(':)(:)(':)(:)((conOoconOocOocOoSCc ∈∈∈∃∈∃∈∃ .

Example. In Figure 8, the business concern is interlaced at the component

level with the persistence concern, once the Business_Rules component is

assigned to the former, but it also has one interface (useTransaction) assigned to

the latter.

Definition 7: Interface-level Interlacing. A concern con is interlaced at the

interface level with another concern con’ if con and con’ have one or more

interfaces in common. This can happen in two manners:

(i) an interface is assigned to con, and at least one operation of the

same interface is assigned to con’, or

(ii) at least one operation of an interface is assigned to con, and at least

one operation of the same interface is assigned to con’.

In order to represent that two concerns are interlaced at the interface level,

we define the Boolean function InterfaceInterlaced(con, con’), where con ∈

Con(S) and con’ ∈ (Con(S) – con), as:

∨∈∈∃∈∃⇔))'(:)(:)(()',(conOoiOoconIiconconnterlacedInterfaceI

)).'(':)(:)(':)(:)((conOoconOoiOoiOoSIi ∈∈∈∃∈∃∈∃

Example. In the example of Figure 8, the business concern is interlaced with

the exception handling concern at the interface level as the business-related

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 73

interface savingService includes two operations assigned to the exception

handling concern.

Definition 8: Operation-level Overlapping. A concern con is overlapped at

the operation level with a concern con’ if at least one operation is assigned to both

con and con’. This interaction is different from the previous ones because here the

same element is entirely assigned to both concerns. In order to represent that two

concerns are overlapped at the operation level, we define the Boolean function

OperationOverlapped(con, con’), where con ∈ Con(S) and con’ ∈ (Con(S) – con),

as:

() ∅≠⇔)'()()',(conOconOconconverlappedOperationO I .

Example. In the architecture shown in Figure 8, the persistence concern is

overlapped with the exception handling because the repositoryExceptionalEvent

and the transactionExceptionalEvent operations are assigned to both concerns.

4.3.
Suite of Concern-Driven Architecture Metrics

This section is targeted at defining a suite of concern-driven metrics for

assessing architecture modularity. The main goal of the proposed metrics is to

support the software engineers to:

• identify architectural design flaws caused by the poor modularization of

architecturally-relevant concerns both in development and evolution

scenarios, and

• allow the comparison of alternatives of architecture design solutions in

terms of how well architecturally-relevant concerns are modularized.

To this end, our concern-driven approach complements conventional

architecture metrics by explicitly promoting concern as a measurement

abstraction. As claimed in Section 1.2, the main limitations of existing metrics

are: (i) inaccuracy on identifying non-localized concerns, (ii) inaccuracy on

identifying dependence between concerns, (iii) inaccuracy on identifying

instabilities, and (iv) overemphasized use of traditional modularity-related

attributes such coupling and cohesion.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 74

 Therefore, in order to tackle these limitations, our approach includes

metrics for quantifying: (i) concern diffusion, (ii) interaction between concerns,

(iii) concern-based cohesion, (iv) concern-sensitive coupling, and (v) concern-

sensitive interface size. For instance, some of our metrics quantify the scattering

of a concern realization over elements of an architectural design, such as

components and interfaces. The metrics suite also evaluates how a particular

concern realization affects traditional modularity-related attributes, such as

coupling, cohesion and interface complexity.

The metrics presented in this chapter focus on the evaluation of software

architectural design represented by means of specification approaches, such as

UML [OMG, 2005] or ADLs. In particular, the metrics are defined upon

abstractions and composition mechanisms of component-and-connector

architecture views (Bass et al., 2003, Clements et al., 2003). However, the metrics

definition is agnostic to specific graphical notations or ADLs. Therefore, in order

to apply the metrics, it might be necessary to adapt their definition to specific

abstractions of the architecture specification approach in use.

Before defining the architecture metrics in details, we present in Table 1 a

summary of them. It provides a catalog with brief definitions for the metrics and

their association with distinct modularity attributes they measure. The goal is to

provide the reader with a big picture of our measurement approach and also make

it easier for them to refer to the metrics’ definitions while reading the remainder

of the text.

In the following sections (Sections 4.3.1 to 4.3.6), each metric is described

in terms of: (i) an informal definition, (ii) a formal definition based on set theory,

and (iii) a simple didactic example. Also, in the preamble of each of the following

sections, we present the reasoning and assumptions that motivated the use of the

metrics in our approach. The metrics are defined in terms of the terminology and

definitions introduced by our concern representation model (Section 4.2). The

formal definition expresses the metrics consistently and unambiguously.

Moreover, in order to facilitate the understanding and use of the metrics, in

Section 4.4, we classify the metrics according to the criteria of a concern-oriented

measurement framework (Figueiredo et al., 2008a).

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 75

Attribute Metric Definition
Concern Diffusion over
Architectural
Components (CDAC)

It counts the number of architectural components
that contribute to the realization of a given concern.

Concern Diffusion over
Architectural Interfaces
(CDAI)

It counts the number of interfaces that contribute to
the realization of a given concern.

Concern
Diffusion

Concern Diffusion over
Architectural Operations
(CDAO)

It counts the number of operations that contribute to
the realization of a given concern.

Component-level
Interlacing Between
Concerns (CIBC)

It counts the number of other concerns with which a
given concern shares at least a component.

