
 202

8
Evaluation of the Detailed Design Metrics and Heuristics

The goal of this chapter is to evaluate the applicability and effectiveness of

the detailed design metrics and heuristic rules in order to detect modularity-related

design problems. In order to evaluate the heuristic rules, we carried out a study

involving six systems (Section 8.1). Four of them are medium-sized academic

prototypes and the other two are real-life software projects. We have analyzed

both object-oriented and aspect-oriented designs of such systems, which

encompass heterogeneous forms of crosscutting and non-crosscutting concerns.

We also conducted a study in which students used different suites of detailed

design metrics to identify some bad smells (Section 8.2). Then, we compared the

performance of conventional and concern-driven metrics.

8.1.
Design Heuristic Rules Study

This section introduces a systematic evaluation of the concern-sensitive

heuristic rules (Section 5.4), which involved 22 distinct concerns addressed by the

object-oriented and aspect-oriented design of six systems. These concerns were

selected because they exercise different heuristic rules. Section 8.1.1 describes the

target systems and concerns in more details. The heuristics rules empirical study

was conducted under two dimensions: (i) evaluation of the rules accuracy to

identify and classify crosscutting concerns as well as other modularity flaws in

both OO and AO systems (Section 8.1.2), (ii) evaluation of the rules usefulness to

detect bad smells in comparison with conventional heuristics (Section 8.1.3). We

also discuss the applicability of the heuristic rules for addressing metrics

limitations (Section 8.1.4).

The whole study involved the following activities:

• Mapping of the design elements of both AO and non-AO versions of

the systems to the considered concerns.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 203

• Computation of the detailed design metrics needed for the application

of the design rules. The concern-driven metrics (Table 4) were

manually computed, while the conventional metrics (Table 5) were

computed with the AJATO tool support (Figueiredo et al., 2006).

• Application of the design heuristic rules R1 to R12. The rules were

manually applied.

• Comparison of the results of rules R1 to R2 with specialist’s opinion

and literature assertion (first dimension of evaluation) (Section 8.1.2).

• Comparison of the results of the rules R11 and R12 with results of

Marinescu’s rules (second dimension of evaluation) (Section 8.1.3).

8.1.1.
Target Systems

Previous works (Cacho et al., 2006a; Filho et al., 2006, Garcia et al., 2006b;

Garcia et al., 2004a; Greenwood et al., 2007a; Hannemann & Kiczales, 2002)

applied modularity-related metrics (including some of our concern-driven ones) to

a number of comparative empirical studies. We selected six of the systems used in

those studies in order to apply and assess the accuracy of our detailed design

metrics and heuristics rules. One of these systems is the Health Watcher (Soares et

al., 2002; Greenwood et al., 2007a), already exploited in previous sections.

Besides Health Watcher, the study also involved another real software system,

namely Eclipse CVS plug-in (Eclipse Foundation, 2007b). The other four systems

are academic prototypes carefully designed with modularity attributes as main

drivers (Figueiredo et al., 2006, Cacho et al., 2006a; Garcia et al., 2004a;

Hannemann & Kiczales, 2002).

Table 23 provides a list of the systems and the concerns evaluated in each of

them. The first system is, in fact, a design pattern library developed by

Hannemann & Kiczales (2002) in Java and AspectJ (The AspectJ Team, 2007;

Kickzales et al., 2001). Likewise the Hannemann & Kiczales’ work, in the study

involving their library we treated each pattern role as a concern because the roles

are the primary sources of crosscutting structures. The second system is a

middleware system (Cacho et al., 2006a, 2006b) and the third one is the AJATO

measurement tool (Figueiredo et al., 2006; Cacho et al., 2006a). In these systems

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 204

we consider each design pattern as a concern in other to investigate their

compositions in those systems.

