
 97

5
Concern-Driven Design Heuristic Rules

The main issue in working with metrics is how we should deal with

measurement results (Lanza & Marinescu, 2006). How can all those numbers help

us improve the quality of our software? Usually a metric alone cannot help very

much in answering this question and therefore metrics should be used in

combination to provide relevant information. The question is: how should we

combine metrics in order to make them serve our purposes?

In Section 2.5, we introduced the concept of design heuristic rules as a

means to support the interpretation of design metrics and, as a consequence,

increase their usefulness. Heuristic rules provide the engineer with information

that is useful in the context of an investigation goal, in particular, an investigated

design flaw. The main goal of design heuristic rules is to provide the engineers

with a mechanism that allows them to work with metrics in a way conceptually

much closer to the real intentions in using metrics.

A design heuristic rule is a logical expression based on metrics by means of

which design fragments presenting specific problems can be detected. One of the

main goals of this work is to propose design heuristic rules to support the

detection of modularity-related problems in object-oriented or aspect-oriented

detailed design. These rules will help software engineers to find the design

fragments that are negatively affected by the poor modularization of concerns.

Currently, conventional object-oriented metrics (Section 2.4) are the basis

upon which existing design heuristics rules are defined (Section 2.5). However,

these metrics are limited by the fact that they are not driven by the system

concerns. As a consequence, modularity assessment based on existing rules is

impaired by limitations similar to the ones presented by conventional metrics

(Section 1.2).

In this context, we propose a suite of concern-sensitive design heuristic

rules that aims at supporting the modularity assessment of both object and aspect-

oriented detailed design. In addition to concern-driven metrics, the detailed design

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 98

assessment process was enhanced with more expressive heuristic rules. The main

reason for that is because our previous experience in design measurement

(Sant’Anna et al., 2003, 2004; Kulesza et al., 2006; Garcia et al., 2004a, 2005,

2006; Figueiredo et al., 2008b; Greenwood et al., 2007a; Cacho et al., 2006a) has

shown that the data set obtained by applying concern-sensitive metrics to detailed

design artifacts is usually large. This occurs due to the high number of detailed

design elements (classes, aspect, methods, attributes, and so forth), when

compared to the number of high-level elements defined in the architectural design.

Therefore, mechanisms to support results interpretation, such as heuristic rules,

are even more important in detailed design assessment.

This chapter defines our suite of concern-driven design heuristic rules. First,

we point out the limitations of related work (Section 5.1). Section 5.2 depicts the

model of concern representation, upon which the detailed design metrics are

defined. Section 5.3 presents the suite of metrics used in the definition of the

proposed rules. It includes concern-driven metrics and conventional metrics.

Finally, Section 5.4 describes the proposed concern-driven design heuristic rules.

5.1.
Limitation of Conventional Heuristic Rules

To the best of our knowledge there is no suite of heuristic rules based on

concern-driven metrics so far. Thus, within the area of software measurement, the

most closely related work to ours is heuristic rules based on conventional object-

oriented metrics, herein called as conventional heuristic rules, such as the ones

proposed by Marinescu (2002, 2004).

In order to synthesize the main point of our criticism about conventional

heuristic rules, we point out the limitations of one of Marinescu’s rules

(Marinescu, 2002, 2004). To this end, we analyze the effectiveness of the rule in

the light of the detailed design showed in Figure 14. This figure presents a partial

representation of the object-oriented design of an OpenOrb-compliant middleware

system (Cacho et al, 2006a, 2006b, 2007), used in the evaluation of our rules

(Section 8.1). Figure 14 also shows the design elements related to the Observer

design pattern (Gamma, 1995). The Observer pattern is the concern analyzed in

the example.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 99

The analyzed rule aims at detecting a specific kind of modularity flaws,

namely Shotgun Surgery bad smell (Fowler, 1999). Bad Smells are proposed by

Kent Beck in Fowler’s book (Fowler, 1999) to diagnose symptoms that may be

indicative of something wrong in the design. According to Fowler (1999), the

Shotgun Surgery bad smell is encountered when every time you make a kind of

change, you also have to make a lot of little changes to a lot of different classes.

When the changes are all over the place, they are hard to find, and it is easy to

miss an important change. Thus, this design flaw strongly affects the design

modularity.

The reason for choosing Shotgun Surgery as illustrative is because it is

believed to be a symptom of design flaws caused by a poor modularization of

concerns (Monteiro & Fernandes, 2005). Therefore, it might be avoided with the

use of aspects. Monteiro & Fernandes (2005) claim that Shotgun Surgery is a

symptom of crosscutting concern that can be solved by using the aspect-oriented

refactoring Extract Feature into Aspect proposed in their work.

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

refresh()

<<interface>>
MetaObserver

refresh()

<<interface>>
MetaObserver state

getInstanceName()

MetaObject
state
getInstanceName()
state
getInstanceName()

MetaObject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

nextPreHandler
nextPosHandler

addPreMethod()
addPostMethod()
handlePreMethods()
handlePostMethods()

MetaObjEncapsule

graph

createGraph()
rebind()
refresh()

MetaObjComposite

graph

createGraph()
rebind()
refresh()

MetaObjComposite

graph

createGraph()
rebind()
refresh()

MetaObjComposite

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

Legend:
Observer pattern

refresh()

Figure 14: Design slice of an OpenOrb-compliant middleware system (Cacho et al,

2006a, 2006b, 2007).