Interface-level
Interlacing Between
Concerns (IIBC)

It counts the number of other concerns with which a
given concern shares at least an interface.

Interaction
Between
Concerns

Operation-level
Overlapping Between
Concerns (OOBC)

It counts the number of other concerns with which a
given concern shares at least an operation.

Concern-
based

Cohesion

Lack of Concern-based
Cohesion (LCC)

It counts the number of concerns addressed by a
given component.

Concern-Sensitive
Coupling (CSC)

It counts the number of components used by a given
component by means of required interfaces entirely
assigned to a given concern.

Architectural Fan-in
(AFI)

It counts the number of components that use or affect
a given component. It counts the number of
components, not connections.

Coupling
Between

Components

Architectural Fan-out
(AFO)

It counts the number of components used or affected
by a given component. It counts the number of
components, not connections.

Number of Concern
Interfaces (NCI)

It counts for a given component the number of
interfaces assigned to a given concern.

Number of Interfaces
(NI)

It counts the number of interfaces of a given
component.

Interface
Complexity

Number of Operations
(NO)

It counts the number of operations in all interfaces of
a given component.

Table 1: Summary of the suite of concern-driven architectural metrics

Looking again to the Health Watcher architecture (Figure 11)3, using the

proposed metrics (Table 1) we can now quantify, for instance, the effects of the

exception handling concern in the architecture. After documenting the operations

related to the exception handling concern (e.g. transactionExceptionalEvent), we

can compute the concern-driven metrics. The results will show that the exception

handling concern is spread over several components and interfaces. Moreover, the

results of the Lack of Concern-based Cohesion metric for the GUI_Elements,

Distribution_Manager and Business_Rules components will show that there is

3 The examples given in the metrics definitions are based on the Health Watcher

architecture, thus we repeat this figure here to make it easier to the reader to refer to it.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 76

more than one concern present in each of those components. In this way, the

architect will be warned that in the Business_Rules component, for instance,

besides the business concern, there are other concerns contributing for the

complexity of the component.

4.3.1.
Metrics for Concern Diffusion

This section defines the proposed metrics for concern diffusion, namely

Concern Diffusion over Architectural Components (CDAC), Concern Diffusion

over Architectural Interfaces (CDAI), and Concern Diffusion over Architectural

Operations (CDAO). They are based on the notion of concern representation

presented in Section 4.2. These metrics are defined on counting, for each

architectural concern, the number of architecture elements assigned to it. They are

devoted to calculate the degree to which a single concern in the system maps to

distinct architectural elements.

TRANSACTION
CONTROL

GUI_ELEMENTS

DISTRIBUTION_MANAGER

BUSINESS_RULES

DATA_MANAGER

requestFacade

factoryFacade

saveEntity

distributedSaving
Service

requestDistributed
Facade

getFacade

saveDistributed
Entity

saving
Service

use
Transaction

transService

initPersistence

initPersistence
Service

saveInfo

savingInfoService

distributeSavingService
{

save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();
communicationExceptionalEvent();

}

savingService
{
save(info);
transactionExceptionalEvent();
repositoryExceptionalEvent();

}

Legend:

component
provided interface
required interface

Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S Distribution

GUI

Business

Persistence

G
D
B
P

Exception HandlingE

C
O

N
C

ER
N

S

G

D

E
E

E
P

P
D

B

B

P P

P

D

E P
E P

Figure 11: Simplified representation of the Health Watcher system architecture

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 77

The assumption behind this category of metrics is that a concern spread over

a high number of design elements is detrimental to modularity. The understanding

of a highly spread concern demands the understanding of a large part of the

design. In addition, a change related to that concern may affect a large number of

design elements. Therefore, these metrics aim at identifying highly scattered

concerns, and quantifying its potential influence in the design.

Concern Diffusion over Architectural Components (CDAC)

Definition 9: Concern Diffusion over Architectural Components (CDAC).

CDAC for a concern con counts the number of components in the architecture

entirely assigned to con. The counting also includes the number of components

where there is at least one interface assigned to con, and the number of

components where there is at least one operation assigned to con.

Formal Definition of CDAC: Let S be the architecture of a system, and con

∈ Con(S) be a concern in S, CDAC is represented as:

U)()(conCconCDAC =
{ }UI ∅≠∧∈)()()(| conIcISCcc
{ }∅≠∧∈)()()(| conOcOSCcc I

Example. According to Figure 11, the value of CDAC for the persistence

concern is five. This because this concern is present in: (i) the

Transaction_Control and Data_Manager components, (ii) the useTransaction

interface of the Business_Rules component, (iii) the two persistence-related

operations in the distributedSavingService interface of the Distribution_Manager

component, and (iv) the two persistence-related operations in the saveEntity

interface of the GUI_Elements component (not shown in the figure). Therefore,

the persistence component is spread over five components.

Concern Diffusion over Architectural Interfaces (CDAI)

Definition 10: Concern Diffusion over Architectural Interfaces (CDAI).

CDAI for a concern con counts the number of interfaces in the architecture

entirely assigned to con. This includes the interfaces of components entirely

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 78

assigned to con, plus the number of interfaces where there is at least one operation

assigned to con.

