
 121

6
Tool Support for Concern-Driven Measurement

The main characteristic of concern-driven metrics is that they are based on

the representation of architectural driving concerns on the architectural design

(Chapter 4). In order to apply these metrics architects must be able to specify,

view and assign a system’s concerns to its architecture elements. We call this set

of tasks – specifying, viewing and assigning concerns – as concern management.

Providing support for the application of concern-driven metrics requires,

therefore, mechanisms and tools for managing architectural concerns. Tool

support is essential in any metric-based evaluation approach. Concern

management has its own particularities, thus specific tool support is important in

this context. There are a number of concern-oriented software analysis tools

nowadays, but they are limited, in the sense that they do not support measurement,

especially at early stages of design. Section 6.1 describes these tools and discusses

their limitations.

 In order to support our concern-driven measurement approach, we

developed an innovative tool called the Concern-Oriented Measurement Tool

(COMET) (Section 6.2). COMET was developed in the context of the AOSD-

Europe project (AOSD-Europe Project, 2007) and will be available as a public

deliverable of the project. Before developing COMET, we defined a notation for

supporting the concern-to-architecture mapping. This notation is used to describe

concern templates. A concern template captures the architecture elements

associated with a concern. It allows the architects to represent in a single place all

the architectural implications related to a concern. Concern templates were very

useful in our empirical studies involving architectural metrics (Section 7), because

it supported the assignment of concerns to architecture elements. The notion of

concern templates inspired the conception of COMET’s concern management

feature. We depict the concern template notation in Section 6.3.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 122

6.1.
Limitation of Related Work

The recognition that concern identification and analysis are important

through software design activities is not new. The need to document concerns in

order to support software evolution was identified by Soloway et al (1998). They

proposed an approach for explicitly documenting concerns on code, in order to

cope with the difficulty of performing maintenance on code involving scattered

concern (what they called delocalized plans). Their approach is a form of paper

documentation, where source code is presented in parallel with pointers linking

the code to other sections of a program.

The aspect-oriented paradigm has promoted a growing body of relevant

work in the software engineering literature focusing on concern identification and

documentation tools. The Aspect Browser (Griswold et al., 2001) is a tool

proposed to help developers to find concerns using lexical searches of the

program text. In Aspect Browser, concerns can be stored and viewed at different

times to support the program evolution task. The Aspect Mining Tool (AMT)

(Hannemann & Kiczales, 2001) is conceptually similar to Aspect Browser,

however it supports additional forms of queries.

The Concern Manipulation Environment (CME) (Harrison et al., 2004) is a

project whose purpose is to provide integrated support for creating and

maintaining aspect-oriented software across the life cycle of a system. CME

includes a concern explorer tool that can be used to represent concerns across

different types of software engineering artifacts. CME supports its own (pattern-

matching) language for code querying.

The Feature Exploration and Analysis Tool (FEAT) (Robillard & Murphy,

2007) supports the documentation of implementation concerns in a graph-based

representation, called concern graphs. The tool incorporates browsing capabilities

to investigate incoming and ongoing relations from the program elements in the

concern graph, and based on these relations to add new elements to the concern.

SoQueT (Marin et al., 2007) is another tool that supports the description and

documentation of concerns in source code using queries. The difference from the

others is that SoQueT is based on sort-specific queries. Sorts are categories used

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 123

to group crosscutting concerns according to typical implementation idioms and

relations.

All these approaches and tools represent very relevant work on the area of

concern documentation for supporting program understanding and identification

of crosscutting concern. However, none of them makes use of concern

documentation for measurement purpose. The assessment supported by these tools

is merely qualitative. In addition, most of these tools only focus on representing

concerns in source code. As a consequence, there is not much knowledge on the

usefulness of using concern representation as a measurement abstraction,

especially at early stages of design. Increasing the corpus of knowledge in this

subject is a goal of this thesis, which proposes and evaluates a concern-driven

measurement approach, partially supported by COMET.

6.2.
The Concern-Oriented Measurement Tool

The Concern-Oriented Measurement Tool (COMET) supports the task of

mapping concerns to architectural design and applying concern-driven metrics and

heuristic rules. Figure 20 shows an overview of COMET’s modules: architecture

measurement model, architecture model extractor, architecture manager, concern

manager metric collector, and rule analyzer. Each module is described in the

following.

Architecture Measurement Model. This model encompasses the data

structure defined for architecture measurement purposes. It is a suitable

representation of the architecture in order to make the measures collection easier.

It follows a generic meta-model for representing aspect-oriented component-and-

connector architectural views (Section 3.2). We call this meta-model as

architecture measurement meta-model (Figure 21). The meta-model is simple in

the sense that it only includes abstractions and composition mechanisms necessary

for the metrics computation. It is also generic since it includes only basic

abstractions of component-and-connector viewtype (Clements et al., 2003). Thus,

all the existing aspect-oriented and conventional ADLs and component-and-

connector graphical languages can be mapped to it.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 124

Architecture
Model Extractor

Concern
Manager Metric Collector

Collected Data

Architecture
Manager

Rule Analyzer

Warnings of
Modularity Problems

Architecture Measurement
ModelArchitecture

Specification

Figure 20: Overview of COMET’s modules

Figure 21: Architecture measurement meta-model

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 125

A model following the architecture measurement meta-model includes

components, interfaces and operations. Components are composed of interfaces,

which, in turn, are composed of operations. Interfaces can be either provided or

required interfaces. Required interfaces use provided interfaces, thus required

interfaces are connected to provided interfaces (conventional connection (Section

3.2)). Provided interfaces affect provided or required interfaces (aspectual

connection). An aspectual connection is a connection between an aspectual

component and a conventional one (Section 3.2). Note that the meta-model does

not encompasses the notion of connector, because it is not necessary for the

metrics computation. The interfaces are directly attached to each other.

