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4 
Concern-Driven Metrics 

In the first chapter we identified a set of limitations that hinders the 

evaluation of modularity by means of conventional metrics. These limitations are 

caused by the fact that the metrics currently used for evaluating design modularity 

mainly rely on abstractions, such as components, classes, and aspects, derived 

from the syntax of either programming or design specification languages. As a 

consequence, existing measurement approaches disregard the concerns that drive 

the system design. 

This chapter and Chapter 5 present our proposed measurement approach for 

closing this gap between quantitative modularity assessment and the concerns that 

drive the design. The approach is based on concern-driven metrics for assessing 

architecture and detailed design. This chapter defines our suite of concern-driven 

architecture metrics. It starts introducing the notion of concerns and the categories 

of concerns we consider in our approach (Section 4.1). Section 4.2 depicts the 

model of concern representation upon which the metrics are defined. Section 4.3 

defines our suite of concern-driven architecture metrics. Section 4.4 complements 

the definition of the metrics in the light of a theoretical measurement framework 

tailored for concern-oriented metrics. Finally, Section 4.5 discusses the interplay 

of our proposal and related work.  

 

4.1. 
Classification of Software Concerns 

The term concern has been loosely defined as any property or part of the 

problem that stakeholders of a software system want to consider as a conceptual 

unit and treat in a modular way (Elrad et al., 2001; Tarr et al., 1999; Robillard & 

Murphy, 2007). Concerns can range from high-level notions like security and 

quality of service to low-level notions such as caching and buffering (Elrad et al., 

2001). They can be functional, like business rules or features, or non-functional, 

such as synchronization and transaction management (Elrad et al., 2001). Typical 
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concerns in software systems capture (Elrad et al., 2001; Robillard & Murphy 

2007; Hannemann & Kickzales, 2002): 

• features from a feature list of a product line; 

• functional requirements from a requirements specification document; 

• non-functional requirements from a requirements specification document; 

• roles from architectural patterns (e.g. the view role from the model-view-

controller pattern (Buschmann et al. 1996)); 

• roles from design patterns (e.g. the subject role from the Observer design 

pattern (Gama et al., 1995)); and 

• implementation mechanisms (e.g. caching). 

In fact, this list is not exhaustive. The design of a system encompasses 

several concerns which come directly from the requirements specification or 

emerge during the architecture or detailed design conception. In the example of 

the Health Watcher architecture (Figure 8)2, there are a number of architecturally-

relevant concerns such as GUI, Business, Distribution, Persistence and Exception 

Handling. As mentioned before, in a software design, a concern is realized by a 

set of design elements. In an architectural design a concern can be addressed, for 

instance, by components, interfaces and operations. In an aspect-oriented detailed 

design, a concern can be realized by classes, aspects, methods, attributes, pieces of 

advice and intertype declarations. 

Our measurement approach focuses on concerns that eventually evolve into 

concrete pieces of code and contribute directly to the functionality of the system. 

Persistence and exception handling are examples of concerns that evolve into 

pieces of code. Our metrics do not rely on concerns that influence how the system 

is built but do not trace to any specific piece of code. In particular, we do not 

focus on concerns that are not observable when the system executes, such as 

maintainability.  

                                                 
2 Figure 8 is the same as Figure 1 (Section 1.2). We repeat it here to facilitate the reader to 

refer to it. 
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Figure 8: Simplified representation of the Health Watcher software architecture 

 

4.2. 
Concern Representation 

Our measurement approach is based on a concern-to-design mapping. This 

means that we have two domains related to each other through a mapping 

relationship. The source domain is a set of concerns and the target domain is a set 

of design elements, as illustrated in Figure 9. The mapping consists of assigning a 

concern to the corresponding design elements that realize it. For instance, in the 

architecture of Figure 8, the persistence concern is realized by the following 

elements: the Data_Manager and Transaction_Control components and their 

interfaces; the useTransaction required interface; and the 

transactionExceptionalEvent and repositoryExceptionalEvent operations. The last 

two elements represent persistence-specific exceptional events. 

A systematic concern mapping process for consistently identifying the 

design elements realizing each concern is essential for the success of the proposed 
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measurement approach. In our empirical studies (Chapters 7 and 8), we followed a 

specific guideline in order to systematically map concerns to design elements. 

This guideline, which is inspired on the guidelines proposed by Eaddy et al 

(2007), states that a concern should be assigned to a design element if the 

complete removal of the concern requires with certainty the removal or 

modification of the element. In Figure 8, for instance, the useTransaction required 

interface in the Business_Rules component only encompasses three operations, 

namely beginTransaction(), commitTransaction() and rollbackTransaction() (not 

shown in the figure). These operations are totally dedicated to invoke transaction 

control services for persisting information. Therefore, removing the persistence 

concern would lead to the removal of the useTransaction interface. Thus, 

according to the aforementioned guideline, the persistence concern should be 

assigned to this interface. Section 7.1 describes other measures we took during our 

empirical studies in order to make the concern mapping sufficiently systematic for 

the goals of our studies.  

 

Concerns
(Source)

Design Elements
(Target)

concern 1 concern 2 concern 3

 
Figure 9: Mapping between concerns and design elements 

 

The notion of concern representation (or simply, concern) is, therefore, 

linked to an underlying design model. The design model specifies which 

information about a system design can be captured by a concern representation. 

Our measurement approach aims at quantifying the modularization of concerns in 

both architectural and detailed designs. Therefore, before defining how a concern 

is represented, the next subsection defines the representation of architectural 

design (Section 4.2.1) adopted by our approach. We left to present the 
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representation of detailed design in Chapter 5, because it is used in the definition 

of detailed design metrics, which are presented in the same chapter. 

 

4.2.1. 
Architectural Design 

Our measurement approach is rooted at component-and-connector views 

(Bass et al., 2003) of the system architecture. Component-and-connector views are 

the models adopted by a plethora of ADLs and, more notably, by UML 2.0 

(OMG, 2005). Moreover, a number of aspect-oriented ADLs have been developed 

recently (Section 3.2). The examples based on the component-and-connector 

views are described in this thesis using UML 2.0 (OMG, 2005). This section 

defines the terminology and formalism regarding component-and-connector views 

used for expressing our architectural metrics. In order to facilitate the 

understanding of the definitions, an informal example of each definition is 

presented based on Figure 8 and Figure 10. 

 

Component-and-Connector View 

The terminology presented here is based on the definition of component-

and-connector views presented by Bass et al (2003). However, for the sake of 

simplicity, we focus only on the architectural elements needed for defining our 

metrics, namely components, interfaces and operations. Our metrics suite does not 

distinguish between conventional components and aspectual components, thus the 

terminology does not need this distinction either. 

 

Definition 1: Components and Interfaces. Let S be the architecture of a 

system. The component-and-connector view of S consists of a set of components 

C(S). C(S) includes both conventional and aspectual components. Each 

component c ∈ C(S) contains a set of interfaces I(c). Each interface can be a 

provided interface or a required interface. Therefore, each component c ∈ C(S) 

contains a set of provided interfaces PI(c) ⊆ I(c), and a set of required interfaces 

RI(c) ⊆ I(c), so that I(c) = PI(c) ∪ RI(c). Each interface i ∈ I(c) encompasses one 

or more operations denoted as O(i). These operations also include events. We also 

define: 
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(i) the set of all operations of a component c, represented as U
)(

)()(
cIi

iOcO
∈

= , 

(ii) the set of all interfaces of an architecture S, represented as U
)(

)()(
SCc

cISI
∈

= , 

(iii) the set of all operations of an architecture S, represented as U
)(

)()(
SIi

iOSO
∈

= . 