In Section 2.5, we already presented the definition of Marinescu’s heuristic

rule for detecting Shotgun Surgery. We repeat it here in order to facilitate

referring to it during the following discussion. This rule is based on two

conventional coupling metrics. It is defined as follows (Marinescu, 2002):

Shotgun Surgery := ((CM, TopValues(20%)) and (CC, HigherThan(5)),

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 100

where CM stands for the Changing Method metric (Marinescu, 2004), which

counts the number of distinct methods that access an attribute or call a method of

the given class. CC stands for the Changing Classes metric (Marinescu, 2002),

which counts the number of classes that access an attribute or call a method of the

given class. TopValues and HigherThan are filtering mechanisms parameterized

with a value representing the threshold. Therefore, the Shotgun Surgery heuristic

states that a class is suspect of having shotgun surgery whether it presents one of

the 20% highest values for CM and has CC value higher than five. Note that this

rule must be applied for each class in the design.

Applying CC and CM to the design in Figure 14, we obtain CC = 0 and CM

= 15 for the MetaSubject interface (Figure 14). Based on these values and

computing Marinescu’s heuristic for Shotgun Surgery, this interface is not

regarded as a suspect of a bad smell. This occurs because CC is 0, as no class in

the system directly accesses MetaSubject. Nevertheless, this interface can be

clearly considered as Shotgun Surgery because changes on its methods would

trigger many other changes in every class implementing it and potentially in

classes calling its overridden methods. For instance, a rename of the

addObserver() method in the MetaSubject interface causes updates to the classes

Component and ConcreteBind (Figure 14) and to several other classes which call

addObserver().

This example aims at showing how conventional heuristic rules are limited

to point out the overall influence of a concern – the Observer design pattern in this

case – in other parts of the design. In particular, Marinescu’s rule was not able to

detect that a significant number of classes include design elements related to the

Observer pattern and, as a consequence, that they could be affected due to a

change in this concern. Hence, Marinescu’s rule could not highlight the complete

impact of the Observer pattern because it considers only measures based on class

and method abstractions.

5.2.
Concern Representation at Detailed Design

The metrics presented here are also rooted at a concern-to-design mapping

in the same way as the architectural concern-driven metrics (Chapter 4). However,

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 101

instead of being mapped to architectural design elements, here the concerns are

assigned to detailed design elements, such as classes, aspects, methods, attributes,

and pieces of advice. It is important to bear in mind that the metrics can be applied

to both object-oriented and aspect-oriented designs. Therefore, the concern

representation is defined upon the set of aspect-oriented detailed design

abstractions, as it also encompasses all the object-oriented abstractions.

5.2.1.
Detailed Design

Before defining the metrics, we describe in this section the abstractions and

composition mechanisms we consider as detailed design elements in this thesis.

We will focus only on the elements which are essential to the definition of our

metrics.

Components, Attributes and Operations

An aspect-oriented detailed design of a system consists of a set of classes

and aspects. For generality purposes, the classes and aspects of a detailed design S

are called as components and denoted by C(S). Each component c consists of a set

of attributes, denoted as A(c), and a set of operations, represented as O(c). In

classes, operations are methods, and, in aspects, operations represent methods and

pieces of advice. For notational convenience, we also define:

(i) the members of a component c, represented as)()()(cOcAcM U= ,

(ii) the set of all attributes of a system, represented as U
)(

)()(
SCc

cASA
∈

= ,

(iii) the set of all operations of a system, represented as U
)(

)()(
SCc

cOSO
∈

= .

It is important to highlight that although the term component is used at both

architectural and detailed design representations, it represents different

abstractions in each context. In the detailed design context, a component is either

a class or an aspect. In architectural design, a component is an abstraction of the

component-and-connector viewtype, as described in Section 4.2.1. Similar

reasoning applies to the term operation, which represents either a method or a

piece of advice in the detailed design context.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 102

Inter-component Connections

In Section 2.4, we have described a list of possible types of connections

between classes summarized by Briand et al (1999). Our concern-sensitive

coupling metrics (Section 5.3.4) take into account two of those connections: (i) a

method of class d references an attribute of class c, and (ii) a method of class d

invokes a method of class c. Actually, our metrics take into account versions of

these type of connections tailored to aspect-oriented design: (i) an operation

(method or advice) of a component (class or aspect) d references an attribute of

component c, and (ii) an operation of a component d invokes a method of

component c.

We define, therefore, the set of components which have an attribute

referenced by a given operation o as RC(o). Let S be the detailed design of a

system, c ∈ C(S) be a component of S, o ∈ O(c) be an operation of c. Then c’ ∈

RC(o) ⇔ c’ ∈ C(S) – {c} ∧ ∃a ∈ A(c’) such as o references a.