Components, interfaces and operations are architectural elements. Concerns are

realized by architectural elements. This is the relationship which supports the

assignment of concerns to architectural elements.

Architecture Model Extractor. This module is in charge of generating the

architecture measurement model. It takes as input the specification of an

architecture and detects its structure in terms of their components, interfaces, and

operations. It processes the architecture specification and builds the model. The

architecture model extractor can be implemented targeting any architecture

specification language as input, as long as it generates a model following the

architecture measurement meta-model. Up to now, we implemented the

architecture model extractor to take as input architecture specification described in

AO-ADL (Pinto & Fuentes, 2007) (Section 3.2). This is because, similarly to

COMET, AO-ADL was also defined in the context of the AOSD-Europe project

(2007). In addition, tool support has been recently developed for describing

aspect-oriented software architectures using AO-ADL.

Architecture Manager. This module allows the user to manipulate an

architecture specification by including, removing or changing architecture

elements (components, interfaces and operations) and their connection. Architects

can even build an architecture specification from scratch using the architecture

manager. However, they are limited to use the abstractions provided by the

architecture measurement meta-model.

Concern Manager. This module supports the mapping of architecturally-

relevant concerns to architecture elements. In particular, it allows the user to

specify and manage the list of concerns to be considered in the measurement

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 126

process. It also allows the user to assign each concern to the architecture elements

that realize it. In addition, the user can view all the architecture elements assigned

to a concern in a single place, as is done by the concern templates mechanism

(Section 6.3).

Metric Collector. This module is responsible for computing the architectural

metrics (Section 4.3). It takes as input the architecture measurement model and

computes the metrics for each concern and architecture elements specified in the

model.

Rule Analyzer. This module computes the architectural heuristic rules.

Although we have not thoroughly exploited heuristic rules at the architectural

design level yet, COMET supports the application of certain rules at this level of

abstraction. The supported rules are those whose definition can be easily adapted

from the detailed to the architectural design context. Figure 22 presents the rules

supported by COMET. The complete description about these rules can be found in

Chapter 5.

Adapting the detailed design rules (Chapter 5) to the context of architectural

design, required only slight modifications. For instance, Rules R3 and R4 rely on

the Concern Diffusion over Architectural Components metric (CDAC) instead of

Concern Diffusion over Components (CDC). The former counts architectural

components while the latter counts classes and aspects. Besides, rules R4, R5, R6

and R7 are based only on counting the operations. These rules do not include

metrics based on the number of attributes, differently from the equivalent rules for

detailed design assessment. This occurs because the concept of architectural

component considered in this thesis does not encompass attributes. Finally, the

Number of Components metric (NC) counts the number of architectural

components rather than classes and aspects.

6.2.1.
User Interface

To enable future integration of the measurement-specific tasks with normal

software development activities, COMET was built as a plug-in for Eclipse

platform (Object Technology International, 2001; Eclipse Foundation, 2007a).

Eclipse is an integrated development environment with an infrastructure that

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 127

supports the inclusion of modules, called plug-ins, that add to the environment’s

functionality. In Eclipse, functionality is provided at two different levels: the

workbench level, and the view level.

R01 - Isolated:
if CIBC = 0
then CONCERN is ISOLATED

R02 - Tangled:
if CIBC > 0
then CONCERN is TANGLED

R03 - Little Scattered:
if CDAC / NC of CONCERN < 0.5
then TANGLED CONCERN is LITTLE SCATTERED

R04 - Highly Scattered:
if CDAC / NC of CONCERN ≥ 0.5
then TANGLED CONCERN is HIGHLY SCATTERED

R05 - Well Encapsulated:
if (NCO / NOO ≥ 0.5) for every component with CONCERN
then LITTLE SCATTERED CONCERN is WELL-ENCAPSULATED

R06 - Crosscutting:
if (NCO / NOO < 0.5) for at least one component with CONCERN
then LITTLE SCATTERED CONCERN is CROSSCUTTING

R07 - Well Encapsulated:
if (NCO / NOO ≥ 0.5) for every component with CONCERN
then HIGHLY SCATTERED CONCERN is WELL-ENCAPSULATED

R08 - Crosscutting:
if (NCO / NOO < 0.5) for at least one component with CONCERN
then HIGHLY SCATTERED CONCERN is CROSSCUTTING

Figure 22: Heuristic rules supported by COMET

The workbench is the main application window. The workbench is the

interface to a collection of resources, called the workspace. Resources in the

workspace correspond to files or directories on a system. For example, Java

source code files are typical Eclipse resources. Within the workspace, resources

are organized into different projects. The workbench is the user interface that

provides general-purpose functionality, such as opening and closing resources and

performing searches. Within the workbench, more specialized functionality is

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 128

provided through different views. A view is a user interface window that displays

some data and provides operations on this data.

Figure 23 shows the general layout of COMET views. These views are used

to manage the architecture measurement model and constitute the user interface

with the architecture and concern manager modules. The Projects view (Figure

23 – area 1) shows an example list of projects managed by COMET. The user

must create a project per architecture to be assessed. Figure 24 shows the Projects

view with the project for the Health Watcher architecture (simplified version).

Each project in COMET encompasses two resources: Architecture.architecture

and Concern_Model.architecture. These resources are XML files where the

architecture measurement model is described and persisted. The

Architecture.architecture resource encompasses the architecture elements, while

the Concern_Model.architecture resource encompasses the concern list.