 

Example. The Health Watcher architecture in Figure 8 consists of five 

components – GUI_Elements, Distribution_Manager, Business_Rules, 

Transaction_Control, and Data_Manager. The Distribution_Manager component 

has a provided interface called distributedSavingService, which is connected to a 

required interface of the GUI_Elements component, called saveEntity. The 

distributedSavingService interface has four operations. 

 

Component Interaction 

We consider that there are two kinds of component interaction in an aspect-

oriented architecture. In the first kind, a component c invokes an operation from 

another component c’. We say that c uses c’. In this case, a required interface of c 

is linked to a provided interface of c’ by means of a conventional connector 

(Section 3.2). In Figure 8, the GUI_Elements component uses the 

Distribution_Manager component. 

The second kind of interaction occurs between an aspectual component and 

a component. In this kind of interaction, a provided interface of an aspectual 

component c is linked to either a required or a provided interface of a component 

c’ by means of an aspectual connector (Section 3.2). The aspectual component c 

executes one of its operations when the component c’: 

(i) invokes an operation of another component (c is linked to a required 

interface of c’); or  

(ii) has an operation invoked by another component (c is linked to a provided 

interface of c’). 

We say that c affects c’. In order to illustrate this kind of component interaction, 

Figure 10 shows an aspect-oriented alternative to the Health Watcher architecture, 

described based on the AOGA notation (Section 3.2.1). As in Figure 8, this is a 

simplified representation. 
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In this example, part of the persistence concern, namely the transaction 

control service, is addressed by the Transaction_Control aspectual component. 

The transService interface of this component is connected to the savingService 

interface of the Business_Rules component by means of a crosscuts relationship 

(or aspectual connector in the AO Visual Notation (Section 3.2.2)). This means 

that an operation of the transService interface is executed whenever an operation 

of savingService is invoked. This is an example of the “affects” interaction: the 

Transaction_Control component affects the Business_Rules component. 

In order to define the metrics for concern-sensitive coupling (Section 4.3.4) 

and coupling between components (Section 4.3.6), it is necessary to define first 

the set of components used and affected by a given component. It is also 

necessary to define the set of components used by a given required interface. 
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Figure 10: Aspect-oriented design alternative of Health Watcher architecture 

 

Definition 2: Used Components per Required Interface. We define the set of 

components used by a required interface i as UC(i). Let S be the architecture of a 

system, c ∈ C(S) be a component of S, and i ∈ RI(c) be a required interface of c. 
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Then c’ ∈ UC(i) ⇔ ∃i’ ∈ PI(c’) such that i is connected to i’ by means of a 

conventional connector. 

 

Example. In Figure 8, Transaction_Control is the component used by the 

useTransaction required interface. 

 

Definition 3: Used Components per Component. We define the set of 

components used by a component c as UC(c). Let S be the architecture of a 

system, c ∈ C(S) be a component of S. Then U
)(

)()(
cRIi

iUCcUC
∈

= . 

 

Example. In Figure 8, Transaction_Control and Data_Manager are the 

components used by the Business_Rules component. 

 

Definition 4: Affected Components per Component. We define the set of 

components affected by a component c as AC(c). Let S be the architecture of a 

system, and c ∈ C(S) be a component of S. Then c’ ∈ AC(c) ⇔ ∃i ∈ PI(c) ∧ ∃i’ 

∈ I(c’) such that i is connected to i’ by means of an aspectual connector. 

 

Example. In Figure 10, Business_Rule and Data_Manager are the 

components affected by the Transaction_Control component. 

 

The definitions presented in this section are used in the definition of 

architectural concern adopted in our approach (Section 4.2.2). Now, it is possible, 

for instance, to define the sets of components, interfaces and operations to which a 

concern is mapped. In addition, some of the definitions presented here are also 

directly used in the metrics definitions (Section 4.3).  

 

4.2.2. 
Architectural Concern 

With the definition of the elements of the architectural design representation 

considered in our approach (Section 4.2.1), it is possible to define the notion of 

architectural concern representation (or simply, architectural concern). A concern 

con consists of a list of architecture elements assigned to it. These elements can be 
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components, interfaces or operations. An architectural element can be responsible 

for realizing more than one concern, or parts of more than one concern. Therefore, 

an architectural element can be assigned to more than one concern. 

 

Definition 5: Architectural Concern. Let S be the architecture of a system, 

for each c ∈ C(S), the set of concerns to which c is assigned is denoted as Con(c). 

Let i ∈ I(c) be an interface of c, the set of concerns to which i is assigned is 

denoted as Con(i). Let o ∈ O(i) be an operation of i, the set of concerns to which o 

is assigned is denoted as Con(o). Con(S) is the set of all concerns in the 

architecture and is represented as: 

UU U UU
)()( )(

)()()()(
SOoSCc SIi

oConiConcConSCon
∈∈ ∈

=  

Let S be the architecture of a system, for each con ∈ Con(S), the set of 

components assigned to con is denoted as: 

)}()(|{)( cConconSCccconC ∈∧∈= . 

Similarly, the set of interfaces assigned to con is denoted as: 

)}()(|{)( iConconSIiiconI ∈∧∈= . 

Finally, the set of operations assigned to con is denoted as: 

)}()(|{)( oConconSOooconO ∈∧∈= . 

 

Example. The gray boxes in Figure 8 represent the mapping of the concerns 

to the Health Watcher architecture elements. In this case, if a component is 

assigned to a concern, all the interfaces of this component are also considered 

assigned to this concern, except those which are explicitly assigned to other 

concerns. The following examples are obtained from the architecture of Figure 8: 

Con(Business_Rules) = {business}, Con(useTransaction) = {persistence}, and 

Con(repositoryExceptionalEvent) = {persistence, exception handling}, 

C(persistence) = {Transaction_Control, Data_Manager}, I(persistence) = 

{savingInfoService, initPersistenceService, transService, useTransaction}. The 

operations assigned to the persistence concern (O(persistence)) are: (i) all the 

operations in the interfaces savingInfoService, initPersistenceService, 

transService, useTransaction, (ii) the operations transactionExceptionalEvent and 

repositoryExceptionalEvent of the interfaces savingService, 
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saveDistributedEntity, distributedSavingService and saveEntity, and (iii) the 

repositoryExceptionalEvent of the saveInfo interface (this operation is not shown 

in the figure). 

 

Concern Interaction 

Nevertheless, note that even though the main purpose of the 

Business_Rules component is to address the business concern, it also includes 

elements assigned to other concerns such as the useTransaction interface 

(persistence concern) and exception handling operations. Note also that some 

elements, such as the repositoryExceptionEvent operation, are assigned to more 

than one concern (exception handling and persistence). This occurs because some 

concerns are not well modularized and, as a consequence, are not totally localized 

in components whose only purpose is to address them. As a result, concerns 

interact to each other not only by means of the relationship between components, 

but also because sometimes more than one concern is present in the same 

architecture element. Some of the metrics in our approach target at assessing the 

interaction between concerns. In order to define them, we first define here three 

forms of concern interaction which the metrics take into account. 