We also define the set of components which have a method invoked by an

operation o as IC(o). Let S be the detailed design of a system, c ∈ C(S) be a

component of S, o ∈ O(c) be an operation of c. Then c’ ∈ IC(o) ⇔ c’ ∈ C(S) –

{c} ∧ ∃o’ ∈ O(c’) such as o invokes o’. These two sets will be used in the

definition of our concern-sensitive coupling metrics (Section 5.3.4).

Intra-component Connections

One of our concern-sensitive couplings is defined upon intra-component

connections, which represent connections between internal members of a

component. This metric takes into account two types of intra-component

connections: (i) an operation o of a given component references an attribute of the

same component, and (ii) an operation o of a given component invokes a method

of the same component.

In this context, we define the set of attributes referenced by a given

operation o as RA(o). Let S be the detailed design of a system, c ∈ C(S) be a

component of S, o ∈ O(c) be an operation of c. Then a ∈ RA(o) ⇔ a ∈ A(c) and o

references a.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 103

We also define the set of operations invoked by a given operation o as

IO(o). Let S be the detailed design of a system, c ∈ C(S) be a component of S, o ∈

O(c) be an operation of c. Then o’ ∈ IO(o) ⇔ o’ ∈ O(c) – {o} and o invokes o’.

Design Concern

With the definition of the detailed design elements that is considered in our

approach, it is possible to define the notion of concern representation in detailed

design (or simply, design concern). A design concern con consists of a list of

detailed design elements assigned to it. These elements can be components

(classes or aspects), operations (methods or pieces of advice), or attributes. A

design element can be responsible for totally or partially realizing more than one

concern. Therefore, a design element can be assigned to more than one concern.

Let S be the detailed design of a system, for each c ∈ C(S), the set of

concerns to which c is assigned is denoted as Con(c). Let o ∈ O(c) be an operation

of c, the set of concerns to which o is assigned is denoted as Con(o). Let a ∈ A(c)

be an attribute of c, the set of concerns to which a is assigned is denoted as

Con(a). Con(S) is the set of all concerns in the design and is represented as:

UU U UU
)()()(

)()()()(
SAaSCc SOo

aConoConcConSCon
∈∈ ∈

=

Let S be the detailed design of a system, for each con ∈ Con(S), the set of

components assigned to con is denoted as:

)}()(|{)(cConconSCccconC ∈∧∈= .

Similarly, the set of operations assigned to con is denoted as:

)}()(|{)(oConconSOooconO ∈∧∈= .

The set of attributes assigned to con is denoted as:

)}()(|{)(aConconSAaaconA ∈∧∈= .

Finally, the set of members assigned to con is denoted as:

)()()(conOconAconM U= .

5.3.
Concern-Driven Metrics for Detailed Design

The concern-driven heuristics are based on the combination of concern-

driven metrics and conventional metrics. This section presents the definition of

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 104

the concern-driven metrics used in the definition of the proposed suite of

heuristics (Section 5.4). Similarly to the architectural metrics, the used detailed

design metrics quantify different facets of relations involving concerns and design

elements which include:

• concern diffusion,

• interaction between concerns,

• concern-based cohesion,

• concern-sensitive coupling, and

• concern-sensitive size.

In the following sections, each metric is presented in terms of an informal

definition, a formal definition, and an example. We do not discuss here the

motivation behind the detailed design metrics, because the motivation behind

detailed and architectural metrics in the same category is the same, and have

already been discussed in Section 4.3. The examples are given in terms of a slice

of an OpenOrb-compliant middleware system (Cacho et al., 2006a, 2006b, 2007)

(Figure 15). Figure 15 also highlights the design elements related to two design

patterns, namely Observer and Factory Method (Gamma, 1995), which are the

assessed concerns in this example. Table 4 Error! Reference source not

found.presents a summary of the detailed design metrics suite.

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

refresh()

<<interface>>
MetaObserver

refresh()

<<interface>>
MetaObserver state

getInstanceName()

MetaObject
state

getInstanceName()

state

getInstanceName()

MetaObject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

refresh()

nextPreHandler
nextPosHandler
addPreMethod()
addPostMethod()
handlePreMethods()
handlePostMethods()

MetaObjEncapsule

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

Legend:
Observer pattern

Factory Method pattern

Legend:
Observer pattern

Factory Method pattern

Figure 15: Observer and Factory Method patterns used in the design of an OpenOrb-

compliant middleware system (Cacho et al., 2006a, 2006b, 2007).

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 105

Attribute Metric Definition

Concern
Diffusion

Concern Diffusion over
Components (CDC)

It counts the number of components (classes and
aspects) which contributes to the realization of a
given concern.

Interaction
Between
Concerns

Component-level
Interlacing Between
Concerns (CIBC)

It counts the number of other concerns with which a
given concern shares at least a component.

Concern-
based

Cohesion

Lack of Concern-based
Cohesion (LCC)

It counts the number of concerns addressed by a
given component.

Concern-Sensitive
Coupling (CSC)

It counts the number of components used by a given
component by means of operations entirely assign to
a given concern. Concern-

Sensitive
Coupling Intra-component

Concern-Sensitive
Coupling (ICSC)

It counts the number of attributes and operations of a
given component accessed by operations related to a
given concern in the same component.

Number of Concern
Operations (NCO)

It counts the number of operations of a given
component related to a given concern. Concern-

Sensitive Size Number of Concern
Operations (NCA)

It counts the number of attributes of a given
component related to a given concern.