(1)

(2)

(3)

(4)

Figure 23: COMET Views. Area 1 holds the Projects View. Area 2 holds the Architecture

View. Area 3 holds the Concern Model View. Area 4 holds the Properties View.

The contents of the Architecture.architecture and Concern_Model.

architecture resources are shown in other two views (Figure 23 – areas 2 and 3).

The view on the middle of the window is the Architecture View (Figure 23 – area

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 129

2). In this view, the architecture elements are displayed as a set of trees with

components at the root of the trees. Interfaces are displayed as children of their

declaring components, and operations are displayed as children of their declaring

interfaces. From this view, users can add new architecture elements, and delete

and rename existing ones.

Figure 24: The Projects View

Figure 25 presents the Architecture View for the Health Watcher

architecture. Selecting the name of any architecture element displays the

element’s properties in the Properties View (Figure 23 – area 4). Figure 26 shows

the Properties View for the transactionExceptionalEvent operation. Note that,

besides the element name, the Properties View presents the concerns which are

assigned to the selected element. In the case of transactionExceptionalEvent

operation, the concerns are persistence and exception handling. In addition, if the

selected element is an interface, the Properties View presents the interfaces which

the selected interface is connected to. Figure 27 presents, for instance, the

Properties View for the saveEntity required interface. It shows that this interface

is connected (uses) to the distributedSavingService provided interface, and is

affected by none interface. See the definitions of the “uses” and “affects”

relationships in Section 4.2.1.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 130

Figure 25: The Architecture View for the Health Watcher system

Figure 26: The Properties View for the transactionExceptionalEvent operation

Figure 27: The Properties View for the saveEntity interface

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 131

The view on the right side of the window is the Concern Model view

(Figure 23 – area 3). This view presents the list of concerns that will be

considered in the assessment process. Architecture elements are displayed as

children of the concerns to which they are assigned. Figure 28 shows the Concern

Model View for the Health Watcher architecture. The Properties View also

displays the architecture elements which the selected concern is assigned to

(Figure 29).

Figure 28: The Concern Model View for the Health Watcher system.

Figure 29: The Properties View for the Distribution concern

6.2.2.
Extracting an Architecture Specification

To extract an architecture specification and build a corresponding

architecture measurement model, the user first uses an Eclipse wizard to create an

empty general project. Figure 30 shows the window for starting the new general

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 132

project wizard. After creating a new project, the user uses the Eclipse file import

wizard to select the file from which the architecture specification is to be

extracted. COMET processes the file, generates the architecture measurement

model and creates the Architecture.architecture resource where the model is

persisted. As mentioned before, the architecture extractor module is currently able

to extract architectures specified in AO-ADL (Section 3.2). However, the tool can

be straightforwardly extended in order to support the extraction of architecture

specified in other language. To this end, the architecture model extractor has to be

implemented targeting this other language.

Figure 30: Wizard for creating a new project

6.2.3.
Managing the Architecture Model and Assigning Concerns

From within the Architecture View, it is possible to add or delete

architecture elements from the architecture measurement model. To add a single

architecture element, a user can select the new element’s parent, right-click on it,

select “New Child”, and select the element to be added. As the element is added,

the user can name it and set other information about the element in the Properties

View. For example, in the case of Figure 31, if a user right-clicks on the

Transaction_Manager component and selects “Provided Interface”, a new

provided interface will be added to this component. The user can also delete an

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 133

architecture element by right-clicking on it. See that the pop-up menu in Figure 31

also includes a “Delete” option. Similarly to the Architecture View, the Concern

Model View also supports the inclusion and deletion of concerns (Figure 32).

Figure 31: Adding new architecture element

Figure 32: Adding new concerns

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 134

It is possible to assign the concerns to the architecture elements in two

ways: (i) selecting the concerns related to an architecture element, or (ii) selecting

the architecture elements related to a concern. In the first way, a user selects the

architecture element in the Architecture View. Then, he or she selects the

“Concerns” property field in the Properties View and clicks on the button that

shows in this field in order to open a dialog box. From this dialog box (Figure 33),

the user can select the concerns to be assigned to the selected architecture

element.

In the second way of assigning concerns to architecture elements, the user

selects a concern in the Concern Model View. The remainder of the process is

similar to the one just described. Then, he or she selects the “Architectural

Elements” property field in the Properties View and click on the button that shows

in this field in order to open a dialog box. From this dialog box (Figure 34), the

user can select the architecture elements that realize the selected concern.

Figure 33: Selecting concerns related to an architecture element

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 135

Figure 34: Selecting architecture elements related to a concern

6.2.4.
Applying metrics and heuristic rules

In order to apply the metrics and heuristic rules, a user selects the

Architecture.architecture resource and clicks on the measurement button in the

tool bar. Then, the metrics and rules are computed. The results are displayed in

two views: the Metrics View and the Heuristic Rules View. Figure 35 shows the

Metrics View. This view includes three tabs. The first tab presents the results

obtained per component, such as Lack of Concern-based Cohesion (LCC),

Number of Interfaces (NI), and so forth. The second tab shows the results per the

pair component-concern. It includes metrics such as, Concern Sensitive Coupling

(CSC), Number of Concern Operations (NCO), and so forth. Finally, the third tab

presents the results per concern for metrics such as Concern Diffusion over

Architectural Components (CDAC).