 

Definition 6: Component-level Interlacing. A concern con is interlaced at 

the component level with another concern con’ if con and con’ have one or more 

components in common. This situation can occur in several different ways: 

(i) a component is assigned to both con and con’, or 

(ii) a component is assigned to con, and at least one interface of the same 

component is assigned to con’, or 

(iii) a component is assigned to con, and at least one operation in any 

interface of the same component is assigned to con’, or 

(iv) at least one interface of a component is assigned to con, and at least 

one interface of the same component is assigned to con’. 

(v) at least one interface of a component is assigned to con, and at least 

one operation in the same interface or in any other distinct interface of 

the same component is assigned to con’, or 
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(vi) at least one operation in any interface of a component is assigned to 

con, and at least one operation in any interface of the same component 

is assigned to con’. 

In order to represent that two concerns are interlaced at the component-

level, we define the Boolean function ComponentInterlaced(con, con’), where con 

∈ Con(S) and con’ ∈ (Con(S) – con),  as: 

∨∈∈∃⇔ ))'(:)(()',( conCcconCcconconnterlacedComponentI  

           ∨∈∈∃∈∃ ))'(:)(:)(( conIicIiconCc  

           ∨∈∈∃∈∃ ))'(:)(:)(( conOocOoconCc  

           ∨∈∈∈∃∈∃∈∃ ))'(':)(:)(':)(:)(( conIiconIicIicIiSCc  

           ∨∈∈∈∃∈∃∈∃ ))'(:)(:)(:)(:)(( conOoconIicOocIiSCc  

           ))'(':)(:)(':)(:)(( conOoconOocOocOoSCc ∈∈∈∃∈∃∈∃ . 

 

Example. In Figure 8, the business concern is interlaced at the component 

level with the persistence concern, once the Business_Rules component is 

assigned to the former, but it also has one interface (useTransaction) assigned to 

the latter. 

 

Definition 7: Interface-level Interlacing. A concern con is interlaced at the 

interface level with another concern con’ if con and con’ have one or more 

interfaces in common. This can happen in two manners:  

(i) an interface is assigned to con, and at least one operation of the 

same interface is assigned to con’, or  

(ii) at least one operation of an interface is assigned to con, and at least 

one operation of the same interface is assigned to con’. 

In order to represent that two concerns are interlaced at the interface level, 

we define the Boolean function InterfaceInterlaced(con, con’), where con ∈ 

Con(S) and con’ ∈ (Con(S) – con),  as: 

∨∈∈∃∈∃⇔ ))'(:)(:)(()',( conOoiOoconIiconconnterlacedInterfaceI  

                             )).'(':)(:)(':)(:)(( conOoconOoiOoiOoSIi ∈∈∈∃∈∃∈∃  

 

Example. In the example of Figure 8, the business concern is interlaced with 

the exception handling concern at the interface level as the business-related 
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interface savingService includes two operations assigned to the exception 

handling concern. 

 

Definition 8: Operation-level Overlapping. A concern con is overlapped at 

the operation level with a concern con’ if at least one operation is assigned to both 

con and con’. This interaction is different from the previous ones because here the 

same element is entirely assigned to both concerns. In order to represent that two 

concerns are overlapped at the operation level, we define the Boolean function 

OperationOverlapped(con, con’), where con ∈ Con(S) and con’ ∈ (Con(S) – con),  

as: 

( ) ∅≠⇔ )'()()',( conOconOconconverlappedOperationO I . 

 

Example. In the architecture shown in Figure 8, the persistence concern is 

overlapped with the exception handling because the repositoryExceptionalEvent 

and the transactionExceptionalEvent operations are assigned to both concerns. 

 

4.3. 
Suite of Concern-Driven Architecture Metrics 

This section is targeted at defining a suite of concern-driven metrics for 

assessing architecture modularity. The main goal of the proposed metrics is to 

support the software engineers to:  

• identify architectural design flaws caused by the poor modularization of 

architecturally-relevant concerns both in development and evolution 

scenarios, and 

• allow the comparison of alternatives of architecture design solutions in 

terms of how well architecturally-relevant concerns are modularized. 

To this end, our concern-driven approach complements conventional 

architecture metrics by explicitly promoting concern as a measurement 

abstraction. As claimed in Section 1.2, the main limitations of existing metrics 

are: (i) inaccuracy on identifying non-localized concerns, (ii) inaccuracy on 

identifying dependence between concerns, (iii) inaccuracy on identifying 

instabilities, and (iv) overemphasized use of traditional modularity-related 

attributes such coupling and cohesion. 
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 Therefore, in order to tackle these limitations, our approach includes 

metrics for quantifying: (i) concern diffusion, (ii) interaction between concerns, 

(iii) concern-based cohesion, (iv) concern-sensitive coupling, and (v) concern-

sensitive interface size. For instance, some of our metrics quantify the scattering 

of a concern realization over elements of an architectural design, such as 

components and interfaces. The metrics suite also evaluates how a particular 

concern realization affects traditional modularity-related attributes, such as 

coupling, cohesion and interface complexity. 

The metrics presented in this chapter focus on the evaluation of software 

architectural design represented by means of specification approaches, such as 

UML [OMG, 2005] or ADLs. In particular, the metrics are defined upon 

abstractions and composition mechanisms of component-and-connector 

architecture views (Bass et al., 2003, Clements et al., 2003). However, the metrics 

definition is agnostic to specific graphical notations or ADLs. Therefore, in order 

to apply the metrics, it might be necessary to adapt their definition to specific 

abstractions of the architecture specification approach in use. 

Before defining the architecture metrics in details, we present in Table 1 a 

summary of them. It provides a catalog with brief definitions for the metrics and 

their association with distinct modularity attributes they measure. The goal is to 

provide the reader with a big picture of our measurement approach and also make 

it easier for them to refer to the metrics’ definitions while reading the remainder 

of the text. 

In the following sections (Sections 4.3.1 to 4.3.6), each metric is described 

in terms of: (i) an informal definition, (ii) a formal definition based on set theory, 

and (iii) a simple didactic example. Also, in the preamble of each of the following 

sections, we present the reasoning and assumptions that motivated the use of the 

metrics in our approach.  The metrics are defined in terms of the terminology and 

definitions introduced by our concern representation model (Section 4.2). The 

formal definition expresses the metrics consistently and unambiguously. 

Moreover, in order to facilitate the understanding and use of the metrics, in 

Section 4.4, we classify the metrics according to the criteria of a concern-oriented 

measurement framework (Figueiredo et al., 2008a). 
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Attribute Metric Definition 
Concern Diffusion over  
Architectural 
Components (CDAC) 

It counts the number of architectural components 
that contribute to the realization of a given concern. 

Concern Diffusion over 
Architectural Interfaces 
(CDAI) 

It counts the number of interfaces that contribute to 
the realization of a given concern. 

Concern 
Diffusion 

Concern Diffusion over 
Architectural Operations 
(CDAO) 

It counts the number of operations that contribute to 
the realization of a given concern. 

Component-level 
Interlacing Between 
Concerns (CIBC) 

It counts the number of other concerns with which a 
given concern shares at least a component. 

Interface-level 
Interlacing Between 
Concerns (IIBC) 

It counts the number of other concerns with which a 
given concern shares at least an interface. 

Interaction 
Between 
Concerns 

Operation-level 
Overlapping Between 
Concerns (OOBC) 

It counts the number of other concerns with which a 
given concern shares at least an operation. 

Concern-
based 

Cohesion 

Lack of Concern-based 
Cohesion  (LCC) 

It counts the number of concerns addressed by a 
given component. 

Concern-Sensitive 
Coupling (CSC) 

It counts the number of components used by a given 
component by means of required interfaces entirely 
assigned to a given concern. 