Formal Definition of CDAI: Let S be the architecture of a system, and con ∈

Con(S) be a concern in S, CDAI is represented as:

{ }∅≠∧∈=)()()(|)()(conOiOSIiiconIconCDAI IU .

Example. According to Figure 11, the CDAI value for the persistence

concern is nine as four interfaces are entirely assigned to it – transService,

initPersistenceService, savingInfoService and useTransaction, and there are also

operations assigned to it in five interfaces: saveInfo, savingService,

saveDistributedEntity, distributedSavingService and saveEntity.

Concern Diffusion over Architectural Operations (CDAO)

Definition 11: Concern Diffusion over Architectural Operations (CDAO).

CDAO for a concern con counts the number of operations in the architecture

assigned to con (which includes the operations of interfaces entirely assigned to

con).

Formal Definition of CDAO: Let S be the architecture of a system, and con

∈ Con(S) be a concern in S, CDAO is represented as:

)()(conOconCDAO = .

Example. In Figure 11, CDAO for the persistence concern counts all the

operations in the interfaces of the Data_Manager and Transaction_Control

components, plus all the operations in the useTransaction operation, and plus the

repositoryExceptionalEvent and transactionExceptionalEvent operations in the

five interfaces that handle persistence-specific exceptional events.

4.3.2.
Metrics for Interaction between Concerns

The measures for interaction between concerns are defined based on the

kinds of concern interactions defined in Section 4.2.2. These metrics target at

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 79

assessing concern dependences caused by concerns that are not well modularized,

and, as a consequence, do not have well defined boundaries. They deal with

interaction between concerns which are not introduced by the dependence

between components.

The assumption behind this category of metrics is that much of the

dependence between concerns does not occur only by means of dependence

between components. Some concerns are not entirely encapsulated by components

and do not have well defined boundaries. These concerns may somehow influence

other concerns with which they share design elements. A change in one of these

interacting concerns may ripple effects to the other. Therefore, concern that

interacts with a large number of other concerns is detrimental to modularity.

Component-level Interlacing Between Concerns (CIBC)

Definition 12: Component-level Interlacing Between Concerns (CIBC).

CIBC for a concern con counts the number of other concerns with which con is

interlaced at the component level (Component-level Interlacing – see Definition 6

in Section 4.2.2).

Formal Definition of CIBC. Let S be the architecture of a system, and con ∈

Con(S) be a concern in S, CIBC is represented as:

{ })',(}{)('|')(conconnterlacedComponentIconSConconconconCIBC ∧−∈= .

Example. In Figure 11, the CIBC value for the business concern is one

because it is interlaced with the persistence concern at the component level, since

the Business_Rules component include an interface entirely dedicated to

persistence (useTransaction interface).

Interface-level Interlacing Between Concerns (IIBC)

Definition 13: Interface-level Interlacing Between Concerns (IIBC). IIBC

for a concern con counts the number of other concerns with which con is

interlaced at the interface level (Interface-level Interlacing – see Definition 7 in

Section 4.2.2).

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 80

Formal Definition of IIBC. Let S be the architecture of a system, con ∈

Con(S) be a concern in S, IIBC is represented as:

{ })',(}{)('|')(conconnterlacedInterfaceIconSConconconconIIBC ∧−∈= .

Example. In Figure 11, the IIBC value for the business concern is two, since

there are operations assigned to the persistence and exception handling concerns

in the savingService interface of the Business_Rules component.

Operation-level Overlapping Between Concerns (OOBC)

Definition 14: Operation-level Overlapping Between Concerns (OOBC).

OOBC for a concern con counts the number of other concerns with which con is

overlapped at the operation level (Operation-level Overlapping – see Definition 8

in Section 4.2.2).

Formal Definition of OOBC. Let S be the architecture of a system, con ∈

Con(S) be a concern in S, OOBC is represented as

{ })',(}{)('|')(conconverlappedOperationOconSConconconconOOBC ∧−∈= .

Example. In Figure 11, the OOBC value for the exception handling concern

is two because there are operations that, besides being assigned to the persistence

concerns, are also assigned to the distribution (communicationExceptionalEvent)

and persistence (transactionExceptionalEvent and repositoryExceptionalEvent)

concerns.

4.3.3.
Concern-based Cohesion

Here we define a concern-sensitive metric for cohesion. This metric also relies on

the mapping of the system concerns to the architecture elements. However,

differently from the metrics presented in Sections 4.3.1 and 4.3.2, it is measured

from the component point of view. The results of this metric are obtained per

component, and not per concern as in the metrics defined in the previous sections.

Our cohesion metric is defined on counting, for each component, the number of

concerns it addresses.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 81

The reasoning behind this metric is that a component that encompasses a

large number of concerns is unstable. This is because it may suffer from effects

coming from changes related to any of the concerns within it.

Lack of Concern-based Cohesion (LCC)

Definition 15: Lack of Concern-based Cohesion (LCC). LCC for a

component c counts the number of concerns to which c is assigned, plus the

number of distinct concerns to which the interfaces of c are assigned, plus the

number of distinct concerns to which the operations in the interfaces of c are

assigned.

Formal Definition of LCC. Let S be the architecture of a system, c ∈ C(S) be

a component in S, LCC can be represented as:

U UUU
)()(

)()()()(
cIi cOo

oConiConcConcLCC
∈ ∈

= .