Systems Nature of the Concerns Concerns
Builder Director role
Chain of Resp. Handler role
Factory Method Creator role

Observer role Observer Subject role
Colleague role

Hannemann & Kiczales’
design pattern library

D
es

ig
n

Pa
tte

rn
s

Mediator Mediator role
Fact. Method
Observer
Façade

OpenOrb Middleware

Singleton
Prototype
Interpreter AJATO Measurement

tool

Design patterns and their
compositions.

Proxy
Exception Handling CVS core plugin Business
Concurrency
Distribution Health Watcher

Recurring architectural concerns

Persistence
Adaptation
Autonomy Portalware Domain-specific concerns
Collaboration

Table 23: Systems and concerns used in the evaluation study

The following two systems in Table 23 are the Eclipse CVS core plugin

(Eclipse Foundation, 2007b; Filho et al., 2006) and the Health Watcher (Soares et

al., 2002; Greenwood et al., 2007a); in both we evaluate recurring widely-scoped

concerns. Finally, the last target application is a multi-agent system (MAS) for

managing Web portals, called Portalware (Garcia et al., 2004a). The focus here

was specifically on MAS-domain concerns. These systems were selected for

several reasons. First, they encompass both aspect-oriented (AO) and object-

oriented (OO) implementations. Second, a number of concern-oriented and

conventional metrics have been previously used for assessing the design

modularity of both implementations of these systems. This allowed us to evaluate

to what extent concern-aware heuristics is helpful or not to enhance a design

assessment exclusively based on metrics.

The third reason is the heterogeneity of the concerns found in these systems

(Table 23, column 2), which include widely-scoped architectural concerns, such

as persistence and exception handling, and concern that only manifest themselves

in the detailed design or implementation, such as design patterns. They encompass

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 205

different characteristics and different degrees of complexity. Forth, the systems

are representatives of different application domains, ranging from simple design

pattern instances to real-life Web-based applications, reflective middleware

systems, and multi-agent systems. Finally, such systems also serve as effective

benchmarks because they involve scenarios where it has been far from trivial to

decide when “aspectizing” or not certain concerns (Cacho et al., 2006a; Filho et

al., 2006, 2007; Garcia et al., 2004a; Greenwood et al., 2007a).

8.1.2.
Accuracy of the Heuristic Rules

This section aims at evaluating the accuracy of the design heuristic rules for

crosscutting concern analysis (rules R01 to R08) (Section 5.4.1), including also

the rules which classify concerns as octopus and black sheep (rules R09 and R10)

(Section 5.4.2). We evaluated the accuracy of these heuristics comparing their

outcomes with specialists’ opinion or with literature assertion about the concerns

involved in these studies (Cacho et al., 2006a; Filho et al., 2006, 2007; Garcia et

al., 2006b; Garcia et al., 2004a; Greenwood et al., 2007a; Hannemann & Kiczales,

2002; Monteiro & Fernandes, 2005). Specialists are researchers that participated

in development, maintenance and assessment of the systems and have documented

their observations with respect to the concerns in these systems.

We applied the rules R01 to R10 (Section 5.4.1 and Section 5.4.2) in order

to assess and classify the 22 aforementioned concerns (Table 23) as: isolated,

well-encapsulated, crosscutting, black sheep or octopus. In fact, we applied the

rules 44 times: 22 times for the concerns in the object-oriented design of the

systems, and 22 times for classifying the same instances of concerns in the aspect-

oriented designs. Then, we count how many times the literature and/or specialists

agreed with the heuristics results and how many times they did not agree.

Table 24 describes how we confronted the specialists/literature opinion with

the rules outcomes. First we classify the concerns according to

literature/specialists opinion as “crosscutting” or “non-crosscutting” (column 1).

A concern is classified as crosscutting, if the literature/specialists show evidences

that: (i) if modularized based on object-oriented abstractions, the concern ends up

scattered and tangled with other concerns, and (ii) the concern is better

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 206

modularizes by an aspect-oriented design, which eliminates its crosscutting

nature. On the other hand a concern is classified as non-crosscutting, if the

literature/specialists present evidences that the concern is well modularized by

object-oriented abstractions and do not show a crosscutting nature.