Architectural Fan-in 
(AFI) 

It counts the number of components that use or affect 
a given component. It counts the number of 
components, not connections. 

Coupling 
Between 

Components 

Architectural Fan-out 
(AFO) 

It counts the number of components used or affected 
by a given component. It counts the number of 
components, not connections. 

Number of Concern 
Interfaces (NCI) 

It counts for a given component the number of 
interfaces assigned to a given concern. 

Number of Interfaces 
(NI) 

It counts the number of interfaces of a given 
component. 

Interface 
Complexity 

Number of Operations 
(NO) 

It counts the number of operations in all interfaces of 
a given component. 

 

Table 1: Summary of the suite of concern-driven architectural metrics 
 

Looking again to the Health Watcher architecture (Figure 11)3, using the 

proposed metrics (Table 1) we can now quantify, for instance, the effects of the 

exception handling concern in the architecture. After documenting the operations 

related to the exception handling concern (e.g. transactionExceptionalEvent), we 

can compute the concern-driven metrics. The results will show that the exception 

handling concern is spread over several components and interfaces. Moreover, the 

results of the Lack of Concern-based Cohesion metric for the GUI_Elements, 

Distribution_Manager and Business_Rules components will show that there is 

                                                 
3 The examples given in the metrics definitions are based on the Health Watcher 

architecture, thus we repeat this figure here to make it easier to the reader to refer to it.  
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more than one concern present in each of those components. In this way, the 

architect will be warned that in the Business_Rules component, for instance, 

besides the business concern, there are other concerns contributing for the 

complexity of the component. 

 

4.3.1. 
Metrics for Concern Diffusion 

This section defines the proposed metrics for concern diffusion, namely 

Concern Diffusion over Architectural Components (CDAC), Concern Diffusion 

over Architectural Interfaces (CDAI), and Concern Diffusion over Architectural 

Operations (CDAO). They are based on the notion of concern representation 

presented in Section 4.2. These metrics are defined on counting, for each 

architectural concern, the number of architecture elements assigned to it. They are 

devoted to calculate the degree to which a single concern in the system maps to 

distinct architectural elements. 
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Figure 11: Simplified representation of the Health Watcher system architecture 

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA



 77 

  

The assumption behind this category of metrics is that a concern spread over 

a high number of design elements is detrimental to modularity. The understanding 

of a highly spread concern demands the understanding of a large part of the 

design. In addition, a change related to that concern may affect a large number of 

design elements. Therefore, these metrics aim at identifying highly scattered 

concerns, and quantifying its potential influence in the design. 

 

Concern Diffusion over Architectural Components (CDAC) 

Definition 9: Concern Diffusion over Architectural Components (CDAC). 

CDAC for a concern con counts the number of components in the architecture 

entirely assigned to con. The counting also includes the number of components 

where there is at least one interface assigned to con, and the number of 

components where there is at least one operation assigned to con. 

 

Formal Definition of CDAC: Let S be the architecture of a system, and con 

∈ Con(S) be a concern in S, CDAC is represented as: 

U)()( conCconCDAC =  
{ }UI ∅≠∧∈ )()()(| conIcISCcc  
{ }∅≠∧∈ )()()(| conOcOSCcc I  

 

Example. According to Figure 11, the value of CDAC for the persistence 

concern is five. This because this concern is present in: (i) the 

Transaction_Control and Data_Manager components, (ii) the useTransaction 

interface of the Business_Rules component, (iii) the two persistence-related 

operations in the distributedSavingService interface of the Distribution_Manager 

component, and (iv) the two persistence-related operations in the saveEntity 

interface of the GUI_Elements component (not shown in the figure). Therefore, 

the persistence component is spread over five components. 

 

Concern Diffusion over Architectural Interfaces (CDAI) 

Definition 10: Concern Diffusion over Architectural Interfaces (CDAI). 

CDAI for a concern con counts the number of interfaces in the architecture 

entirely assigned to con. This includes the interfaces of components entirely 
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assigned to con, plus the number of interfaces where there is at least one operation 

assigned to con. 

 

Formal Definition of CDAI: Let S be the architecture of a system, and con ∈ 

Con(S) be a concern in S, CDAI is represented as: 

{ }∅≠∧∈= )()()(|)()( conOiOSIiiconIconCDAI IU . 

 

Example. According to Figure 11, the CDAI value for the persistence 

concern is nine as four interfaces are entirely assigned to it – transService, 

initPersistenceService, savingInfoService and useTransaction, and there are also 

operations assigned to it in five interfaces: saveInfo, savingService, 

saveDistributedEntity, distributedSavingService and saveEntity. 

 

Concern Diffusion over Architectural Operations (CDAO) 

Definition 11: Concern Diffusion over Architectural Operations (CDAO). 

CDAO for a concern con counts the number of operations in the architecture 

assigned to con (which includes the operations of interfaces entirely assigned to 

con).  

 

Formal Definition of CDAO: Let S be the architecture of a system, and con 

∈ Con(S) be a concern in S, CDAO is represented as: 

)()( conOconCDAO = . 

 

Example. In Figure 11, CDAO for the persistence concern counts all the 

operations in the interfaces of the Data_Manager and Transaction_Control 

components, plus all the operations in the useTransaction operation, and plus the 

repositoryExceptionalEvent and transactionExceptionalEvent operations in the 

five interfaces that handle persistence-specific exceptional events. 

 

4.3.2. 
Metrics for Interaction between Concerns 

The measures for interaction between concerns are defined based on the 

kinds of concern interactions defined in Section 4.2.2. These metrics target at 
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assessing concern dependences caused by concerns that are not well modularized, 

and, as a consequence, do not have well defined boundaries. They deal with 

interaction between concerns which are not introduced by the dependence 

between components. 

The assumption behind this category of metrics is that much of the 

dependence between concerns does not occur only by means of dependence 

between components. Some concerns are not entirely encapsulated by components 

and do not have well defined boundaries. These concerns may somehow influence 

other concerns with which they share design elements. A change in one of these 

interacting concerns may ripple effects to the other. Therefore, concern that 

interacts with a large number of other concerns is detrimental to modularity. 

 

Component-level Interlacing Between Concerns (CIBC) 

Definition 12: Component-level Interlacing Between Concerns (CIBC). 

CIBC for a concern con counts the number of other concerns with which con is 

interlaced at the component level (Component-level Interlacing – see Definition 6 

in Section 4.2.2).  

 

Formal Definition of CIBC. Let S be the architecture of a system, and con ∈ 

Con(S) be a concern in S, CIBC is represented as:   

{ })',(}{)('|')( conconnterlacedComponentIconSConconconconCIBC ∧−∈= . 

 

Example. In Figure 11, the CIBC value for the business concern is one 

because it is interlaced with the persistence concern at the component level, since 

the Business_Rules component include an interface entirely dedicated to 

persistence (useTransaction interface). 

 

Interface-level Interlacing Between Concerns (IIBC) 

Definition 13: Interface-level Interlacing Between Concerns (IIBC). IIBC 

for a concern con counts the number of other concerns with which con is 

interlaced at the interface level (Interface-level Interlacing – see Definition 7 in 

Section 4.2.2). 
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Formal Definition of IIBC. Let S be the architecture of a system, con ∈ 

Con(S) be a concern in S, IIBC is represented as: 

{ })',(}{)('|')( conconnterlacedInterfaceIconSConconconconIIBC ∧−∈= . 