Table 4: Summary of the suite of concern-driven detailed design metrics

5.3.1.
Concern Diffusion

Our suite of design heuristic rules uses one metric for concern diffusion:

Concern Diffusion over Components (CDC) (Sant’Anna, 1993). This metric is

similar to the Concern Diffusion over Architectural Components metric (CDAC),

defined in Section 4.3.1. In fact, CDC inspired the definition of CDAC. As

CDAC, CDC considers components whose purpose is to totally or partially

contribute to the realization of a particular concern, enabling the designer to assess

the degree of concern scattering.

CDC for a given concern con counts the number of components (classes and

aspects) in the system design entirely assigned to con. The counting also includes

the number of components where there is at least one attribute assigned to con,

and the number of components where there is at least one operation assigned to

con.

Formal Definition of CDC: Let S be the detailed design of a system, and con

∈ Con(S) be a concern in S, CDC can be represented as:

U)()(conCconCDC =
 (){ }UI ∅≠∧∈)()()(| conOcOSCcc
 (){ }∅≠∧∈)()()(| conAcASCcc I

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 106

Example: Figure 15 shows that the Factory Method pattern is present in six

components: MetaObject, MetaObjFactory and respective subclasses. Therefore,

the value of the CDC metric for the Factory Method concern is six.

5.3.2.
Interaction between Concerns

The metric for interaction between concerns used in our heuristic rules is

Component-level Interlacing between Concerns (CIBC). This metric is very

similar to the architectural metric with the same name (Section 4.3.2). Both

metrics have the same goal which is quantifying interaction between concerns

which are not introduced by the dependence between components. Hence, CIBC

indicates for a given concern the level of tangling in terms of how many concerns

it interlaces with.

CIBC for a concern con counts the number of other concerns with which

con is interlaced at the component level. A concern con is interlaced at the

component level with another concern con’ if con and con’ have one or more

components in common. At the detailed design level, this situation occurs in one

of the following ways:

(i) a component is assigned to both con and con’, or

(ii) a component is assigned to con, and at least one member (attribute or

operation) of the same component is assigned to con’, or

(iii) at least one member of a component is assigned to con, and at least one

member of the same component is assigned to con’.

Formal Definition of CIBC. In order to represent that two concerns are

interlaced at the component-level, we define the Boolean function

ComponentInterlaced(con, con’), where con ∈ Con(S) and con’ ∈ (Con(S) – con),

as:

∨∈∈∃⇔))'(:)(()',(conCcconCcconconnterlacedComponentI

∨∈∈∃∈∃))'(:)(:)((conMmcMmconCc

))'(':)(:)(':)(:)((conMmconMmcMmcMmSCc ∈∈∈∃∈∃∈∃ .

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 107

Let S be the detailed design of a system, and con ∈ Con(S) be a concern in

S, CIBC can be represented as:

{ })',(}{)('|')(conconnterlacedComponentIconSConconconconCIBC ∧−∈= .

Example: Figure 15 shows that the CIBC value is 1 for both Factory Method

and Observer design patterns because these two concerns only interlace with each

other. Component-level interlacing between Observer and Factory Method occurs

in the classes Component, ConcreteBind, MetaObjEncapsule, and

MetaObjComposite.

5.3.3.
Concern-based Cohesion

Another metric used in our suite of design heuristic rules is Lack of

Concern-based Cohesion (LCC). The definition of LCC is similar to the definition

of the architectural metric with the same name (Section 4.3.4). The goal of this

metric is to support designers on the observance of intra-component tangling

degree. Thus, it counts for a given component the number of concerns it totally or

partially implements.

LCC for a component c counts the number of concerns which c is assigned

to, plus the number of distinct concerns which the operations of c are assigned to,

plus the number of distinct concerns which the attributes of c are assigned to.

Formal Definition of LCC. Let S be the detailed design of a system, c ∈

C(S) be a component in S, LCC can be represented as:

U UUU
)()(

)()()()(
cOo cAa

aConoConcConcLCC
∈ ∈

= .

Example: The value of LCC for the MetaObjComposite is two (Figure 15),

since this component encompasses the concerns of both Factory Method and

Observer patterns.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 108

5.3.4.
Concern-Sensitive Coupling

Our detailed design rules encompasses two metrics for concern-sensitive

coupling: Concern-Sensitive Coupling (CSC), and Intra-Component Concern-

Sensitive Coupling (ICSC). Analogously to the architectural metric with the same

name, CSC aims at quantifying the contribution of a given concern to the coupling

of a given component with other components. This metric is based on the

assumption that if a component c has a method entirely related to a concern con,

and that method calls a method or references an attribute of another component c’,

the coupling between c and c’ is due to the presence of the concern con in the

component c. Again, it is important to note that the values for this metric are

gathered per a pair of component and concern.

Therefore, CSC for a component c and a concern con counts the number of

distinct components which have a method invoked or an attribute referenced by c

by means of an operation entirely assign to con.