Table 24 also shows what classification is expected to be provided by the

rules (column 2). The expected classification is based on the literature/specialists

opinions and the version of the design where the rules are applied: object-oriented

(OO) or aspect-oriented (AO). The last two columns described how the rules are

evaluated based on the information the first two columns and the classification

provided by the rules:

• The rules succeed if the classification provided by them is one of the expected

classifications.

• The rules fail if the expected classification is crosscutting, black sheep or

octopus and the rules classify the concern as isolated or well-encapsulated;

this is considered an occurrence of “false negative”.

• The rules also fail if the expected classification is isolated or well-

encapsulated and the rules classify the concern as crosscutting, black sheep or

octopus; this is considered an occurrence of “false positive”.

Specialists
opinion

Expected classification
based on the version

(OO or AO)

Classification provided by
the rules

Rules
Evaluation

Crosscutting, black sheep or
octopus

Succeeded

OO

Crosscutting, black
sheep or octopus

Isolated or well-
encapsulated

Failed (false
negative)

Crosscutting, black sheep or
octopus

Failed (false
positive)

Crosscutting
concern

AO

Isolated or well-
encapsulated

Isolated or well-
encapsulated

Succeeded

Crosscutting, black sheep or
octopus

Failed (false
positive) OO

Isolated or well-
encapsulated

Isolated or well-
encapsulated

Succeeded

Crosscutting, black sheep or
octopus

Failed (false
positive)

Non-crosscutting
concern

AO

Isolated or well-
encapsulated

Isolated or well-
encapsulated

Succeeded

Table 24: Comparing the specialists opinion with the rules outcomes

Table 25 provides an overview of the application of heuristic rules R01 to

R10 (Section 5.4.1 and Section 5.4.2) to the object-oriented version of target

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 207

systems. The leftmost column lists the six applications. Note that the study related

to Hannemann & Kiczales’ design pattern library (first study) is subdivided in

terms of design patterns (column 2), and the assessed concerns are roles of those

patterns (column 3). The third column shows all 22 concerns analysed in the

respective studies. The forth column presents the classification of each concern

according to specialists and literature claims (Cacho et al., 2006a; Filho et al.,

2006, 2007, Garcia et al., 2006b; Garcia et al., 2004a; Greenwood et al., 2007a;

Hannemann & Kiczales, 2002; Monteiro & Fernandes, 2005). The two possible

values are: “ccc”, which stands for “crosscutting concern”, and “non-ccc”, which

stands for “non-crosscutting concern”. As previously explained, this information

is used to check whether the final concern classification provided by the rules

failed or not.

Heuristic Rules Systems Nature of the

Concerns Concerns Special. 01 02 03 04 05 06 07 08 09 10 Results

Builder Director role non-ccc n y y n y n well-e. / hit

Chain of Resp. Handler role ccc n y n y y n well-e. / FAIL

Factory Method Creator role non-ccc n y n y n y n n ccc / FAIL

Observer role ccc n y n y n y n y octopus / hit
Observer

Subject role ccc n y n y n y n y octopus / hit

Colleague role ccc n y n y n y n y octopus / hit

Hannemann &
Kiczales’
design pattern
library

D
es

ig
n

Pa
tte

rn
s

Mediator
Mediator role ccc n y n y y n well-e. / FAIL

Fact. Method non-ccc n y y n y n well-e. / hit

Observer ccc n y y n n y n y octopus / hit

Façade non-ccc y n isolated / hit
OpenOrb
Middleware

Singleton ccc n y y n n y y n b-sheep / hit

Prototype ccc n y y n n y y n b-sheep / hit

Interpreter ccc n y y n n y n y octopus / hit Measurement
tool

Design patterns and
their compositions.