 

Example. In Figure 11, the IIBC value for the business concern is two, since 

there are operations assigned to the persistence and exception handling concerns 

in the savingService interface of the Business_Rules component. 

 

Operation-level Overlapping Between Concerns (OOBC) 

Definition 14: Operation-level Overlapping Between Concerns (OOBC). 

OOBC for a concern con counts the number of other concerns with which con is 

overlapped at the operation level (Operation-level Overlapping – see Definition 8 

in Section 4.2.2).  

 

Formal Definition of OOBC. Let S be the architecture of a system, con ∈ 

Con(S) be a concern in S, OOBC is represented as   

{ })',(}{)('|')( conconverlappedOperationOconSConconconconOOBC ∧−∈= . 

 

Example. In Figure 11, the OOBC value for the exception handling concern 

is two because there are operations that, besides being assigned to the persistence 

concerns, are also assigned to the distribution (communicationExceptionalEvent) 

and persistence (transactionExceptionalEvent and repositoryExceptionalEvent) 

concerns. 

 

4.3.3. 
Concern-based Cohesion 

Here we define a concern-sensitive metric for cohesion. This metric also relies on 

the mapping of the system concerns to the architecture elements. However, 

differently from the metrics presented in Sections 4.3.1 and 4.3.2, it is measured 

from the component point of view. The results of this metric are obtained per 

component, and not per concern as in the metrics defined in the previous sections. 

Our cohesion metric is defined on counting, for each component, the number of 

concerns it addresses. 
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The reasoning behind this metric is that a component that encompasses a 

large number of concerns is unstable. This is because it may suffer from effects 

coming from changes related to any of the concerns within it. 

 

Lack of Concern-based Cohesion (LCC) 

Definition 15: Lack of Concern-based Cohesion (LCC). LCC for a 

component c counts the number of concerns to which c is assigned, plus the 

number of distinct concerns to which the interfaces of c are assigned, plus the 

number of distinct concerns to which the operations in the interfaces of c are 

assigned. 

 

Formal Definition of LCC. Let S be the architecture of a system, c ∈ C(S) be 

a component in S, LCC can be represented as:   

U UUU
)( )(

)()()()(
cIi cOo

oConiConcConcLCC
∈ ∈

= . 

 

Example. In the architecture of Health Watcher (Figure 11), the LCC value 

for the Business_Rules component is three because it is assigned to three 

concerns: (i) the entire component is assigned to the business concern, (ii) its 

useTransaction interface is assigned to the persistence concern, and (iii) two 

operations in one of its interfaces are assigned to the exception handling concern. 

 

4.3.4. 
Concern-Sensitive Coupling Metric 

Our architecture metrics suite includes one concern-sensitive coupling 

metric. This metric targets at quantifying the contribution of a given concern to 

the coupling of a given component. As stated before, a component can encompass 

more than one concern. In particular, distinct interfaces of a component can 

realize different concerns. In this context, this metric is based on the assumption 

that if a given component c uses another component c’ by means of a required 

interface entirely related to a given concern, the coupling between the two 

components is due to the presence of that concern in component c. Note that 
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differently from the other metrics, the values for this metric are gathered per a pair 

of component and concern. 

The reasoning here is that the higher the number of concerns realized by a 

component, the higher the number of other components to which that component 

is coupled. This occurs because the realization of a concern by a component 

usually requires the use of other components. In this context, this metric aims at 

quantifying the amount of coupling imposed to a given component due to the 

realization of a given concern. This information may be useful, for instance, for 

the architect to analyze how much of coupling would be eliminated with the 

removal of a concern from a component. 

 

Concern-Sensitive Coupling (CSC) 

Definition 16: Concern-Sensitive Coupling (CSC). CSC for a component c 

and a concern con counts the number of distinct components used by c by means 

of required interfaces entirely assigned to con. 

 

Formal Definition of CSC. Let S be the architecture of a system, c ∈ C(S) be 

a component in S, and con be a concern in Con(S), CSC can be represented as: 

U
CIi

iUCconcCSC
∈

= )(),( , where ).()( conIcICI I=  

 

Example. In the architecture of Figure 11, the useTransaction required 

interface is the only interface entirely assigned to the persistence concern in the 

Business_Rules component. This interface is responsible for the coupling of 

Business_Rules to the component Transaction_Control. Therefore, the value of 

CSC for the Business_Rules component and the persistence concern is one 

(CSC(Business_Rules, persistence) = 1). 

 

4.3.5. 
Number of Concern Interfaces Metric 

The measurement approach includes a metric for quantifying concern-

sensitive interface complexity: Number of Concern Interfaces (NCI). The goal of 

this metrics is to quantify the contribution of a given concern to the size of a given 
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component in terms of number of interfaces. Therefore, NCI counts, for a 

component, the number of interfaces responsible for realizing a given concern.  

The motivation for using this metric is that a concern that comprises only 

few interfaces in a component (in comparison to the total number of interfaces of 

that component) might not be localized in that component. In addition, the 

information provided by this metric may be useful, for instance, for the architect 

to analyse how many interfaces would be eliminated with the removal of a 

concern from a component. 

 

Definition 17: Number of Concern Interfaces (NCI). NCI for a component c 

and a concern con counts the number of interfaces in c assigned to con.  

 

Formal Definition of NCI. Let S be the architecture of a system, c ∈ C(S) be 

a component in S, and con be a concern in Con(S), NCI can be represented as: 

)()(),( conIcIconcNCI I= . 

 

Example. In the architecture of Health Watcher (Figure 11), the 

useTransaction required interface is the only interface entirely assigned to the 

persistence concern in the Business_Rules component. Therefore, the value of 

NCI for the Business_Rules component and the persistence concern is one 

(CSC(Business_Rules, persistence) = 1). 

 

4.3.6. 
Metrics for Coupling and Interface Complexity 

Our metrics suite also includes metrics for quantifying conventional 

coupling between components and interface complexity. These metrics are 

inspired on traditional metrics already defined (Briand et al, 1993; Lung & 

Kalaichelvan, 1998; Martin, 1997). We have only adapted them to comply with 

our terminology (Section 4.2.1). The coupling metrics (Definitions 17 and 18) are 

based on definitions 3 and 4 presented in Section 4.2.1. 

The reason for including conventional metrics in our approach is that we 

believe that they can be more useful if used together with the concern-driven ones. 
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This complementary use can improve the hybrid analysis of the impact of 

different concern modularization alternatives in conventional attributes. 

 

Architectural Fan-in (AFI) 

Definition 18: Architectural Fan-in (AFI). AFI for a component c is the 

number of distinct components which use or affect c (see Definitions 3 and 4 in 

Section 4.2.1). 

 

Formal Definition of AFI. Let S be the architecture of a system, c ∈ C(S) be 

a component in S, AFI can be represented as: 

{ })'()'(|')( cACccUCcccAFI ∈∨∈= . 

 

Example. In the architecture of Health Watcher (Figure 11), the 

Business_Rules component is used only by the Distribution_Manager component. 

The Distribution_Manager is the only component which invokes operations from 

Business_Rules. Thus, the value of AFI for Business_Rules is one. 

 

Architectural Fan-out (AFO) 

Definition 19: Architectural Fan-out (AFO). AFO for a component c is the 

number of distinct components used or affected by c (see Definitions 3 and 4 in 

Section 4.2.1). 