Formal Definition of CSC. Let S be the detailed design of a system, c ∈

C(S) be a component in S, and con be a concern in Con(S), CSC can be

represented as:

UU U
),(),(

)()(),(
concCOoconcCOo

oRCoICconcCSC
∈∈

= , where).()(),(conOcOconcCO I=

The sets IC(o) and RC(o) are defined in Section 5.2.1 and represent the

components which have an operation invoked and an attribute referenced by an

operation o, respectively.

Example: In the design of Figure 15, the value of CSC for the class

ConcreteBind and the concern Observer (CSC(ConcreteBind, Observer)) is one.

This occurs because the MetaObserver interface is the only component accessed

by methods of ConcreteBind related to the Observer pattern: the notifyObservers()

method of ConcreteBind invokes the method refresh() of MetaObserver.

Sequence diagrams or source code are needed for applying CSC, as well as ICSC.

In the case of this example, we used the source code.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 109

The metric Intra-Component Concern-Sensitive Coupling (ICSC) is targeted

at quantifying how different concerns are coupled to each other within a given

component. The intra-component coupling of a given concern con within a given

component c is measured in terms of the amount of operations and attributes

related to other concerns within c are invoked and referenced by operations

assigned to con.

The assumption behind this metric is that the higher the coupling of a

concern to other concerns within a component, the harder it is to remove that

concern from that component. A concern with a high intra-component coupling

indicates that changing the design in order to remove that concern from the

component could lead to a worse design alternative. This could occur because the

concern strongly depends on information about other concerns within the

component.

ICSC for a component c and a concern con counts the number of internal

operations and attributes related to other concerns are invoked and referenced by

operations assigned to con.

Formal Definition of ICSC. Let S be the detailed design of a system, c ∈

C(S) be a component in S, and con be a concern in Con(c), ICSC can be

represented as:

+∉∧∈=
∈
U

),(

)},(')('|'{),(
concCOo

concCOooIOooconcICSC

 U
),(

)},()({
concCOo

concCAaoRAa
∈

∉∧∈ ,

where)()(),(conOcOconcCO I= and)()(),(conAcAconcCA I=

The sets IO(o) and RA(o) are defined in Section 5.2.1 and represent the

internal operations and attributes accessed by an operation o, respectively.

Example: In the design of Figure 15, the value of ICSC for the class

MetaObjComposite and the concern Observer (ICSC(MetaObjComposite,

Observer)) is one. The reason for that value is because only one attribute of

MetaObjComposite not related to the Observer pattern is referenced by methods

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 110

assigned to this pattern: the refresh() method of ConcreteBind references the

attribute graph.

5.3.5.
Concern-Sensitive Size

Two metrics for concern-sensitive size are used in our suite of design

heuristic rules: Number of Concern Operations (NCO), and Number of Concern

Attributes (NCA). The goal of these metrics is to quantify the contribution of a

given concern to the size of a given component in terms of number of operations

and attributes. Therefore, NCO and NCA count the number of operations and

attributes, respectively, responsible for realizing a given concern.

NCO for a component c and a concern con counts the number of operations

in c assigned to con. Similarly, NCA for a component c and a concern con counts

the number of attributes in c assigned to con. The motivation for using these

metrics is that a concern that comprises only few operations and attributes in a

component might not be localized in that component.

Formal Definition of NCO. Let S be the detailed design of a system, c ∈

C(S) be a component in S, and con be a concern in Con(S), NCO can be

represented as:

)()(),(conOcOconcNCO I= .

Formal Definition of NCA. Let S be the detailed design of a system, c ∈

C(S) be a component in S, and con be a concern in Con(S), NCA can be

represented as:

)()(),(conAcAconcNCA I= .

Example: In the design of Figure 15, the value of the NCO metric for the

class ConcreteBind and the concern Observer (NCO(ConcreteBind, Observer)) is

3, since there are three methods related to the Observer pattern on this class:

addObserver(), removeObserver(), and notifyObservers(). The value of NCA for

the same class and concern ((NCO(ConcreteBind, Observer)) is one, since there is

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 111

only the observers attributed related to the Observer pattern in the ConcreteBind

class.

5.4.
Concern-Driven Design Heuristic Rules

This section defines design heuristic rules as mechanisms for supporting

concern-sensitive modularity analysis. These rules are defined in terms of

combined information collected from concern-driven metrics (Section 5.3) and

conventional metrics. Table 5 presents the conventional metrics which are used by

the proposed heuristics. The heuristic rules provide developers with

complementary high-level assessment means rather than exclusively working with

metrics. As such, each heuristic expression embodies knowledge about the

modular realizations of concerns in a design. The motivation of concern-sensitive

heuristics is to minimize the shortcomings of conventional metrics-based

heuristics discussed in Section 5.1.

Metrics Definitions

Number of Components (NC) It counts the number of components (classes and aspects) of a
system’s design.

Number of Attributes (NOA) It counts the number of attributes of a given component.

Number of Operations (NOO) It counts the number of operations (methods and advice) of a
given component.

Coupling Between
Components (CBC)

It counts the number of components from which a given
component invokes a method or references an attribute.

Table 5: Conventional metrics used in the definition of the heuristic rules

All the heuristic rules defined in this section are expressed using conditional

statements in the following form (Tekinerdoğan & Akşit, 1998):

IF <condition> THEN <consequence>.