Figure 36 presents the Heuristic Rules View. This view shows the concerns

and how each of them is classified by the rules. Note that not only the final

classification is shown but also the partial ones. For instance, the final

classification of the persistence concern is crosscutting. But before being

classified as such, it was classified as tangled and highly-scattered. The

distribution concern, in turn, is classified as crosscutting and little-scattered. It is

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 136

important to keep track of partial classifications, because they might enhance the

interpretation of the final classification. A concern classified as crosscutting and

highly-scattered might indicate a worse modularity problem than a crosscutting

and little-scattered concern.

Figure 35: Metrics View

Figure 36: Heuristic Rules View

6.3.
Concern Templates

As mentioned in the beginning of this chapter, before developing COMET,

we defined a notation which inspired the conception of COMET’s concern

management feature. We call this notation as concern template. A concern

template is a documentation mechanism for capturing the architecture elements

associated with key concerns in a single place. It was developed so as to support

the mapping of concerns to the architecture elements and allow the application of

concern-driven architectural metrics. However, the use of concern templates is not

restricted to measurement purposes. Rather, the use of concern templates as a

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 137

documentation artifact can support architects on reasoning about architectural

broadly scoped concerns and the implication of architectural decisions concerning

to them.

A concern template includes the following information:

• name of the concern;

• architecture elements, such as components, interfaces, operations related to

the concern;

• high-level composition rules to describe, in a informal and domain-

dependent way, how the elements related to concern are composed with the

other elements in the architecture,

• a reasoning section that captures the rationale behind the architectural

decision related to the concern, and

• low-level composition rules to precisely describe how the elements related

to a concern are composed with the other elements in the architecture.

Figure 37 shows how to use the notion of concern templates to support the

modular description of the distribution concern in the Health Watcher architecture

(simplified version). All the distribution-specific architectural decisions are

clearly captured in the first template, including: (i) the creation of the

Distribution_Manager component and its connection with the Business_Rules and

GUI_Elements components, and (ii) the creation of an operation representing a

distribution-specific exceptional event (CommunicationExceptionalEvent) and its

assignment to the interfaces that raise or receive it. The rationale behind the

distribution decisions are reported in the reasoning section of the template.

As a result, the template-based specification is a cohesive manner to

describe the influence of a concern which otherwise could be spread over the

architecture description. Notice that this approach is general and agnostic to

different architectural representations that the software developers are relying on,

whether textual or graphical, such as ADLs or UML-based notations. The

software architect can also use the templates in conjunction with multiple

architectural views, and any existing notations for reflective design, where design

rationale is extensively recorded (Tyree & Akerman, 2005).

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 138

Concern: Distribution
Elements

Components and Interfaces

DISTRIBUTION_MANAGER

factoryFacade
distributedSaving
Service

requestDistributed
Facade

saveDistributed
Entity

DISTRIBUTION_MANAGER

factoryFacade
distributedSaving
Service

requestDistributed
Facade

saveDistributed
Entity

Operations

CommunicationExceptionalEvent

High-level Composition Rules

distribute(Business_Rules, Distribution_Manager);

raiseException(distributedSavingService, CommunicationExceptionalEvent);

receiveException(saveEntity, CommunicationExceptionalEvent);

Reasoning

Distribution_Manager supports the remote distribution of the system services. It externalizes the
services provided by the Business_Rules component at the server side and support their
distribution to the clients. It makes the Businnes_Rules component’s services remotely available to
the GUI_Elements component.

CommunicationExceptionalEvent is a distribution-specific exceptional event raised by the
Distribution_Manager component. It is received by the GUI_Elements component, which uses the
services of Distribution_Manager.
Low-level Composition Rules

01 // These mapping rules a related to the …

02

03 //… “distribute(Business_Rules)” composition rule

04 Connect Business_Rules.getFacade to Distribution_Manager.requestDistributedFacade;

05 Connect Business_Rules.savingService to Distribution_Manager.saveDistributedEntity;

06 Connect Distribution_Manager.factoryFacada to GUI_Elements.requestFacade;

07 Connect Distribution_Manager.distributedSavingService to GUI_Elements.saveEntity;

08

09 //… “raiseException(distributedSavingService, CommunicationExceptionalEvent)” composition rule

10 Add operation CommunicationExceptionalEvent to distributedSavingService;

11

12 //… “receiveException(saveEntity, CommunicationExceptionalEvent)” composition rule

13 Add operation CommunicationExceptionalEvent to saveEntity;

Figure 37: Concern Template: Distribution

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 139

6.3.1.
Composition Rules

Concerns templates include two mechanisms for describing the relationship

of a concern’s architecture elements with the other elements in the architecture:

high-level and low-level composition rules. The purpose of these mechanisms is

support the architect to registry and reason about the influence of a concern in

multiple parts of the architecture.

The high-level composition rules are optional and aim at facilitating the

registration and communication of concern composition. For this end, the

architects can define and use an informal and domain-specific high-level language

to describe these rules. As domain-specific, we mean specific to the domain of the

concern captured by the template concern. In this context, the high-level

composition rules complement the low-level composition rules, which are more

precise although more fine-grained and, as a consequence, harder to understand.

The low-level composition rules are domain agnostic and its use in the concern

template is mandatory.

Figure 37 shows how to work with a high-level language to describe

composition rules related to the distribution concern in Health Watcher

architecture. This is shown in the high-level composition rules section of the

template. The naming of the rules is intuitive as it actually captures the

architectural decisions associated with the concern. For example, the first

composition rule in the template of Figure 37, named distribute, denotes the fact

that services provided by the Business_Rules component are distributed by means

of Distribution_Manager.