Example. In the architecture of Health Watcher (Figure 11), the LCC value

for the Business_Rules component is three because it is assigned to three

concerns: (i) the entire component is assigned to the business concern, (ii) its

useTransaction interface is assigned to the persistence concern, and (iii) two

operations in one of its interfaces are assigned to the exception handling concern.

4.3.4.
Concern-Sensitive Coupling Metric

Our architecture metrics suite includes one concern-sensitive coupling

metric. This metric targets at quantifying the contribution of a given concern to

the coupling of a given component. As stated before, a component can encompass

more than one concern. In particular, distinct interfaces of a component can

realize different concerns. In this context, this metric is based on the assumption

that if a given component c uses another component c’ by means of a required

interface entirely related to a given concern, the coupling between the two

components is due to the presence of that concern in component c. Note that

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 82

differently from the other metrics, the values for this metric are gathered per a pair

of component and concern.

The reasoning here is that the higher the number of concerns realized by a

component, the higher the number of other components to which that component

is coupled. This occurs because the realization of a concern by a component

usually requires the use of other components. In this context, this metric aims at

quantifying the amount of coupling imposed to a given component due to the

realization of a given concern. This information may be useful, for instance, for

the architect to analyze how much of coupling would be eliminated with the

removal of a concern from a component.

Concern-Sensitive Coupling (CSC)

Definition 16: Concern-Sensitive Coupling (CSC). CSC for a component c

and a concern con counts the number of distinct components used by c by means

of required interfaces entirely assigned to con.

Formal Definition of CSC. Let S be the architecture of a system, c ∈ C(S) be

a component in S, and con be a concern in Con(S), CSC can be represented as:

U
CIi

iUCconcCSC
∈

=)(),(, where).()(conIcICI I=

Example. In the architecture of Figure 11, the useTransaction required

interface is the only interface entirely assigned to the persistence concern in the

Business_Rules component. This interface is responsible for the coupling of

Business_Rules to the component Transaction_Control. Therefore, the value of

CSC for the Business_Rules component and the persistence concern is one

(CSC(Business_Rules, persistence) = 1).

4.3.5.
Number of Concern Interfaces Metric

The measurement approach includes a metric for quantifying concern-

sensitive interface complexity: Number of Concern Interfaces (NCI). The goal of

this metrics is to quantify the contribution of a given concern to the size of a given

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 83

component in terms of number of interfaces. Therefore, NCI counts, for a

component, the number of interfaces responsible for realizing a given concern.

The motivation for using this metric is that a concern that comprises only

few interfaces in a component (in comparison to the total number of interfaces of

that component) might not be localized in that component. In addition, the

information provided by this metric may be useful, for instance, for the architect

to analyse how many interfaces would be eliminated with the removal of a

concern from a component.

Definition 17: Number of Concern Interfaces (NCI). NCI for a component c

and a concern con counts the number of interfaces in c assigned to con.

Formal Definition of NCI. Let S be the architecture of a system, c ∈ C(S) be

a component in S, and con be a concern in Con(S), NCI can be represented as:

)()(),(conIcIconcNCI I= .

Example. In the architecture of Health Watcher (Figure 11), the

useTransaction required interface is the only interface entirely assigned to the

persistence concern in the Business_Rules component. Therefore, the value of

NCI for the Business_Rules component and the persistence concern is one

(CSC(Business_Rules, persistence) = 1).

4.3.6.
Metrics for Coupling and Interface Complexity

Our metrics suite also includes metrics for quantifying conventional

coupling between components and interface complexity. These metrics are

inspired on traditional metrics already defined (Briand et al, 1993; Lung &

Kalaichelvan, 1998; Martin, 1997). We have only adapted them to comply with

our terminology (Section 4.2.1). The coupling metrics (Definitions 17 and 18) are

based on definitions 3 and 4 presented in Section 4.2.1.

The reason for including conventional metrics in our approach is that we

believe that they can be more useful if used together with the concern-driven ones.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 84

This complementary use can improve the hybrid analysis of the impact of

different concern modularization alternatives in conventional attributes.

Architectural Fan-in (AFI)

Definition 18: Architectural Fan-in (AFI). AFI for a component c is the

number of distinct components which use or affect c (see Definitions 3 and 4 in

Section 4.2.1).

Formal Definition of AFI. Let S be the architecture of a system, c ∈ C(S) be

a component in S, AFI can be represented as:

{ })'()'(|')(cACccUCcccAFI ∈∨∈= .

Example. In the architecture of Health Watcher (Figure 11), the

Business_Rules component is used only by the Distribution_Manager component.

The Distribution_Manager is the only component which invokes operations from

Business_Rules. Thus, the value of AFI for Business_Rules is one.

Architectural Fan-out (AFO)

Definition 19: Architectural Fan-out (AFO). AFO for a component c is the

number of distinct components used or affected by c (see Definitions 3 and 4 in

Section 4.2.1).

Formal Definition of AFO. Let S be the architecture of a system, c ∈ C(S)

be a component in S, AFO can be represented as:

).()()(cACcUCcAFO U=

Example. In Figure 11, the Business_Rules component uses two

components: Transaction_Control and Data_Manager. The Business_Rules

component invokes operations from these two components. Thus, the value

obtained for AFO for Business_Rules is two.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 85

Number of Interfaces (NI)

Definition 20: Number of Interfaces (NI). NI for a component c counts the

number of interfaces of c.