The condition part encompasses one or more outcomes of metrics related to

the design concern under analysis. As we will see, the heuristic rules classify each

concern into categories which describe the way it is modularized. Examples of

categories that will be described in the following sections are: isolated concern,

tangled concern, high scattered concern, and so forth. The following rule, for

instance, is based on the outcomes of CDC and NC metrics, and classifies a

tangled concern as a highly scattered concern, if the condition holds.

 IF CDC / NC of Concern ≥ 0.5 THEN Tangled Concern is Highly Scattered

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 112

 The heuristic rules are structured in such a way that the classification is

systematically refined into a more specialized category. If the condition is not

satisfied, then the concern analysis is concluded and the concern classification is

not refined. If the condition holds, the role of the consequence part is to describe a

change or refinement of the target concern classification. Some categories, such as

isolated concern, indicate a well modularized concern. Other categories, such as

highly scattered concern, warn about poorly modularized concern. The generated

warnings encompass information that helps the designers to concentrate on certain

concerns or parts of the design which are potentially problematic. The proposed

concern heuristics suite is structured in two major parts: (i) crosscutting concern

analysis (Sections 5.4.1 and 5.4.2), and (ii) detection of specific design flaws

(Section 5.4.3).

5.4.1.
Crosscutting Concern Analysis

This section presents a suite of design heuristic rules to classify concerns in

terms of the degree of tangling and scattering. These rules classify a concern into

six categories: isolated, tangled, little scattered, highly scattered, well-

encapsulated, and crosscutting. Figure 16 presents a diagram which defines the

relationship between heuristic rules and concern categories. The ellipses represent

concern categories, and the labeled arrows represent the heuristic rules. Each

heuristic rule is a transition relationship between two concern classifications. The

definitions of the rules are presented in Figure 17. Figure 16 also shows the order

in which the heuristics should be applied.

A tangled concern is a concern which is interleaved with other concerns in

one particular component (class or aspect). If the concern is not tangled in any

component, it is considered as isolated. A concern is isolated if it is the only

concern in all components that realize it.

A scattered concern is a concern which is spread over multiple components.

Our classification makes a distinction between highly scattered and little scattered

concerns based on the number of affected components. A highly scattered concern

is a concern spread over many components. A little scattered concern is concern

spread over few components.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 113

Tangled

R01 R02

R03 R04

R05 R06 R07 R08

CrosscuttingWell
Encapsulated

Isolated

Highly
Scattered

Little
Scattered

Concern
Bad symptomsGood symptoms

Figure 16: Concern classification

A well-encapsulated concern is a concern that is the dominant concern in all

the components where it is. We define dominant concern of a component as the

concern that is assigned to most of the attributes and operations of that concern.

The reasoning behind this classification is that a concern is not harmful to the

classes or aspects in which it is dominant, and, therefore, it does not need to be

removed from them.

Note that there is a difference between isolated and well-encapsulated

concerns. An isolated concern is also dominant in every component where it is

present. However, it is the only concern in those components. On the other hand,

in spite of being dominant in all components where it is, a well-encapsulated

concern is tangled with other concerns that are present in at least one of those

components. These other concerns are realized by less attributes and operation

than the dominant concern. These are the concerns classified as crosscutting.

Crosscutting concerns generate warnings of inadequate separation of

concerns and, consequently, opportunities for refactoring (Fowler, 1999; Monteiro

& Fernandes, 2005). Although both highly and little scattered concerns can be

crosscutting concerns, highly scattered crosscutting concerns tend to be more

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 114

harmful to the design modularity. Therefore, it is important to classify a concern

as highly or little scattered before classifying it as crosscutting.

R01 - Isolated:
if CIBC = 0
then CONCERN is ISOLATED

R02 - Tangled:
if CIBC > 0
then CONCERN is TANGLED

R03 - Little Scattered:
if CDC / NC of CONCERN < 0.5
then TANGLED CONCERN is LITTLE SCATTERED

R04 - Highly Scattered:
if CDC / NC of CONCERN ≥ 0.5
then TANGLED CONCERN is HIGHLY SCATTERED

R05 - Well Encapsulated:
if (NCA / NOA ≥ 0.5) and (NCO / NOO ≥ 0.5) for every component with CONCERN
then LITTLE SCATTERED CONCERN is WELL-ENCAPSULATED

R06 - Crosscutting:
if (NCA / NOA < 0.5) and (NCO / NOO < 0.5) for at least one component with CONCERN
then LITTLE SCATTERED CONCERN is CROSSCUTTING

R07 - Well Encapsulated:
if (NCA / NOA ≥ 0.5) and (NCO / NOO ≥ 0.5) for every component with CONCERN
then HIGHLY SCATTERED CONCERN is WELL-ENCAPSULATED

R08 - Crosscutting:
if (NCA / NOA < 0.5) and (NCO / NOO < 0.5) for at least one component with CONCERN
then HIGHLY SCATTERED CONCERN is CROSSCUTTING

Figure 17: Design heuristic rules for crosscutting concern analysis

The heuristic rules for crosscutting concern analysis are shown in Figure 17.