Proxy ccc n y y n n y n n ccc / hit

CVS plugin Exc. Handling ccc n y n y n y n y octopus / hit

Business non-ccc n y n y y n well-e. / hit

Concurrency AO n y n y n y n y octopus / hit

Distribution AO n y n y n y n y octopus / hit
Health Watcher

Recurring architectural
concerns

Persistence AO n y n y n y n y octopus / hit

Adaptation AO n y y n n y n n ccc / hit

Autonomy AO n y y n n y n n ccc / hit Portalware Domain-specific
concerns

Collaboration AO n y n y n y n y octopus / hit

Table 25: Results of the heuristics application in the object-oriented version of the

systems

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 208

The columns labeled with 01 to 10 present if each rule was satisfied or not.

When we say that a rule was satisfied, we mean that the condition part of the rule

(Section 5.3) was satisfied. If the rule was satisfied the cell is filled with “y”,

which stands for “yes”. If the rule was not satisfied, the corresponding cell is

filled with “n”, which stands for “no”. Blank cells mean that the rule is not

applicable.

Finally, the last column indicates: (i) how the heuristics classify each

concern, and (ii) if the classification matches with the specialists’ opinion (‘hit’)

or not (‘FAIL’). The possible classifications are isolated, well-encapsulated

(‘well-e.’), crosscutting concern (‘ccc’), octopus and black sheep (‘b-sheep’). For

instance, the “y” label in the forth row (related to the Observer role concern) and

the column before the last indicates that the R10 rule was satisfied when applied

to the Observer role concern. As the R10 rule classifies the concerns as octopus,

the last column of this row is labeled with “octopus/hit”, which also indicates that

this classification matches with specialists’ opinion. Table 26 presents the general

results for the application of the heuristic rules in the aspect-oriented

implementation of each system.

Table 27 provides overviews of the hits, false positives and false negatives

of the rules for the 44 concern instances involved in this study (22 in the OO

version and 22 in AO version). The rows of Table 27 are organized in three parts:

the object-oriented instances (OO), the aspect-oriented instances (AO) and the

general data for both paradigms (OO + AO). Each row describes the absolute

number and the percentage in relation to the total of concerns.

Table 27 shows that the heuristics failed in 15.9% of the cases (5 false

positives and 2 false negatives). In the object-oriented designs, there were one

false positive and two false negatives. The false positive occurs with the creator

role of the Factory Method pattern (Table 25). In this pattern, the class which

plays the creator role has a lot of elements (mainly methods) related to other

concern. This made the rules interpret that concern as the dominant concern of the

class, instead of the creator role concern. As a consequence, the creator role was

classified as crosscutting, when there is no problem with its design modularity.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 209

Heuristic Rules Systems Nature of the
Concerns Concerns Special. 01 02 03 04 05 06 07 08 09 10 Results

Builder Director role non-ccc n y y n y n well-e. / hit

Chain of Resp. Handler role ccc n y y n y n well-e. / hit

Factory Method Creator role non-ccc n y n y y n well-e. / hit

Observer role ccc n y y n n y n n ccc / FAIL
Observer

Subject role ccc n y y n n y n y octopus/FAIL

Colleague role ccc n y y n n y n n ccc / FAIL

Hannemann &
Kiczales’
design pattern
library

D
es

ig
n

Pa
tte

rn
s

Mediator
Mediator role ccc n y y n n y n n ccc / FAIL

Fact. Method non-ccc y n isolated / hit

Observer ccc y n isolated / hit

Façade non-ccc y n isolated / hit
OpenOrb
Middleware

Singleton ccc y n isolated / hit

Prototype ccc y n isolated / hit

Interpreter ccc y n isolated / hit Measurement
tool

Design patterns and
their compositions.