The composition rules can pick out different types of architecture elements,

such as components, interfaces or operations. Figure 37 shows the raiseException

and receiveException composition rules which affect the interfaces

distributedSavingService and saveEntity, respectively. The raiseException

composition rule denotes that CommunicationExceptionalEvent can be raised

when services in distributedSavingService are used. The receiveException

composition rule denotes that the saveEntity is aware that

CommunicationExceptionalEvent can be propagated to it when requiring a

service.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 140

The low-level composition rules consist of a small set of reusable

primitives. The BNF description of the low-level composition rules is presented in

Figure 38. It assumes that no whitespace is necessary for proper interpretation of

the rule. The item <elem-name> is to be substituted with an architecture element’s

name declared in the architecture description. The item <role-name> is to be

substituted with a role’s name specified by an architectural style. The entries

architectural_elem and plural_architectural_elem should be defined according to

the abstractions encompassed by the used architecture description approach. In

our case, we defined them according to the component-and-connector view

considered in this thesis (Section 4.2.1). Figure 37 shows how those low-level

composition rules could be applied for the distribution concern in Health Watcher

architecture.

rules ::= {rule}

rule ::= primitive | forall_statement | assignment_statement

primitive ::= add_primitive | connect_primitive | play_primitive

add_primitive ::= “Add” architectural_elem <elem-name> “to” <elem-name> “;”

connect_primitive ::= “Connect” <elem-name> “to” <elem-name> “;”

play_primitive ::= “Play” <elem-name> “, role” <role-name> “;”

forall_statement ::= “Forall” variable “in” architecture_element_set rule_list “end”

assignment_statement ::= architecture_element_set “=” (all_statement | <elem-name>)

{“,” (all_statement | <elem-name>)} “;”

all_statement ::= “All” plural_architectural_elem “in” (variable | <elem-name>)

variable ::= A..Z {A..Z | 0..9}

architecture_element_set ::= a..z {a..z | A..Z | 0..9}

architectural_elem :: = “component” | “interface” | “provided interface” | “required

interface” | “operation” | “exception”

plural_architectural_elem :: = “components” | “interfaces” | “provided interfaces” |

“required interfaces” | “operations” | “exceptions”

Figure 38: BNF description of language for low-level composition rules.

The description of each primitive and a graphical representation of its

effects (when applicable) are presented below.

Add. This primitive describes the fact that the presence of the concern in the

architecture makes an architecture element to be introduced to another. For

instance, in Figure 37 the CommunicationExceptionalEvent operation is

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 141

introduced to interface distributedSavingService (line 10). This is due to the

presence of the distribution concern (capture by the template) in the architecture.

Figure 39 graphically presents the effects of using the Add primitive. In this

example, the useTransaction interface is added to the Business_Rules

component.

BUSINESS_RULES

use
Transaction

BUSINESS_RULES

Add interface useTransaction to Business_Rules

Figure 39: Add primitive

Connect. This primitive describes which elements are associated with each

other. For example, it supports the description of how components’ interfaces are

bound. Specifically it describes the interconnection between interfaces of two

different components. For instance, in Figure 37, the savingService interface of

Business_Rules component is connected to saveDistributedEntity interface of

Distribution_Manager (line 5). ADLs usually provide similar interconnection

operations such as bind or connect. Figure 40 graphically presents the effect of

this primitive based on a different example.

BUSINESS_RULES

use
Transaction

TRANSACTION
CONTROL

transService

BUSINESS_RULES

use
Transaction

TRANSACTION
CONTROL

transService

Connect Business_Rules.useTransaction to Transaction_Control.transService

Figure 40: Connect primitive

Play. This primitive assigns a new role to an architectural element. The role

is specified by a previously defined architectural style that contains architectural

element types and properties. The assignment of a role to an element implies that

such an element receives all the syntactic and semantic properties of the original

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 142

style. For instance, the Model-View-Controller architectural style (Buschmann et

al., 1996) defines three roles: model, view and controller. The use of the play

primitive mostly occurs when an architect decides to capture architectural styles

as concerns in the concern templates. There is no example of the use of this

primitive in the template shown in Figure 37. However, it is used in another

example of template in Section 6.3.2 (Figure 45). Table 6 shows a summary of the

set of mapping rules.

Primitive Description
Add <architectural_elem>
<elem_name1> to
<elem_name2>

introduces an architectural element with name
<elem_name1> to other architectural element with name
<elem_name2>

Connect <elem_name1> to
<elem_name2>

defines a relationship between the elements
<elem_name1> and <elem_name2>

Play <elem_name>, role
<role_name>

adds the responsibility denoted by the role <role_name>
to the architectural element <elem_name>

Table 6: Primitives for defining low-level composition rules

6.3.2.
Using Concern Templates

In our empirical study involving the Health Watcher architecture (Section

7.3), we used concern templates to support the mapping of concern-to-architecture

and allow the application of the metrics. In order to give a clearer vision of the use

of this mechanism, we present in this section the templates for two concerns of the

Health Watcher architecture: persistence and exception handling. It is important to

highlight that we consider in this section the complete architecture of Health

Watcher, instead of the partial and simplified version that has been used through

the previous sections.