 

Formal Definition of AFO. Let S be the architecture of a system, c ∈ C(S) 

be a component in S, AFO can be represented as: 

).()()( cACcUCcAFO U=  

 

Example. In Figure 11, the Business_Rules component uses two 

components: Transaction_Control and Data_Manager. The Business_Rules 

component invokes operations from these two components. Thus, the value 

obtained for AFO for Business_Rules is two. 
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Number of Interfaces (NI) 

Definition 20: Number of Interfaces (NI). NI for a component c counts the 

number of interfaces of c. 

 

Formal Definition of NI. Let S be the architecture of a system, c ∈ C(S) be a 

component in S, NI can be represented as: 

)()( cIcNI =  

 

Example. The component DistributionManager in Health Watcher 

architecture (Figure 11) has four interfaces: factoryFacade, 

distributedSavingService, requestDistributedFacade, and saveDistributedEntity. 

Hence, the value of NI for this component is four. 

 

Number of Operations (NO) 

Definition 21: Number of Operations (NO). NO for a component c counts 

the number of operations of all interfaces of c. 

 

Formal Definition of NO. Let S be the architecture of a system, c ∈ C(S) be 

a component in S, NO can be represented as:  

)()( cOcNO =  

 

Example. Figure 11 shows only a simplified representation of Health 

Watcher architecture. It does not show the operations of all interfaces. Therefore, 

we are not able to precisily calculate the value of NO for the components shown 

in that figure. However, just for the sake of having an example, we can assume 

that all the operations of the interface distributedSavingService are shown in the 

box on the top right. Therefore, distributedSavingService has four operations: 

save(info), transactionExceptionalEvent(), repositoryExceptionalEvent(), and 

communicationExceptionalEvent(). We can also assume that each of the other 

three interfaces of the Distribution_Manager component – factoryFacade, 

requestDistributedFacade, and saveDistributedEntity – has four operations as 

well. Therefore, the the value of NO for the Distribution_Manager component is 

16. 
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4.4. 
Classification of the Metrics 

This section aims at complementing the definition of our architecture 

metrics suite by classifying them according to the criteria of a measurement 

framework. Due to the lack of standard terminology, it is often difficult to 

determine how software metrics relate to one another (Briand et al., 1998, 1999). 

Moreover, it is also unclear what the potential uses of existing measures are and 

how different metrics might be used in a complementary manner (Briand et al., 

1998, 1999).  As a result, it is difficult for software engineers to obtain a clear 

picture of the state-of-the-art in order to select or define software measures. 

To address and clarifying our understanding of software metrics, 

measurement frameworks have been proposed to support the definition, 

comparison, and selection of software measures (Briand et al., 1998, 1999; 

Kitchenham et al., 1995, Bartolomei et al., 2006). These frameworks provide a 

series of criteria upon which properties of the metrics should be classified. 

Kitchenham et al. (1995) defined a generic measurement framework that identifies 

elementary properties for measures validation. According to their framework, one 

of the criteria that a metric definition must specify is the unit of measurement. For 

example, you may use different units to measure temperature (e.g., Fahrenheit, or 

Celsius). Likewise, code length might be measured by counting the lines of code 

or the lexical tokens in a program listing. 

Measurement frameworks specific for coupling (Briand et al., 1999) and 

cohesion (Briand et al., 1998) in object-oriented systems have also been 

developed. According to the former, one of the criteria a coupling metric must 

specify is the type of connection it considers as coupling. We have already 

mentioned this criterion in Section 2.4. Bartolomei et al. (2006) extended Briand 

and colleagues’ coupling framework (Briand et al., 1999) to deal with aspect-

oriented abstractions and new composition mechanisms. 

None of the aforementioned frameworks can be directly applied to concern-

driven measurement. They mainly lack criteria related to the mapping of concerns 

to the system modular structure (Figueiredo et al., 2008a). To cope with this 

limitation, a framework specific for concern-driven measurement (Figueiredo et 
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al., 2008a) has been developed as an adaptation of the frameworks defined by 

Kitchenham et al (1995) and Bartolomei et al (2006). 

In this context, we classify here our architecture metrics according to the 

criteria of Figueiredo and colleagues’ framework (Figueiredo et al., 2008a). This 

classification supports the software engineer in understanding our metrics and 

facilitates more rigorous decision making regarding the selection and use of them. 

Before presenting the classification, we introduce the chosen framework and 

explain each of its criteria. In order to facilitate the comprehension of the criteria, 

we use some of our own metrics as example of each criterion. In the end of this 

section, we present the classification of all architecture metrics (Table 2). 

 

4.4.1. 
Measurement Framework Criteria 

Figueiredo and colleagues’ framework (Figueiredo et al., 2008a) 

encompasses five criteria: entities of concern measurement, concern-aware 

attributes, units, concern granularity, and concern projection. We now describe 

each of the criteria in the order given above. 
 

Entities of Concern Measurement 

The entity of measurement determines the elements that are going to be 

measured. When we choose a certain element type as the entity of measurement, it 

means that we are interested in characteristics of this type and, therefore, the 

values for the metric are going to be obtained per that element type. For example, 

if we choose component, it means we are interested in concern-related 

information about components. 

Usually concern measures use concerns as the entity of measurement, but 

other selections are also possible. For example, the metrics Concern Diffusion 

over Architectural Component (CDAC) (Section 4.3.1) and Lack of Concern-

based Cohesion (LCC) (Section 4.3.3) have distinct entities of measurement. 

While CDAC has concern as entity, the entity of measurement of LCC is 

component. Although the most common entities of concern measurement are 

concern and component, other elements, such interface and operation, can be 

chosen for the definition of new metrics. It is also important to highlight that the 
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entity of measurement of the metric Concern-Sensitive Coupling (CSC) (Section 

4.3.4) is the tuple “component, concern”. 
 

Concern-Aware Attributes 

Attributes are the properties that an entity possesses. For a given attribute, 

there is a relationship of interest in the empirical world that we want to capture 

formally in the mathematical world (Kitchenham et al., 1995). For instance, if we 

observe two concerns we can say that one is more spread than the other. A 

concern measure allows us to captures the “is more spread than” relationship and 

maps it to a formal system, enabling us to explore the relationship mathematically. 

An entity possesses many attributes, while an attribute can qualify many different 

entities (Kitchenham et al., 1995). 

In the attribute selection, we may choose any property of the entity that we 

want to measure. For example, the metric Concern Diffusion over Architectural 

Components (CDAC) (Section 4.3.1) quantifies the attribute of scattering, while 

the metric Component-level Interlacing Between Concerns (CIBC) (Section 4.3.2) 

quantifies the attribute of tangling. Possible values of a measurement attribute 

include: (i) scattering, (ii) tangling, (iii) coupling, (iv) cohesion, and (v) size. 
 

Units 

A measurement unit determines how we measure an attribute. An attribute 

may be measured in one or more units, and the same unit may be used to measure 

more than one attribute (Kitchenham et al., 1995). Our architecture concern-

driven metrics have different units of measurement. For instance, the metrics 

Concern Diffusion over Architectural Components (CDAC) and Concern 

Diffusion over Architectural Operations (CDAO) (Section 4.3.1) have 

“components” and “operations” as their measurement units, respectively. The 

metric Lack of Concern-based Cohesion (LCC) (Section 4.3.3) counts the number 

of concerns addressed by a given component. Therefore, its unit of measurement 

is “concerns”. We may choose any countable elements as measurement units, for 

example, (i) concerns, (ii) components, (iii) interfaces, and (iv) operations. 
 