Proxy ccc y n isolated / hit

CVS plugin Exc. Handling ccc n y n y n y n y octopus / hit6

Business non-ccc n y n y y n well-e. / hit

Concurrency AO y n isolated / hit

Distribution AO n y y n y n well-e. / hit
Health Watcher

Recurring architectural
concerns

Persistence AO n y n y y n well-e. / hit

Adaptation AO y n isolated / hit

Autonomy AO y n isolated / hit Portalware Domain-specific
concerns

Collaboration AO y n isolated / hit

Table 26: Results of the heuristics application in the aspect-oriented version of the

systems

Versions Hits (%) False Positives (%) False Negatives (%) Total (%)

OO 19 (86.4) 1 (4.5) 2 (9.1) 22 (100)

AO 18 (81.8) 4 (18.2) 0 (0.0) 22 (100)

OO + AO 37 (84.1) 5 (11.4) 2 (4.5) 44 (100)

Table 27: Statistics about the application of the heuristic rules

The heuristics have presented two occurrences of false negatives in the

assessment of the object-oriented designs: (i) Chain of Responsibility pattern, and

(ii) Mediator role of the Mediator pattern (Table 25). The Chain of Responsibility

pattern was not detected as a crosscutting concern because the pattern instance

6 The exception handling concern was not totally aspectized in the CVS plugin. Therefore,

we did not consider that the rules failed for classifying this concern as octopus in the aspect-

oriented version of this system.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 210

provided by Hannemann & Kiczales (2002) is too simple (due to its library

nature) in order to expose the pattern’s crosscutting nature. In fact, classes playing

the Handler role have only three members: one attribute, one method and one

constructor. The first two members realize the Chain of Responsibility pattern.

Because of this the heuristics erroneously consider the Chain of Responsibility

concern as the main purpose of those classes, i.e., the dominant concern, instead

of identifying it as secondary to this classes, and, as a consequence, crosscutting.

A similar situation occurs in the Mediator pattern (Gamma et al., 1995) (Table

25).

Table 27 presents four false positives in the heuristic assessment of the

aspect-oriented designs. These false positives occurred when a pattern defines

more than one role. This was the case of Observer pattern (Subject and Observer

roles) and Mediator pattern (Mediator and Colleague roles) (Table 26). When

applying the metrics to Hannemann & Kiczales (2002) library, we considered

each role as a separate concern, as stated before and shown in Table 26. Although

each of these patterns was successfully modularized using aspects, their roles are

tangled to each other in the aspects. As a result, the rules classified than as

crosscutting. We considered that the rules failed in this case, because the patterns

as a role are well modularized and it does not make sense to separate their roles

from each other.

8.1.3.
Detection of Specific Design Flaws

We also evaluated the usefulness of our heuristic rules in order to detect

specific design flaws. In particular, we applied rules R11 to R12 (Section 5.4.3) to

identify Shotgun Surgery and Feature Envy bad smells (Fowler, 1999) in the

object-oriented design of the target systems. We also applied the conventional

heuristic rules proposed by Marinescu (2002) for detecting the same bad smells

and compared the results from the two suites of rules.

In order to perform this comparison, we proceeded with the following steps.

First we applied each suite of rules to the same systems independently. The

application of the rules pointed out design fragments suspect of having one of the

two aforementioned bad smells. After that, we undertook a manual investigation

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 211

in which we inspected all the suspect design fragments. In circumstances when it

was not clear about the existence of a bad smell, we contacted professionals and

researchers with long-term experience on the development and assessment of the

target case studies. The manual investigation allowed us to verify whether the

suspect design fragments were indeed affected by the design flaw suggested by

the heuristic rules.

After the inspection, the total number of suspects for each bad smell were

classified in two categories: (i) “Hits”, which contains those suspect fragments

that have confirmed to be affected by the bad smell that the heuristic rule claims

to find, and (ii) “False Positive”, which includes those suspect fragments that

revealed not to be affected by the bad smell supposed to be captured by the rule.

Table 28 summarizes the results of applying both concern-sensitive and

conventional design heuristics rules. This table also shows the total number of hits

and false positives for each bad smell and the percentage that this value represents

from the total number of suspect fragments (under brackets).