Formal Definition of NI. Let S be the architecture of a system, c ∈ C(S) be a

component in S, NI can be represented as:

)()(cIcNI =

Example. The component DistributionManager in Health Watcher

architecture (Figure 11) has four interfaces: factoryFacade,

distributedSavingService, requestDistributedFacade, and saveDistributedEntity.

Hence, the value of NI for this component is four.

Number of Operations (NO)

Definition 21: Number of Operations (NO). NO for a component c counts

the number of operations of all interfaces of c.

Formal Definition of NO. Let S be the architecture of a system, c ∈ C(S) be

a component in S, NO can be represented as:

)()(cOcNO =

Example. Figure 11 shows only a simplified representation of Health

Watcher architecture. It does not show the operations of all interfaces. Therefore,

we are not able to precisily calculate the value of NO for the components shown

in that figure. However, just for the sake of having an example, we can assume

that all the operations of the interface distributedSavingService are shown in the

box on the top right. Therefore, distributedSavingService has four operations:

save(info), transactionExceptionalEvent(), repositoryExceptionalEvent(), and

communicationExceptionalEvent(). We can also assume that each of the other

three interfaces of the Distribution_Manager component – factoryFacade,

requestDistributedFacade, and saveDistributedEntity – has four operations as

well. Therefore, the the value of NO for the Distribution_Manager component is

16.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 86

4.4.
Classification of the Metrics

This section aims at complementing the definition of our architecture

metrics suite by classifying them according to the criteria of a measurement

framework. Due to the lack of standard terminology, it is often difficult to

determine how software metrics relate to one another (Briand et al., 1998, 1999).

Moreover, it is also unclear what the potential uses of existing measures are and

how different metrics might be used in a complementary manner (Briand et al.,

1998, 1999). As a result, it is difficult for software engineers to obtain a clear

picture of the state-of-the-art in order to select or define software measures.

To address and clarifying our understanding of software metrics,

measurement frameworks have been proposed to support the definition,

comparison, and selection of software measures (Briand et al., 1998, 1999;

Kitchenham et al., 1995, Bartolomei et al., 2006). These frameworks provide a

series of criteria upon which properties of the metrics should be classified.

Kitchenham et al. (1995) defined a generic measurement framework that identifies

elementary properties for measures validation. According to their framework, one

of the criteria that a metric definition must specify is the unit of measurement. For

example, you may use different units to measure temperature (e.g., Fahrenheit, or

Celsius). Likewise, code length might be measured by counting the lines of code

or the lexical tokens in a program listing.

Measurement frameworks specific for coupling (Briand et al., 1999) and

cohesion (Briand et al., 1998) in object-oriented systems have also been

developed. According to the former, one of the criteria a coupling metric must

specify is the type of connection it considers as coupling. We have already

mentioned this criterion in Section 2.4. Bartolomei et al. (2006) extended Briand

and colleagues’ coupling framework (Briand et al., 1999) to deal with aspect-

oriented abstractions and new composition mechanisms.

None of the aforementioned frameworks can be directly applied to concern-

driven measurement. They mainly lack criteria related to the mapping of concerns

to the system modular structure (Figueiredo et al., 2008a). To cope with this

limitation, a framework specific for concern-driven measurement (Figueiredo et

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 87

al., 2008a) has been developed as an adaptation of the frameworks defined by

Kitchenham et al (1995) and Bartolomei et al (2006).

In this context, we classify here our architecture metrics according to the

criteria of Figueiredo and colleagues’ framework (Figueiredo et al., 2008a). This

classification supports the software engineer in understanding our metrics and

facilitates more rigorous decision making regarding the selection and use of them.

Before presenting the classification, we introduce the chosen framework and

explain each of its criteria. In order to facilitate the comprehension of the criteria,

we use some of our own metrics as example of each criterion. In the end of this

section, we present the classification of all architecture metrics (Table 2).

4.4.1.
Measurement Framework Criteria

Figueiredo and colleagues’ framework (Figueiredo et al., 2008a)

encompasses five criteria: entities of concern measurement, concern-aware

attributes, units, concern granularity, and concern projection. We now describe

each of the criteria in the order given above.

Entities of Concern Measurement

The entity of measurement determines the elements that are going to be

measured. When we choose a certain element type as the entity of measurement, it

means that we are interested in characteristics of this type and, therefore, the

values for the metric are going to be obtained per that element type. For example,

if we choose component, it means we are interested in concern-related

information about components.

Usually concern measures use concerns as the entity of measurement, but

other selections are also possible. For example, the metrics Concern Diffusion

over Architectural Component (CDAC) (Section 4.3.1) and Lack of Concern-

based Cohesion (LCC) (Section 4.3.3) have distinct entities of measurement.

While CDAC has concern as entity, the entity of measurement of LCC is

component. Although the most common entities of concern measurement are

concern and component, other elements, such interface and operation, can be

chosen for the definition of new metrics. It is also important to highlight that the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 88

entity of measurement of the metric Concern-Sensitive Coupling (CSC) (Section

4.3.4) is the tuple “component, concern”.