Before presenting the concern templates, we show in Figure 41 a graphical

representation of the Health Watcher architecture description based on UML 2.0

notation (OMG, 2005). The Health Watcher architecture follows the combination

of the client-server style with a layered style (Buschmann et al, 1996). Six main

architectural concerns were considered in the Health Watcher system: GUI,

distribution, business, persistence, concurrency and exception handling. In Section

7.3, we give further information about the Health Watcher system and the reasons

we select it as one of our study objects.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 143

GUI_ELEMENTS

DISTRIBUTION_
MANAGER

ManageDistributedInfo InitConnection

DATA_MANAGER

PersistenceMechanism

TransactionControl

CONCURRENCY_
CONTROL

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

SyncControl

Distribution
GUI

Business

Persistence
Concurrency

G
D
B
P
C

P

C

G

D

C

P

Address
Repository

TRANSACTION_
CONTROL

P P

Exception HandlingE

P

PPPPPPP

D

E

E E E E E E E E

E E E E E E E E

P
E

P
E

E

E

P
D

E
ConnectionDistributedInfoServices

InfoServices

ManageInfo

UseTransaction
Control

InitPersistenceMechanism

UseSync
Control

C
on

ce
rn

s
Manage

Complaint

Manage
Disease Manage

Symptom

Manage
Employee Manage

HealthUnit

Manage
Speciality Manage

Address

Legend:

E

E

BUSINESS_RULESB
E

BUSINESS_RULESB
E

Timestamp
Control

UseTimestamp
Control

C

Figure 41: Health Watcher Architecture

Figure 41 also shows how the concerns are spread over the architectural

elements of the Health Watcher system. The gray boxes placed over or near a

component or interface indicate that the element is related to the concerns the

boxes represent. For instance, the box with the letter “P” on the superior left

corner of the Transaction_Control component means that this component is part of

the persistence concern. Similarly, the “P” box near the UseTransactionControl

required interface (in the Business_Rules component) indicates that this interface

is related to the persistence component. The UseTransactionControl interface is

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 144

considered as related to the persistence concern because its only role is to require

the transaction control service, which is a persistence related service.

A box near an interface also indicates that there is at least one operation in

that interface that is related to that concern or raises or receives an exception

related to that concern. For instance, there are three boxes near the

DistributedInfoServices interface (in the Distribution_Manager component)

because it contains at least: (i) one operation that raises exceptions (“E” box), (ii)

one operation that raises persistence-specific exceptions (“P” box), and (iii) one

operation that raises distribution-specific exceptions (“D” box). Similarly, the

ManageDistributedInfo is also related to error handling, persistence and

distribution concerns, but instead of raising exceptions, it receives exceptions

raised by the DistributedInfoServices interface.

Persistence Concern Template

Figure 42 and Figure 43 present the concern template for the persistence

concern. All the persistence-specific architecture elements are captured in that

template, including: (i) the Data_Manager component and its connection with the

Business_Rules component, (ii) the Transaction_Control component, (iii) the

InitPersistenceMechanism and UseTransactionControl interfaces, their inclusion

in the Business_Rules component and their connection with the

Transaction_Control component, and (iv) two persistence-specific exceptions

(TransactionException and RepositoryException) and their assignment to the

operations that raise or receive them. The rationale behind the persistence

decisions are reported in the reasoning section of the template.

Figure 43 shows the low-level composition rules of the persistence concern

aspect (Figure 42). Each high-level composition rules (Figure 42) is translated to

group of low-level composition rules in Figure 43. This practice is not mandatory,

but helps the understanding of the high-level composition rules. The

persist(Business_Manager) high-level composition rule (Figure 42) means that

the information manipulated by the Business_Rules component should be

persisted. It is translated into a number of Connect low-level rules (lines 04-10)

which represent the connection between the provided interfaces of the

Data_Manager component to the required interfaces of the Business_Rules

component.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 145

Concern: Persistence
Elements

Components

DATA_MANAGER

PersistenceMechanism

TransactionControl

Complaint
Repository

Disease
Repository

Symptom
Repository

Employee
Repository

HealthUnit
Repository

Speciality
Repository

Address
Repository

TRANSACTION_
CONTROL

Interfaces

InitPersistence
Mechanism

UseTransaction
Control

Exceptions

TransactionException
RepositoryException
High-level Composition Rules

persist(Business_Rules);
controlTransaction(Business_Rules);

interfaceSet = All provided interfaces in Data_Manager, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, RepositoryException);

interfaceSet = ManageComplaint, ManageDisease, ManageSymptom, ManageEmployee,
 ManageHealthUnit, ManageSpeciality, ManageAddress, ManageInfo,
 ManageDistributedInfo;
receiveException(interfaceSet, RepositoryException);

interfaceSet = TransactionControl, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, TransactionException);

interfaceSet = UseTransactionControl, ManageInfo, ManageDistributedInfo;
receiveException(interfaceSet, TransactionException);

Reasoning

Data_Manager and Transaction_Control comprise the persistence services of the system.
Data_Manager provide services, such as insert, update and search, for handling with persistent
information manipulated by the system. This component depends on a specific persistence
platform. Transaction_Control provides services to allow the transaction control for persisting
information. These services – begin transaction, commit transaction and rollback transaction – are
provided by the TransactionControl interface. This component is also in charge of the persistence
services initialization via the PersistenceMechanism interface.

The initPersistenceMechanism is a required interface used to request the initialization of the
persistence services. In the Health Watcher architecture it is realized by the Business_Rules
component. Similarly, the UseTransactionControl interface requires transaction control services
and is also realized by the Business_Component.

TransactionException and RepositoryException are persistence-related exceptional events raised
by the Transaction_Control and Data_Manager components, respectively. They are received by the
components that call the services of these components.