It is important to bear in mind that the results in Table 28 are given in

different points of view. The values for concern-driven rules represent number of

concerns, since rules R11 and R12 classify concerns (Section 5.4.3). While the

values for the conventional rules represent number of classes (Shotgun Surgery)

or operations (Feature Envy). Therefore, when we say that the number of hits for

the concern-driven rules for identifying Shotgun Surgery was eight, we mean that

these rules identified eight concerns affected by this bed smell. While when we

say that the conventional rules had nine hits while seeking for Shotgun Surgery,

we mean that these rules identified nine classes affected by this bed smell.

Concern-driven Rules Conventional Rules
Bad Smell

Hits (%) False Positive (%) Hits (%) False Positive (%)

Shotgun Surgery 8 (89%) 1 (11%) 9 (56%) 7 (44%)

Feature Envy 3 (100%) 0 (0%) 1 (17%) 5 (83%)

Table 28: Concern-driven vs. Conventional heuristic rules: statistics about the application

of the heuristic rules for detecting bed smells

We can see from Table 28 that the concern-driven heuristics presented

superior accuracy than the conventional rules for detecting the two studied bad

smells. The former presented no more than 20% of false positives, whereas the

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 212

latter pointed out very high number of false positives. We could verify by means

of manual inspection that this advantage in favor of our rules was mainly caused

by the fact that they are concern sensitive. For instance, many of the false

positives of the conventional rule for Shotgun Surgery occurred because this

metric does not distinguee coupling between classes of the same concerns and

classes with different concerns.

8.1.4.
Solving Measurement Shortcomings

This section discusses problems that affect not only conventional metrics

but also the use of metrics in general, including concern-driven metrics. We

discuss here drawbacks related to the use of concern-driven metrics, and how

these drawbacks motivate the use of these metrics in the context concern-driven

heuristics rules. We classify the limitations into three categories: (i) false

crosscutting warnings, (ii) hiding concern-sensitive flaws, and (iii) controversial

outcomes from concern measures.

False crosscutting warnings

The problem of false crosscutting warnings occurs when the concern-driven

metrics erroneously warn the developer of a possible crosscutting concern.

However, a subsequent careful analysis of the design shows that the concern is

well encapsulated. Figure 61 presents an example of this problem category in an

instance of the Factory Method pattern (Gamma et al., 1995). Consider the

Factory Method pattern as the assessed concern and apply the Concern Diffusion

over Components metric (CDC) (Section 5.3.1). The obtained result shows that

the Factory Method concern is spread over six components (CSC = 6). In

addition, the Lack of Concern-based Cohesion metric shows that there are two

concerns in both MetaObjEncapsule and MetaObjComposite classes. As one of

these concerns is the Factory Method, this indicates that it is tangled with another

concern in these components.

Analyzing the results of these two metrics, the designer could conclude that

the Factory Method concern is crosscutting, because it is scattered over multiple

components and tangled with another concern. However, this is a false warning.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 213

In fact, the object-oriented abstractions provide adequate means of modularizing

the Factory Method: the main purpose of the classes which implement this pattern

is to realize it. In this case, the false warning was a result of methods related to the

Observer pattern in the classes of the Factory Method pattern. Therefore, this is

not a problem related to the Factory Method pattern design at all. Our studies

indicate that shortcomings of this category are ameliorated with the support of

concern-sensitive heuristic rules. For instance, the Factory Method example just

discussed does not produce a false warning when the heuristic rules are applied

(Table 25).