Concern-Aware Attributes

Attributes are the properties that an entity possesses. For a given attribute,

there is a relationship of interest in the empirical world that we want to capture

formally in the mathematical world (Kitchenham et al., 1995). For instance, if we

observe two concerns we can say that one is more spread than the other. A

concern measure allows us to captures the “is more spread than” relationship and

maps it to a formal system, enabling us to explore the relationship mathematically.

An entity possesses many attributes, while an attribute can qualify many different

entities (Kitchenham et al., 1995).

In the attribute selection, we may choose any property of the entity that we

want to measure. For example, the metric Concern Diffusion over Architectural

Components (CDAC) (Section 4.3.1) quantifies the attribute of scattering, while

the metric Component-level Interlacing Between Concerns (CIBC) (Section 4.3.2)

quantifies the attribute of tangling. Possible values of a measurement attribute

include: (i) scattering, (ii) tangling, (iii) coupling, (iv) cohesion, and (v) size.

Units

A measurement unit determines how we measure an attribute. An attribute

may be measured in one or more units, and the same unit may be used to measure

more than one attribute (Kitchenham et al., 1995). Our architecture concern-

driven metrics have different units of measurement. For instance, the metrics

Concern Diffusion over Architectural Components (CDAC) and Concern

Diffusion over Architectural Operations (CDAO) (Section 4.3.1) have

“components” and “operations” as their measurement units, respectively. The

metric Lack of Concern-based Cohesion (LCC) (Section 4.3.3) counts the number

of concerns addressed by a given component. Therefore, its unit of measurement

is “concerns”. We may choose any countable elements as measurement units, for

example, (i) concerns, (ii) components, (iii) interfaces, and (iv) operations.

Concern Granularity

The granularity of a measure is the level of detail at which information is

gathered. The granularity factor specifies what is counted, i.e., which elements

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 89

aggregate values. For example, in the metric Lack of Concern-based Cohesion

(LCC) (Section 4.3.3) the entity is component but what we count is the number of

concerns; therefore the granularity is concern.

The difference between element granularity and measurement unit is clear

because all measures have to define an element to be counted. However, the

measurement unit can either be omitted or be coarser than the granularity. Some

metrics are defined as an equation which divides two values with the same

measurement unit. For instance, we could have a metric defined as the quotient

between components addressing a concern and the total components of the

system. In this case this metric do not specify any unit of measurement. However,

its granularity is still “component”. Possible values of element granularity are, for

example: (i) concern, (ii) component, (iii) interface, and (iv) operation.

Concern Projection

One of the most sensitive parts in concern-driven measurement is the

mapping of concerns onto elements in the design. Figueiredo et al (2008a) call

this mapping as “concern projection”. At least two aspects related to concern

projection have to be specified in a concern-driven measure definition. First, the

level of abstraction to which the concerns have to be mapped must be specified. In

our architecture metrics suite, for instance, a mapping of concerns to components

is enough for computing the Concern Diffusion over Architectural Components

(CDAC) metric (Section 4.3.1). However, the Concern Diffusion over

Architectural Operations (CDAO) metric (Section 4.3.1) requires a mapping on

the level of operations. Of course, CDAC also accepts a mapping to a finer level

of abstraction such as operations. The mapping to components can be easily

derived from the mapping to operations, as components encompass operations.

The other aspect related to concern projection is whether or not the metric

computation allows overlapping of concerns onto the same design element. In

other words, the definition of a concern-driven metric should specify whether two

or more different concerns can be projected onto the same design element. For

instance, our Concern Diffusion over Architectural Interfaces (CDAI) (Section

4.3.1) allows that two or more concerns are assigned to the same interface. In this

case, this interface is counted in the result for each of the concerns assigned to it.

Table 2 presents the classification of all our architecture metrics according to the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 90

five criteria we have just described. Note that the projection criterion does not

apply to the last four metrics, since they are not concern-driven metrics.

Metric Entity Attribute Unit Granularity

Projection:
Level of

Abstraction/
Overlapping

Concern Diffusion
over Architectural
Components (CDAC)

Concern Scattering Components Component Component/
Yes

Concern Diffusion
over Architectural
Interfaces (CDAI)

Concern Scattering Interfaces Interface Interface/
Yes

Concern Diffusion
over Architectural
Operations (CDAO)

Concern Scattering Operations Operation Operation/
Yes

Component-level
Interlacing Between
Concerns (CIBC)

Concern Tangling Concerns Concern Component/
Yes

Interface-level
Interlacing Between
Concerns (IIBC)

Concern Tangling Concerns Concern Interface/
Yes

Operation-level
Overlapping Between
Concerns (OOBC)

Concern Tangling Concerns Concern Operation/
Yes

Lack of Concern-based
Cohesion (LCC) Component Tangling Concerns Concern Component/

Yes

Concern-Sensitive
Coupling (CSC)

(Component,
Concern) Coupling Components Component Interface/

Yes

Number of Concern
Interfaces (NCI)

(Component,
Concern) Size Interfaces Interface Interface/

Yes
Architectural Fan-in
(AFI) Component Coupling Components Component n/a

Architectural Fan-out
(AFO) Component Coupling Components Component n/a

Number of Interfaces
(NI) Component Size Interfaces Interface n/a

Number of Operations
(NO) Component Size Operations Operation n/a

Table 2: Classification of our architecture metrics according to Figueiredo and colleagues’

measurement framework (Figueiredo et al., 2008a)

4.5.
Related Work

The most closely related works to our concern-driven architectural metrics

are suites of metrics also developed to capture information about concerns

traversing one or more structural modularity units (Sant’Anna et al., 2003;

Ducasse et al., 2006; Wong et al., 2000; Eaddy et al., 2007). However, the main

difference from these metrics to our architecture metrics is that almost all of them

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 91

are defined upon abstractions of implementation or detailed design level. As a

consequence, they cannot be applied at early stages of software design. The only

exception is the metrics proposed Ducasse et al (2006). Their metrics rest on a

very generic representation model, which has to be mapped to the software design

representation model to be assessed.