The rules are numbered from R01 to R08 and include the classification of

concerns shown in the diagram in Figure 16. The first two heuristic rules, R01 and

R02, use the metric Component-level Interlacing between Concerns (CIBC) to

classify the concern as isolated or tangled (Figure 17). If the CIBC value is zero,

it means that there is only that concern in all the components which implement it

and, therefore, the concern is isolated. However, if CIBC is higher than zero, it

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 115

means that the concern is interlaced (tangled) with other concerns in at least one

component, e.g. Factory Method and Observer patterns in the design of Figure 15.

Rules R03 and R04 verify whether a concern, besides tangled, is scattered

over multiple components. These heuristics use the metrics Concern Diffusion

over Components (CDC) and Number of Components (NC) in order to calculate

the percentage of system components affected by the concern of interest. Based on

this percentage, the concern is classified as highly scattered or little scattered. As

we will discuss later in this section, one of the most sensitive parts in a heuristic

rule is the selection of threshold values. Our strategy for these rules is to use 50%

as the threshold. Developers should be aware of highly scattered concerns because

they can potentially cause design flaws, such as Shotgun Surgery (Fowler, 1999)

(Section 5.1).

Rules R05 and R06 decide whether a little scattered concern is either a well-

encapsulated or crosscutting concern. Rules R07 and R08 perform similar

analyses for a highly scattered concern. These four rules use the metrics Number

of Concern Attributes (NCA) and Number of Concern Operations (NCO) and two

size metrics presented in Table 5: Number of Attributes (NOA) and Number of

Operations (NOO). They calculate for each component the percentage of

attributes and operations which implements the concern being analyzed.

The role of the heuristics R05 and R07 is to detect components that dedicate

a large number of attributes and operations (more than 50%) to realize the

analyzed concern. If so, that concern is regarded as the dominant concern of those

components. If a concern is dominant in every component where it is, this concern

is classified as well-encapsulated.

A concern is classified as crosscutting (rules R06 and R08) if the percentage

of attributes and the percentage of operations related to the concern are low (less

than 50%) in at least one component. Hence, a concern is classified as

crosscutting if it is located in at least one component which has another concern

as dominant.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 116

5.4.2.
Octopus and Black Sheep

This section defines design heuristic rules for classifying crosscutting

concerns as octopus and black sheep. These categories are inspired on the

categories with the same names proposed by Ducasse et al (2006). Black sheep is

a concern that crosscuts multiple components, but is realized by very few

attributes and operations in all these components. Octopus is a crosscutting

concern which is dominant in some components (octopus’ body), but is realized

by only few attributes and operations in other components (octopus’ arms).

Therefore, black sheep and octopus are actually specialized categories of

crosscutting concerns. Figure 18 shows two heuristic rules, R09 and R10, which

aim at identifying black sheep and octopus concerns, respectively. Figure 18 also

defines condition A (Little Dedication) and condition B (High Dedication) used in

these rules. We explicitly separate the conditions from the heuristic rules in order

to make the rules easier to understand and also to reuse the Little Dedication

condition in both heuristics. In rules R09 and R10, a concern previously classified

as crosscutting (Section 5.4.1) is thoroughly inspected in terms of (i) how much

each component dedicates to that concern, and (ii) how many components have

high and low dedication to such concern.

The heuristic rule R09 classifies a crosscutting concern as black sheep if all

components which have this concern dedicate only a few percentage points of

attributes and operations to that concern (less than 33%). The next rule R10

verifies if crosscutting concerns not classified as black sheep are potential

octopus. According to this heuristic, a concern is classified as octopus if every

component realizing parts of this concern has either little dedication (condition A)

or high dedication (condition B) to it. Besides, at least two components have to be

little dedicated to the concern (octopus’ arms) and at least one component has to

be highly dedicated (octopus’ body). We define a component as highly dedicated

to a concern when the percentage of attributes and operations are higher than

67%.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 117

Condition A - Little Dedication:
(NCA / NOA < 0.33) and (NCO / NOO < 0.33)

Condition B - High Dedication:
(NCA / NOA ≥ 0.67) and (NCO / NOO ≥ 0.67))

R09 - Black Sheep:
if (Little Dedication) for every component with CONCERN
then CROSSCUTTING CONCERN is BLACK SHEEP

R10 - Octopus:
if ((Little Dedication) or (High Dedication) for every component with CONCERN)
 and ((Little Dedication) for at least 2 components with CONCERN)
 and ((High Dedication) for at least 1 component with CONCERN)
then CROSSCUTTING CONCERN is OCTOPUS

Figure 18: Design heuristics rules for Black Sheep and Octopus

5.4.3.
Concern-Aware Bad Smells

This section focus on how concern-driven heuristic rules can also be applied

to detect well-known design flaws, such as the bad smells proposed by Fowler

(1999). We defined heuristics for two bad smells: Feature Envy (Fowler, 1999)

and Shotgun Surgery (Fowler, 1999). The first bad smell, Feature Envy, is related

to the misplacement of operations. It occurs when an operation seems more

interested in a component other than the one it actually is in (Fowler, 1999). As

stated before, Shotgun Surgery occurs when a change in a characteristic (or

concern) of the system implies many changes to a lot of different places (Fowler,

1999). The reason for selecting these two bad smells is twofold. First, previous

work already claimed they are related to inadequate modularization of concerns

(Monteiro & Fernandes, 2005). Second, existing heuristic rules for detecting these

bad smells are representative of those rules based on metrics for coupling and

cohesion. As mentioned before, coupling and cohesion are the most used

attributes on conventional modularity measurement approaches.