Figure 42: Concern template for the persistence concern

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 146

01 // These mapping rules a related to the …

02

03 //… “persist(Business_Rules)” composition rule

04 Connect Data_Manager.DiseaseRepository to Business_Rules.ManageDisease;

05 Connect Data_Manager.SymptomRepository to Business_Rules.ManageSymptom;

06 Connect Data_Manager.EmployeeRepository to Business_Rules.ManageEmployee;

07 Connect Data_Manager.HealthUnitRepository to Business_Rules.ManageHealthUnit;

08 Connect Data_Manager.SpecialityRepository to Business_Rules.ManageSpeciality;

09 Connect Data_Manager.ComplaintRepository to Business_Rules.ManageComplaint;

10 Connect Data_Manager.AddressRepository to Business_Rules.ManageAddress;

11

12 //… “controlTransaction(Business_Rules)” composition rule

13 Add interface initPersistenceMechanism to Business_Rules;

14 Connect Transaction_Control.PersistenceMechanism to Business_Rules.initPersistenceMechanism;

15 Add interface UseTransactionControl to Business_Rules;

16 Connect Transaction_Control.TransactionControl to Business_Rules.UseTransactionControl;

17

18 //… “raiseException(interfaceSet, RepositoryException)” composition rule

19 interfaceSet = All provided interfaces in Data_Manager, InfoServices, DistributedInfoServices;

20 Forall I in interfaceSet

21 operationSet = All operations in I;

22 Forall O in operationSet

23 Add exception RepositoryException to O; end

24 end

25 //… “receiveException(interfaceSet, RepositoryException)” composition rule

26 interfaceSet = ManageComplaint, ManageDisease, ManageSymptom, ManageEmployee,

 ManageHealthUnit, ManageSpeciality, ManageAddress, ManageInfo,

 ManageDistributedInfo;

27 Forall I in interfaceSet

28 operationSet = All operations in I;

29 Forall O in opeartionSet

30 Add exception RepositoryException to O; end

31 end

32 //... “raiseException(TransactionControl, TransactionException)” composition rule

33 interfaceSet = TransactionControl, InfoServices, DistributedInfoServices;

34 Forall I in interfaceSet

35 operationSet = All operations in I;

36 Forall O in operationSet

37 Add exception TransactionException to O; end

38 end

39 //… “receiveException(UseTransactionControl, TransactionException)” composition rule

40 interfaceSet = UseTransactionControl, ManageInfo, ManageDistributedInfo;

41 Forall I in interfaceSet

40 operationSet = All operations in I;

41 Forall O in operationSet

42 Add exception TransactionException to O; end

43 end

Figure 43: Low-level composition rules (continuation of the persistence concern template

shown in Figure 42)

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 147

The controlTransaction(Business_Rules) rule captures the fact that the

Business_Rules component should control the transaction while persisting the

information it manipulates. This high-level rule is translated into two pairs of Add

and Connect low-level rules. The first one (lines 13-14) represents the creation of

the initPersistenceMechanism interface in the Business_Rules component and the

connection of this interface to the PersistenceMechanism interface of the

Transaction_Control component. The second pair of rules (lines 15-16) represents

the creation of the UseTransactionControl interface in the Business_Rules

component and the connection of this interface to the TransactionControl interface

of the Transaction_Control component.

The following high-level composition rules in Figure 42 are regarding the

persistence-specific exceptional events raised or received by a number of

interfaces. The raiseException(interfaceSet, RepositoryException) high-level rule

(Figure 42) specifies which interfaces raise the RepositoryException exception: (i)

all the provided interfaces in Data_Manager, (ii) InfoServices in Business_Rules,

and (iii) DistributedInfoServices in Distribution_Manager. The Data_Manager

component raises the exception, and the Business_Rules and

Distribution_Manager components propagate that exception. This rule is mapped

to two loop blocks of low-level rules which add the RepositoryException to every

operation in the aforementioned interfaces (lines 19-23).

In a similar way, the receiveException(interfaceSet, RepositoryException)

high-level rule specifies which interfaces receive the RepositoryException

exception. It is translated to low-level rules which add the RepositoryException to

(i) specific required interfaces in the Business_Rules component, (ii) ManageInfo

in Distribution_Manager, and (iii) ManageDistributedInfo in GUI_Elements (lines

26-30). Likewise, the TransactionException is added to the interfaces that raise or

receive it (lines 32-42). Note that adding an exception to a provided interface

means that the interface raises the exception. On the other hand, adding an

exception to a required interface means that the interface receives the exception

from a provided interface connected to it.

Exception Handling Concern Template

All the architecture elements related to the exception handling concern are

captured in the template shown in Figure 44, including: (i) the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 148

TransactionException, RepositoryException, and CommunicationException

exceptions, (ii) the attachment of the exceptions to the interfaces that raise or

receive them, (iii) the fact that GUI_Elements handles exceptions, and (iv) the fact

that Distribution_Manager and Business_Rules propagate exceptions.

Concern: Exception Handling
Elements

Components

GUI_ELEMENTS

DISTRIBUTION_
MANAGER

BUSINESS_RULES

Exceptions

TransactionException
RepositoryException
CommunicationException
High-level Composition Rules

handleExceptions(GUI_Elements);
propagateExceptions(Distribution_Manager);
propagateExceptions(Business_Rules);

interfaceSet = DistributedInfoServices;
raiseException(interfaceSet, CommunicationException);

interfaceSet = ManageDistributedInfo;
receiveException(interfaceSet, CommunicationException);

interfaceSet = All provided interfaces in Data_Manager, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, RepositoryException);

interfaceSet = ManageComplaint, ManageDisease, ManageSymptom, ManageEmployee,
 ManageHealthUnit, ManageSpeciality, ManageAddress, ManageInfo,
 ManageDistributedInfo;
receiveException(interfaceSet, RepositoryException);

interfaceSet = TransactionControl, InfoServices, DistributedInfoServices;
raiseException(interfaceSet, TransactionException);

interfaceSet = UseTransactionControl, ManageInfo, ManageDistributedInfo;
receiveException(interfaceSet, TransactionException);
Reasoning

RepositoryException is raised by Data_Manager when an error occurs while retrieving or storing
data in the database. Business_Rules receives this exception and propagates it to
Distribution_Manager, which propagates it to GUI_Elements. GUI_Elements handle this exception
by presenting an error message to the user. TransactionException is raised by Transaction_Control
when an error occurs while executing a transaction service, such as begin transaction, commit
transaction, or rollback transaction. Similarly to RepositoryException, TransactionException is
propagated until GUI_Elements, which eventually shows an error message to the user.