In addition, most of these metrics are only devoted to quantifying concern

scattering. There is only one exception that is a metric proposed by Sant’Anna et

al (2003), which measures tangling among concerns in terms of lines of code. In

the following, we give a brief description of each of these metrics and when

necessary we discuss some specific limitation beyond the ones aforementioned.

4.5.1.
Metrics by Sant’Anna et al.

Sant’Anna et al (2003) defined three metrics for assessing separation of

concerns in aspect-oriented detailed design and code: Concern Diffusion over

Components (CDC), Concern Diffusion over Operations (CDO), and Concern

Diffusion over Lines of Code (CDLOC)4. In fact, the first two metrics directly

inspired the definition of our architectural metrics for concern diffusion (Section

4.3.1). In addition, we use CDC in our heuristic rules for assessment of detailed

design modularity (Section 5.4).

 Concern Diffusion over Components (CDC) counts the number of classes

and aspects whose main purpose is to contribute to the implementation of a given

concern. These classes and aspects are called as the primary components of the

concern. Furthermore, CDC counts the number of classes, interfaces and aspects

that access the primary components by calling their methods, or using them in

attribute declarations, formal parameters, return types, “throws” declarations or

local variables. The CDC metric enables the designer to assess the degree of

concern scattering.

Concern Diffusion over Operations (CDO) counts the number of methods

and pieces of advice whose main purpose is to contribute to the implementation of

a given concern. In addition, it counts the number of methods and pieces of advice

4 These metrics are not contribution of this thesis. They were proposed in the context of

Sant’Anna’s master dissertation.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 92

that access any primary component of the concern by accessing their attributes,

calling their methods or using them in formal parameters, return types, throws

declarations and local variables. Constructors also are counted as operations. The

goal of CDO is quantify the scattering of a concern in terms of how many

operations are affected by it.

Concern Diffusion over Lines of Code (CDLOC) counts the number of

transition points for each concern through lines of code. The use of this metric

requires a shadowing process that separates the code into shadowed areas and

non-shadowed areas. The shadowed areas conform to lines of code that implement

a given concern. Transition points are the points in the code where there is a

transition from a non-shadowed area to a shadowed area and vice-versa. The

intuition is that they are points in the program text where there is a “concern

switch”. Figure 12 illustrates the occurrence of transition points (or concern

switch). For each concern, the program text has to be analyzed line by line in

order to count transition points. This is a measure of tangling of the assessed

concern with the other concerns in the system.

public class Point
implements Subject {

 private HashSet observers;

 private int x;
 private int y;

 public Point(int x, int y) {
 this.x=x;
 this.y=y;
 this.observers = new HashSet();
 }

 public int getX() { return x; }
 public int getY() { return y; }

 public void setX(int x) {
 this.x=x;
 notifyObservers();
 }

 public void setY(int y) {
 this.y=y;
 notifyObservers();
 }

 public void addObserver(Observer o) {
 this.observers.add(o);
 }

 public void removeObserver(Observer o) {
 this.observers.remove(o);
 }

 public void notifyObservers() {
 for (Iterator e = observers.iterator() ; e.hasNext() ;) {
 ((Observer)e.next()).update(this);
 }
 }
}

concern
switch

concern
switch

concern
switch

concern
switch

concern
switch

concern
switch

concern
switch

concern
switch

concern
switch

concern
switch

Figure 12: Transition points

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 93

4.5.2.
Metrics by Ducasse et al.

Ducasse et al (2006) proposed a very generic technique, called Distribution

Map, to visualize and analyze properties of a system. Based on this technique,

they defined two concern-driven measures: Spread and Focus. Their visualisation

approach is composed of large rectangles containing small squares in different

colours (Figure 13). The rectangles and boxes represent the system design

structure. They call this representation as reference partition. The large rectangles,

for instance, can be used to represent classes, whereas small squares can

correspond to internal members of classes (operation and attributes). The colours

filling the small squares represent mutually exclusive properties associated with

elements of the system. They call this representation as comparison partition. In

the context of concern-driven metrics, the comparison partition elements, i. e. the

colours, represent the concerns of the system.

Part 2Part 1 Part 3 Part 4

Part 5

Figure 13: Distributed Map

In order to describe their metrics, let P denotes the reference partition, and

Q denotes the comparison partition. Thus they say that each software artefact si

belongs to a part pn of P and is attributed with a property qm of Q. In the case of

concern-driven assessment of object-oriented design, si represents a method or

attribute, pn denotes a class, and qm represent a concern. On the visualization

(Figure 13), for each part pn there is a large rectangle and within that rectangle, for

each element si ∈ pn there is a small square whose colour refers to the property qm

attributed to that element.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 94

In order to define the metrics, Ducasse et al (2006) first define that the set of

elements in part p ∈ P that have property q is the intersection between property q

and part p. The relative size of q ∩ p in relation to p is denoted as:

p
pq

pqtouch
I

=),(.