Figure 19 shows our concern-sensitive heuristic rules for detecting the two

aforementioned bad smells. While the previous rules (R01 to R10) are applied per

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 118

concern, the rules in this section (R11 and R12) are applied for each pair

“component-concern”. The first rule, R11, aims at detecting Feature Envy and

uses a combination of concern-sensitive and conventional metrics for coupling

and size.

According to R11, to be considered Feature Envy, a crosscutting concern

has to satisfy two conditions: “condition C” (High Inter-Component Coupling)

and “condition D” (Low Intra-Component Coupling) (Figure 19). In other words,

this rule states that operations related to a given concern within a given

component are suspect of Feature Envy if: (i) those operations are responsible for

imposing high coupling with other components (“condition C”), and (ii) the same

operations are weakly coupled to other concerns within the component

(“condition D”).

The assumption behind this rule is that a concern that imposes high coupling

to a component might be removed from that component. Besides, if that concern

is internally weakly coupled it might be easy to remove it from the component.

Note that when we say “concern” here, we mean “the operations to which the

concern is assigned”. This is the main difference of our rule from Marinescu’s

rule (Marinescu, 2002): the analysis provided by our rule takes into account all

operations related to a concern together rather than each operation in isolation.

Condition C - High Inter-Component Coupling:
(CSC / CBC) > ((NCA+NCO) / (NOA+NOO))

Condition D - Low Intra-Component Coupling:
(ICSC / ((NOA+NOO)-(NCA+NCO))) < ((NCA+NCO) / (NOA+NOO))

R11 - Feature Envy:
if (High Inter-Component Coupling) and (Low Intra-Component Coupling) and (LCC > 1)
then CROSSCUTTING CONCERN is FEATURE ENVY

R12 - Shotgun Surgery:
if CONCERN is (Tangled) and (Highly Scattered) and (Crosscutting)
then CROSSCUTTING CONCERN is SHOTGUN SURGERY

Figure 19: Heuristic rules for detecting bad smells

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 119

In order to quantify whether the inter-component coupling imposed by a

concern to a component is high, “condition C” calculates the percentage of

coupling related to a concern: CSC/CBC. CSC stands for Concern-Sensitive

Coupling metric (Section 5.3.4) and CBC stands for Coupling Between

Components metric (Table 5) The inter-component coupling is considered high

when the percentage of coupling related to a concern (CSC/CBC) is higher than

the percentage of operations and attributes that realize that concern within the

assessed component ((NCA+NCO) / (NOA+NOO)). Similar computation is

performed for identifying low intra-component coupling. In this case, the Intra-

component Concern-Sensitive Coupling metric (ICSC) is used.

The rule R12 (Figure 19) is intended to detect Shotgun Surgery. Differently

from the previous rules, R12 is composed of the outcomes from other heuristics.

More precisely, a concern is classified as Shotgun Surgery if it was previously

identified as Tangled (R02), Highly Scattered (R04), and Crosscutting (R08). R12

takes a concern classified as crosscutting and checks its previous classifications. If

that concern, besides of being crosscutting, is high scattered, it is considered as a

suspect of Shotgun Surgery. It is important to bear in mind that, according to our

classification (Figure 16), a little scattered concern can also be classified as

crosscutting. This occurs whenever a concern, even spread over only few

components, is not dominant in some of them. However, in this case, there is no

warning about Shotgun Surgery, because changing that concern would not

generate changes in many components.

5.4.4.
The Issue of Threshold Values

Before closing this chapter, we would like to point out to an aspect that has

a decisive influence on the accuracy of a heuristic rule: the threshold values used

in parameterizing any heuristic rule. The problem is far from being new and it

characterizes intrinsically any metrics-based approach. In most of the cases setting

the threshold values is a highly empirical process and it is guided by similar past

experiences and by hints from metrics’ authors (Lorenz & Kidd, 1994).

In the definition of our heuristic rules (Figure 17, Figure 18, and Figure 19),

we selected the thresholds based on our previous experience applying concern-

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 120

driven metrics (Sant’Anna et al., 2003, 2004; Kulesza et al., 2006; Garcia et al.,

2004a, 2005, 2006; Figueiredo et al., 2008b; Greenwood et al., 2007a; Cacho et

al., 2006a). In addition, we decided to set the thresholds rather permissive, as it is

preferable to get more false positive results, rather than losing a large number of

real flaws due to a very strict threshold value. Also, we used meaningful threshold

values, such as 0.25 (1/4), 0.33 (1/3), 0.5 (1/2), 0.67 (2/3), and 0.75 (3/4), as

suggested by Lanza & Marinescu (2006). Nevertheless, the threshold values used

in our rules are not final. Rather, we believe that further use of the rules will allow

us to adjust the threshold values in order to increase the number of correctly

detected samples.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