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

<<interface>>
MetaObjFactory

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryEncapsule

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

createMetaObject()

FactoryComposite

refresh()

<<interface>>
MetaObserver

refresh()

<<interface>>
MetaObserver state

getInstanceName()

MetaObject
state
getInstanceName()
state
getInstanceName()

MetaObject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

addObserver()
removeObserver()
notifyObservers()

<<interface>>
MetaSubject

refresh()

nextPreHandler
nextPosHandler
addPreMethod()
addPostMethod()
handlePreMethods()
handlePostMethods()

MetaObjEncapsule

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

graph
createGraph()
rebind()
refresh()

MetaObjComposite

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

ConcreteBind

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

observers
...
addObserver()
removeObserver()
notifyObservers()

Component

Legend:
Observer pattern

Factory Method pattern

Legend:
Observer pattern

Factory Method pattern

Figure 61: Observer and Factory Method patterns used in the design of an OpenOrb-

compliant middleware system (Cacho et al., 2006a, 2006b, 2007)

Hiding concern-sensitive flaws

Sometimes design flaws are omitted in the measurement outcomes just

because the metrics are not able to reveal an existing modularity problem. We

illustrate this limitation in the light of a partial class diagram presented in Figure

62. This figure shows shadowed elements to highlight that they implement the

Singleton and Façade patterns. Besides, it also presents the results of three

concern-driven metrics for these patterns: Concern Diffusion over Components

(CDC) (Section 5.3.1), Number of Concern Attributes (5.3.5) and Number of

Concern Operations (NCO) (Section 5.3.5). Note that the values for NCA and

NCO in Figure 62 represent the sum of the values for all the classes with the

concerns.

Although Singleton has an average metric value lower than Façade, the

former presents a crosscutting nature and the latter does not. Therefore, the

measurement results in this example are not indicative to warn the developer

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 214

about the crosscutting phenomena relative to Singleton (Cacho et al, 2006a;

Garcia et al., 2006b). Again, the application of concern-driven heuristics (Table

25) overcomes this measurement shortcoming and correctly classifies the

Singleton pattern as black sheep (Section 5.4.3), which is a specialized category of

crosscutting concern.

...
instance
getCapsuleInstance()
server()
...

CapsuleImplLegend:
Facade Pattern

Singleton Pattern

Part of the Singleton

112Singleton
651Façade

NCONCACDCPattern

112Singleton
651Façade

NCONCACDCPattern

compLocalCapsule
endPointManager
dispatcherFactory
protocolFactory
metamodel
init()
createReceptacle()
localbind()
component()
composite()
getMetaObject()

OpenOrb

Figure 62: Concern-driven metrics for Façade and Singleton

Controversial outcomes from concern measures. A problem of this

category occurs if the results of different metrics do not converge to the same

outcome, hindering the designer’s interpretation. We have identified some

occurrences of this problem in our studies. For instance, applying the concern-

driven metrics to adaptation concern in the Portalware system, the value for the

Concern Diffusion over Components metric is 3 (indicating low scattering) while

other concern metrics present high values (e.g. Number of Concern Attributes =

10 and Number of Concern Operations = 22). Hence, the concern metric results

are contradictory in the sense that it is hard to conclude whether adaptation is or

not a crosscutting concern. The concern heuristic rules address this category of

shortcomings in a number of cases. For instance, although the adaptation concern

has contradictory results for the concern metrics, the application of concern-driven

heuristics (Table 25) has successful identified it as an octopus (Section 5.4.2),

which also means that it is a crosscutting concern.

8.2.
Detailed Design Metrics Study

The goal of this study is to evaluate the effectiveness of our concern-driven

detailed design metrics to detect design flaws when they are applied by

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 215

independent subjects. In particular, the purpose of this study is to compare

concern-driven and conventional measurement in order to learn which technique

is the most effective to support the detection of two specific bad smells: shotgun

surgery and divergent change (Fowler, 1999). These two bad smells are typically

associated with crosscutting concerns (Monteiro & Fernandes, 2005). The first

bad smell was the same used in our heuristics assessment study (Section 8.1).