CommunicationException is raised by Distribution_Manager when an error related to remote
communication occurs. This exception is received by GUI_Elements, which show an error message
to the user. This exception comes from the alternative flow “A communication problem occurs”
specified in almost all use cases in the requirement specification.

Figure 44: Concern template for the exception handling concern

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 149

Figure 45 shows the low-level rules of the exception handling concern

template (Figure 44). Again, each high-level composition rules (Figure 44) is

translated to group of low-level composition rules in Figure 45. The low-level

rules related to RepositoryException and TransactionException are omitted

because they are identical to the ones shown for the persistence concern template

(Figure 43). The handleExceptions(GUI_Elements) high-level composition rule

(Figure 44) means that the GUI_Elements component handles the exceptions it

receives. It is translated into the Play low-level rule (line 04) which indicates that

GUI_Elements plays the role of exception handler.

The propagateExceptions(Distribution_Manager) and propagateExceptions

(Business_Rules) composition rules mean that Distribution_Manager and

Business_Rules, respectively, propagate the exceptions they receive. Each of

them is also translated to the Play low-level rule (lines 07-10) which specifies that

they play the role of exception propagator.

The next high-level composition rules in the template (Figure 44) determine

which interfaces raise or receive exceptions. As previously explained for the

persistence concern template, these composition rules are translated to blocks of

the Add mapping rule (Figure 45 - from line 17 on).

01 // These mapping rules a related to the …

02

03 “… handleExceptions(GUI_Elements)” composition rule

04 Play GUI_Elements, role Exception Handler

05

06 “… propagateExceptions(Distribution_Manager)” composition rule

07 Play Distribution_Manager, role Exception Propagator

08

09 “… propagateExceptions(Business_Rules)” composition rule

10 Play Business_Rules, role Exception Propagator

11

12 “… raiseException(interfaceSet, CommunicationException)” composition rule

13 operationSet = All operations in DistributedInfoServices;

14 Forall O in operationSet

15 Add exception CommunicationException to O; end

16

17 “… receiveException(interfaceSet, CommunicationException)” composition rule

18 operationSet = All operations in ManageDistributedInfo;

19 Forall O in operationSet

20 Add exception CommunicationException to O; end

21 …

Figure 45: Low-level composition rules (continuation of the exception handling concern

template shown in Figure 44)

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 150

6.3.3.
Related Work

The architectural perspectives approach (Woods & Rozanski, 2005) is

closely related to concern templates in the sense that it considers broadly-scoped

concerns at software architecture specification. Architectural perspectives provide

a framework for structuring about how to design systems to achieve particular

quality attribute. An architectural perspective attempts at providing advice

relating to the cross view concerns of a particular quality attribute, such as

security. It includes activities, checklists, tactics and guidelines to guide the

process of ensuring that a system exhibits a particular set of closely related quality

properties that require consideration across a number of the system’s architectural

views. However, the use of a perspective does not explicitly record the

architectural elements related to a concern in a particular architecture. Therefore,

concern templates can be complementarily used to record the architectural

elements (and their rationale) made as a result of applying a perspective.

Moreover, architectural perspectives are only about concerns related to quality

attributes, whereas concern templates can include other concerns, such

persistence.

Architectural tactics (Bachmann et al, 2003; Bass et al, 2003) are also

related to concern templates. An architectural tactic is a characterization of

architectural decisions that are used to achieve a desired quality attribute response.

For instance, break the dependency chain is a key modifiability tactic that

prescribes inserting an intermediary between the publisher and consumer of data

and service in order to prevent propagation of change. The decisions associated to

an architectural tactic can impact different parts of a system architecture

specification. Nevertheless, likewise architectural perspectives, the architectural

tactics approach does not provide a support for recording the architectural

elements derived from a tactic. In fact, architectural perspectives (mentioned

before) embrace and extend tactics by providing advice relating to what the

architect should know, do and be aware of, as well as the specific solution advice

provided by an architectural tactic (Woods & Rozanski, 2005). An architectural

perspective can include a set of architectural tactics.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 151

More recently, Bass et al (2004) claimed that the design decisions derived

from an architectural tactic can be viewed as an architectural aspect. In other

words, each use of a tactic can be considered as an architectural aspect, where the

join points are the places in the architecture where the tactic was applied. They

defined architectural join points as well-defined points in the specification of the

software architecture. Architectural pointcuts are means of referring to collections

of architectural join points. An architectural advice is a specification of

transformations to perform at architectural join points. Architectural aspects are

architectural views consisting of architectural pointcuts and architectural pieces of

advice. This definition is based on the AspectJ programming language (Kiczales

et al, 2001, The AspectJ Team, 2007) terms. Nonetheless, they do not define a

systematic way for describing an architectural aspect. Besides, this approach is

also restricted to concerns related quality attributes.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