Concern Granularity 

The granularity of a measure is the level of detail at which information is 

gathered. The granularity factor specifies what is counted, i.e., which elements 
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aggregate values. For example, in the metric Lack of Concern-based Cohesion 

(LCC) (Section 4.3.3) the entity is component but what we count is the number of 

concerns; therefore the granularity is concern.  

The difference between element granularity and measurement unit is clear 

because all measures have to define an element to be counted. However, the 

measurement unit can either be omitted or be coarser than the granularity. Some 

metrics are defined as an equation which divides two values with the same 

measurement unit. For instance, we could have a metric defined as the quotient 

between components addressing a concern and the total components of the 

system. In this case this metric do not specify any unit of measurement. However, 

its granularity is still “component”. Possible values of element granularity are, for 

example: (i) concern, (ii) component, (iii) interface, and (iv) operation. 
 

Concern Projection 

One of the most sensitive parts in concern-driven measurement is the 

mapping of concerns onto elements in the design. Figueiredo et al (2008a) call 

this mapping as “concern projection”. At least two aspects related to concern 

projection have to be specified in a concern-driven measure definition. First, the 

level of abstraction to which the concerns have to be mapped must be specified. In 

our architecture metrics suite, for instance, a mapping of concerns to components 

is enough for computing the Concern Diffusion over Architectural Components 

(CDAC) metric (Section 4.3.1). However, the Concern Diffusion over 

Architectural Operations (CDAO) metric (Section 4.3.1) requires a mapping on 

the level of operations. Of course, CDAC also accepts a mapping to a finer level 

of abstraction such as operations. The mapping to components can be easily 

derived from the mapping to operations, as components encompass operations. 

The other aspect related to concern projection is whether or not the metric 

computation allows overlapping of concerns onto the same design element. In 

other words, the definition of a concern-driven metric should specify whether two 

or more different concerns can be projected onto the same design element. For 

instance, our Concern Diffusion over Architectural Interfaces (CDAI) (Section 

4.3.1) allows that two or more concerns are assigned to the same interface. In this 

case, this interface is counted in the result for each of the concerns assigned to it.  

Table 2 presents the classification of all our architecture metrics according to the 
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five criteria we have just described. Note that the projection criterion does not 

apply to the last four metrics, since they are not concern-driven metrics. 
 

Metric Entity Attribute Unit Granularity 

Projection: 
Level of 

Abstraction/ 
Overlapping 

Concern Diffusion 
over  Architectural 
Components (CDAC) 

Concern Scattering Components Component Component/ 
Yes 

Concern Diffusion 
over Architectural 
Interfaces (CDAI) 

Concern Scattering Interfaces Interface Interface/ 
Yes 

Concern Diffusion 
over Architectural 
Operations (CDAO) 

Concern Scattering Operations Operation Operation/ 
Yes 

Component-level 
Interlacing Between 
Concerns (CIBC) 

Concern Tangling Concerns Concern Component/ 
Yes 

Interface-level 
Interlacing Between 
Concerns (IIBC) 

Concern Tangling Concerns Concern Interface/ 
Yes 

Operation-level 
Overlapping Between 
Concerns (OOBC) 

Concern Tangling Concerns Concern Operation/ 
Yes 

Lack of Concern-based 
Cohesion  (LCC) Component Tangling Concerns Concern Component/ 

Yes 

Concern-Sensitive 
Coupling (CSC) 

(Component, 
Concern) Coupling Components Component Interface/ 

Yes 

Number of Concern 
Interfaces (NCI) 

(Component, 
Concern) Size Interfaces Interface Interface/ 

Yes 
Architectural Fan-in 
(AFI) Component Coupling Components Component n/a 

Architectural Fan-out 
(AFO) Component Coupling Components Component n/a 

Number of Interfaces 
(NI) Component Size Interfaces Interface n/a 

Number of Operations 
(NO) Component Size Operations Operation n/a 

 

Table 2: Classification of our architecture metrics according to Figueiredo and colleagues’ 

measurement framework (Figueiredo et al., 2008a) 

 

4.5. 
Related Work 

The most closely related works to our concern-driven architectural metrics 

are suites of metrics also developed to capture information about concerns 

traversing one or more structural modularity units (Sant’Anna et al., 2003; 

Ducasse et al., 2006; Wong et al., 2000; Eaddy et al., 2007). However, the main 

difference from these metrics to our architecture metrics is that almost all of them 
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are defined upon abstractions of implementation or detailed design level. As a 

consequence, they cannot be applied at early stages of software design. The only 

exception is the metrics proposed Ducasse et al (2006). Their metrics rest on a 

very generic representation model, which has to be mapped to the software design 

representation model to be assessed. 

In addition, most of these metrics are only devoted to quantifying concern 

scattering. There is only one exception that is a metric proposed by Sant’Anna et 

al (2003), which measures tangling among concerns in terms of lines of code. In 

the following, we give a brief description of each of these metrics and when 

necessary we discuss some specific limitation beyond the ones aforementioned. 

 

4.5.1. 
Metrics by Sant’Anna et al. 

Sant’Anna et al (2003) defined three metrics for assessing separation of 

concerns in aspect-oriented detailed design and code: Concern Diffusion over 

Components (CDC), Concern Diffusion over Operations (CDO), and Concern 

Diffusion over Lines of Code (CDLOC)4. In fact, the first two metrics directly 

inspired the definition of our architectural metrics for concern diffusion (Section 

4.3.1). In addition, we use CDC in our heuristic rules for assessment of detailed 

design modularity (Section 5.4). 

 Concern Diffusion over Components (CDC) counts the number of classes 

and aspects whose main purpose is to contribute to the implementation of a given 

concern. These classes and aspects are called as the primary components of the 

concern. Furthermore, CDC counts the number of classes, interfaces and aspects 

that access the primary components by calling their methods, or using them in 

attribute declarations, formal parameters, return types, “throws” declarations or 

local variables. The CDC metric enables the designer to assess the degree of 

concern scattering. 

Concern Diffusion over Operations (CDO) counts the number of methods 

and pieces of advice whose main purpose is to contribute to the implementation of 

a given concern. In addition, it counts the number of methods and pieces of advice 

                                                 
4 These metrics are not contribution of this thesis. They were proposed in the context of 

Sant’Anna’s master dissertation. 
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that access any primary component of the concern by accessing their attributes, 

calling their methods or using them in formal parameters, return types, throws 

declarations and local variables. Constructors also are counted as operations. The 

goal of CDO is quantify the scattering of a concern in terms of how many 

operations are affected by it. 

Concern Diffusion over Lines of Code (CDLOC) counts the number of 

transition points for each concern through lines of code. The use of this metric 

requires a shadowing process that separates the code into shadowed areas and 

non-shadowed areas. The shadowed areas conform to lines of code that implement 

a given concern. Transition points are the points in the code where there is a 

transition from a non-shadowed area to a shadowed area and vice-versa. The 

intuition is that they are points in the program text where there is a “concern 

switch”. Figure 12 illustrates the occurrence of transition points (or concern 

switch). For each concern, the program text has to be analyzed line by line in 

order to count transition points. This is a measure of tangling of the assessed 

concern with the other concerns in the system. 