The metric spread of a property q over P is defined as the number of

“touched” parts:

∑
∈ ⎩
⎨
⎧

=
>

=
Pp i

i

i
pqtouch
pqtouch

Pqspread
0),(,0
0),(,1

),(

Therefore, the spread metric counts the number of rectangles containing squares

filled by the colour the represents the property q. In the context of object-oriented

design, this metric counts the number of classes with attributes or methods which

concern q is assigned to. Thus, spread is similar to the Concern Diffusion over

Components (CDC) metric (Section 4.5.1)

The other metric defined by Ducasse et al (2006) is called focus:

∑
∈

×=
Pp

ii
i

qptouchpqtouchPqfocus),(),(),(

The focus is a number between 0 and 1 and measures the distance between the

property q and the partition P: the larger the number, the more the parts touched

by q are touched entirely by q. Although not specific for concern-driven

measurement, Ducasse et al (2006) metrics suite can be consider as devoted to

quantify concern scattering. However, the visualization approach upon which they

are defined brings an important limitation. Each small square can only be filled by

one color, which means that a design element (e.g. method) can only have one

concern assigned to it. Nevertheless, in many cases, an element of software design

can be responsible for addressing more than one concern simultaneously.

4.5.3.
Metrics by Wong et al.

Wong et al (2000) introduced three concern measures, namely Disparity,

Concentration, and Dedication. Disparity measures how many “blocks” related to

a feature are localized in a particular component. For the authors, a component

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 95

can have many different meanings, depending on the system being analyzed (e.g.

a single file, a group of files, a single function, or a group of functions). A feature

is the functionality exercised by a given input and a block is a sequence of

consecutive statements, so that if one statement is executed, all are (Wong et al.,

2000). The more blocks in either a component c or a feature f, but not in both, the

larger the disparity between c and f. Concentration and Dedication are also

defined in terms of blocks and they quantify how much a feature is concentrated

in a component and how much a component is dedicated to a feature, respectively.

Concentration (CONC(f, c)) measures how many of the blocks related to a feature

f are contained within a specific component c, and is defined as:

 Dedication (DEDI(f, c)) measured how many of the blocks contained

within a component c are related to a feature f, and is defined as:

4.5.4.
Metrics by Eaddy et al.

Eaddy et al (2007) presented two concern metrics based on lines of code

that capture different facets of concern concentration and component dedication:

Degree of Scattering and Degree of Focus. These metrics are defined based on

Wong and colleagues’ metrics (Section 4.5.3). However, instead of using the term

“feature”, Eaddy et al use the term “concern”. In addition, instead of using the

concept of “blocks”, they use lines of codes in the definition of their metrics.

Therefore, the application of their metrics demands the mapping of concerns to

the source lines of code.

Degree of Scattering (DOS) is defined based on Wong and colleagues’

Concentration metric (Section 4.5.3). DOS is a measure of the variance of the

concentration of a concern over all components with respect to the worst case

(i.e., when the concern is equally scattered across all components). Let C be a set

of components, and con be a concern. DOS(con) is defined as:

CONC(f, c) =
blocks in component c related to feature f

blocks related to feature f

DEDI(c, f) =
blocks in component c related to feature f

blocks in component c

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 96

()
1

),(
1)(

21

−

−
−=

∑
C

cconCONCC
conDOS

C

c C

Degree of Focus (DOF) is defined based on Wong and colleagues’

Dedication metric (Section 4.5.3). DOF is a measure of the variance of the

dedication of a component to every concern with respect to the worst case (i.e.

when the component is equally dedicated to all concerns). Let Con be a set of

concerns, and c be a component. DOF(c) is defined as:

()
1

),(
1)(

21

−

−
−=

∑
Con

concDEDICon
cDOF

Con

con Con

Table 3 classifies the metrics described in the section according to Figueiredo and

colleagues’ measurement framework (Figueiredo et al., 2008a).

Metric Entity Attribute Unit Granularity
Projection: Level
of Abstraction/

Overlapping
Concern
Diffusion over
Components
(CDC)

Concern Scattering Components Component
(classes/aspects)

Component/
Yes

Concern
Diffusion over
Operations
(CDO)

Concern Scattering Operations
Operation

(methods/pieces of
advice)

Operation/
Yes

Concern
Diffusion over
LOC (CDLOC)

Concern Tangling Concern
Switches Line of Code Line of Code/

Yes

Spread Concern Scattering Parts Part (Rectangle)
Part element (small

square)/
No

Focus Concern Scattering None Part element (small
square)

Part element (small
square)/

No

Disparity Concern,
Component Scattering None Block of statements

Block of
statements/

Yes

Concentration
(CONC) Concern Scattering None Block of statements

Block of
statements/

Yes

Dedication
(DEDI) Component Scattering None Block of statements

Block of
statements/

Yes
Degree of
Scattering (DOS) Concern Scattering None Line of Code Line of Code/

No

Degree of Focus
(DOF) Component Scattering None Line of Code Line of Code/

No

Table 3: Classification of related metrics according to Figueiredo and colleagues’

measurement framework (Figueiredo et al., 2008a)

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