 

public class Point  
implements Subject {  

     
    private HashSet observers; 
          
    private int x; 
    private int y; 
     
    public Point(int x, int y) { 
     this.x=x; 
 this.y=y; 
     this.observers = new HashSet(); 
    } 
 
    public int getX() { return x; } 
    public int getY() { return y; } 
 
    public void setX(int x) {  
        this.x=x;  
        notifyObservers(); 
    } 
 
    public void setY(int y) {  
        this.y=y;  
        notifyObservers(); 
    } 
 
    public void addObserver(Observer o) { 
        this.observers.add(o); 
    } 
     
    public void removeObserver(Observer o) { 
        this.observers.remove(o); 
    } 
     
    public void notifyObservers() { 
        for (Iterator e = observers.iterator() ; e.hasNext() ;) { 
            ((Observer)e.next()).update(this); 
        } 
    } 
} 

concern 
switch

concern 
switch

concern 
switch

concern 
switch

concern 
switch

concern 
switch

concern 
switch

concern 
switch

concern 
switch

concern 
switch

 
Figure 12: Transition points 
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4.5.2. 
Metrics by Ducasse et al. 

Ducasse et al (2006) proposed a very generic technique, called Distribution 

Map, to visualize and analyze properties of a system. Based on this technique, 

they defined two concern-driven measures: Spread and Focus. Their visualisation 

approach is composed of large rectangles containing small squares in different 

colours (Figure 13). The rectangles and boxes represent the system design 

structure. They call this representation as reference partition. The large rectangles, 

for instance, can be used to represent classes, whereas small squares can 

correspond to internal members of classes (operation and attributes). The colours 

filling the small squares represent mutually exclusive properties associated with 

elements of the system. They call this representation as comparison partition. In 

the context of concern-driven metrics, the comparison partition elements, i. e. the 

colours, represent the concerns of the system. 

 

Part 2Part 1 Part 3 Part 4

Part 5

 
Figure 13: Distributed Map 

 

In order to describe their metrics, let P denotes the reference partition, and 

Q denotes the comparison partition. Thus they say that each software artefact si 

belongs to a part pn of P and is attributed with a property qm of Q. In the case of 

concern-driven assessment of object-oriented design, si represents a method or 

attribute, pn denotes a class, and qm represent a concern. On the visualization 

(Figure 13), for each part pn there is a large rectangle and within that rectangle, for 

each element si ∈ pn there is a small square whose colour refers to the property qm 

attributed to that element. 
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In order to define the metrics, Ducasse et al (2006) first define that the set of 

elements in part p ∈ P that have property q is the intersection between property q 

and part p. The relative size of q ∩ p in relation to p is denoted as: 

p
pq

pqtouch
I

=),( . 

 

The metric spread of a property q over P is defined as the number of 

“touched” parts: 

∑
∈ ⎩
⎨
⎧

=
>

=
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i

i
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Therefore, the spread metric counts the number of rectangles containing squares 

filled by the colour the represents the property q. In the context of object-oriented 

design, this metric counts the number of classes with attributes or methods which 

concern q is assigned to. Thus, spread is similar to the Concern Diffusion over 

Components (CDC) metric (Section 4.5.1) 

The other metric defined by Ducasse et al (2006) is called focus: 

∑
∈

×=
Pp

ii
i

qptouchpqtouchPqfocus ),(),(),(  

The focus is a number between 0 and 1 and measures the distance between the 

property q and the partition P: the larger the number, the more the parts touched 

by q are touched entirely by q. Although not specific for concern-driven 

measurement, Ducasse et al (2006) metrics suite can be consider as devoted to 

quantify concern scattering. However, the visualization approach upon which they 

are defined brings an important limitation. Each small square can only be filled by 

one color, which means that a design element (e.g. method) can only have one 

concern assigned to it. Nevertheless, in many cases, an element of software design 

can be responsible for addressing more than one concern simultaneously.   

 

4.5.3. 
Metrics by Wong et al. 

Wong et al (2000) introduced three concern measures, namely Disparity, 

Concentration, and Dedication. Disparity measures how many “blocks” related to 

a feature are localized in a particular component. For the authors, a component 
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can have many different meanings, depending on the system being analyzed (e.g. 

a single file, a group of files, a single function, or a group of functions). A feature 

is the functionality exercised by a given input and a block is a sequence of 

consecutive statements, so that if one statement is executed, all are (Wong et al., 

2000). The more blocks in either a component c or a feature f, but not in both, the 

larger the disparity between c and f. Concentration and Dedication are also 

defined in terms of blocks and they quantify how much a feature is concentrated 

in a component and how much a component is dedicated to a feature, respectively. 

Concentration (CONC(f, c)) measures how many of the blocks related to a feature 

f are contained within a specific component c, and is defined as: 

 

 Dedication (DEDI(f, c)) measured how many of the blocks contained 

within a component c are related to a feature f, and is defined as: 

 

 

4.5.4. 
Metrics by Eaddy et al. 

Eaddy et al (2007) presented two concern metrics based on lines of code 

that capture different facets of concern concentration and component dedication: 

Degree of Scattering and Degree of Focus. These metrics are defined based on 

Wong and colleagues’ metrics (Section 4.5.3). However, instead of using the term 

“feature”, Eaddy et al use the term “concern”. In addition, instead of using the 

concept of “blocks”, they use lines of codes in the definition of their metrics. 

Therefore, the application of their metrics demands the mapping of concerns to 

the source lines of code. 

Degree of Scattering (DOS) is defined based on Wong and colleagues’ 

Concentration metric (Section 4.5.3). DOS is a measure of the variance of the 

concentration of a concern over all components with respect to the worst case 

(i.e., when the concern is equally scattered across all components). Let C be a set 

of components, and con be a concern. DOS(con) is defined as: 

CONC(f, c) = 
blocks in component c related to feature f

blocks related to feature f

DEDI(c, f) = 
blocks in component c related to feature f

blocks in component c 
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Degree of Focus (DOF) is defined based on Wong and colleagues’ 

Dedication metric (Section 4.5.3). DOF is a measure of the variance of the 

dedication of a component to every concern with respect to the worst case (i.e. 

when the component is equally dedicated to all concerns). Let Con be a set of 

concerns, and c be a component. DOF(c) is defined as: 
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Table 3 classifies the metrics described in the section according to Figueiredo and 

colleagues’ measurement framework (Figueiredo et al., 2008a). 

 

Metric Entity Attribute Unit Granularity  
Projection: Level 
of Abstraction/ 

Overlapping 
Concern 
Diffusion over 
Components 
(CDC) 

Concern Scattering Components Component 
(classes/aspects) 

Component/ 
Yes 

Concern 
Diffusion over 
Operations 
(CDO) 

Concern Scattering Operations 
Operation 

(methods/pieces of 
advice) 

Operation/ 
Yes 

Concern 
Diffusion over 
LOC (CDLOC) 

Concern Tangling Concern 
Switches Line of Code Line of Code/ 

Yes 

Spread Concern Scattering Parts Part (Rectangle) 
Part element (small 

square)/ 
No 

Focus Concern Scattering None Part element (small 
square) 

Part element (small 
square)/  

No 

Disparity Concern, 
Component Scattering None Block of statements

Block of 
statements/ 

Yes 

Concentration 
(CONC) Concern Scattering None Block of statements

Block of 
statements/  

Yes 

Dedication 
(DEDI) Component Scattering None Block of statements

Block of 
statements/  

Yes 
Degree of 
Scattering (DOS) Concern Scattering None Line of Code Line of Code/ 

No 

Degree of Focus 
(DOF) Component Scattering None Line of Code Line of Code/ 

No 

 

Table 3: Classification of related metrics according to Figueiredo and colleagues’ 

measurement framework (Figueiredo et al., 2008a) 
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