Divergent Change occurs when one class is commonly changed in different

ways for different reasons. Fowler (1999) say about Divergent Change: “If you

look at a class and say, ‘Well, I will have to change these three methods every

time I get a new database; I have to change these four methods every time there is

a new financial instrument’, you likely have a situation in which two classes are

better than one.” On the other hand, Shotgun Surgery as explained in previous

sections is encountered when every time you make a change to a class, you have

to make a lot of little changes to a lot of different classes.

8.2.1.
Study Format and Procedures

This study involved eight master students attending an Aspect-Oriented

Software Development course at Lancaster University. The students were grouped

in pairs. Each pair worked with different metrics in order to identify classes that

were suspect of having one of the two bad smells in the object-oriented design of

the Health Watcher system (Soares et al., 2002). Two groups worked only with

conventional metrics, one group only with concern-driven metrics, and the forth

group with both conventional and concern-driven metrics (hereafter referred as

hybrid metrics group).

We estimated each student’s relative ability from our previous knowledge of

them and background questionnaire they answered regarding the scope of their

previous experience, particularly with regards to object-oriented programming (in

Java) and design, class diagram, and software metrics. Then the pairs were formed

to balance abilities. All the students had previous experience with object-

orientation and class diagrams in academy. Two of them had experience with

these techniques in the industry context. None of them had previous experience

with software metrics.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 216

The conventional metrics group worked with the following metrics:

Coupling Between Object Classes (CBO), Lack of Cohesion in Methods (LCOM),

Weighted Methods per Class (WMC), described in (Section 2.4), as well as the

metrics Number of Attributes (NOA) and Number of Methods (NOO), which

merely count the number of attributes and methods of each class, respectively.

The concern-driven metrics group worked with the metrics Concern Diffusion

over Classes (CDC), Concern Diffusion over Operations (CDO) and Lack of

Concern-based Cohesion (LCC) (Sections 5.3.1 and 5.3.3). The hybrid metrics

group worked with all these metrics. The study was preceded by a training session

in order to allow the participants to familiarize themselves with these metrics and

the target bad smells.

 At the beginning of the study execution, the participants were then given a

document containing: (i) a partial view of the Health Watcher object-oriented

design (class diagram), (ii) an introduction Health Watcher functionalities and

non-functional requirements, (iii) a brief explanation of the design, and (iv) a brief

description of the concerns involved in the Health Watcher design, namely

graphical user interface (GUI), business, concurrency, distribution, exception

handling, and persistence. This document also described steps and guidelines the

students should follow to conduct the study, the questions they should answer and

information they should register. Appendix B presents the mentioned document.

In addition, we provided the students with the results of the metrics

application. Each group only had access to the results referent to the metrics they

were assigned to work with. Appendix B presents tables of the results of all used

metrics. Each group was asked to perform the following steps:

• Read the description of the Health Watcher design;

• Based on the metrics results, identify the classes with the highest

probability of having the bad smell Divergent Change; and

• Based on the metrics results, identify the classes with the highest

probability of having the bad smell Shotgun Surgery.

The time spent on each of these tasks was registered by each group. In order

to identify the classes with bad smells, we asked them to reason about the metrics

and identify which of them (one, some, or all) are relevant indicators based on the

bad smell description. Also, we asked each group to explain which metrics they

used for detecting the bad smell and which ones were not useful at all.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 217

8.2.2.
Hypothesis and Results

The hypothesis we wanted to test in this study was that the hybrid metrics

suite is the most effective to support detection of design bad smells. The basic

intuition behind this hypothesis is that the more metrics we can use, the more

equipped you are to identify the design flaws. In order to test this hypothesis, we

compared the actual instances of the bad smells with the classes identified by each

group as the strongest candidates of having the bad smells. Before the study was

executed, we played the oracle role to determine which classes were affected by

the bad smells, based on our extensive knowledge of the HealthWatcher system

and its releases. In order to do that, we checked out the source code of

HealthWatcher and observed comments and changes made by real developers

while refactoring the Java to AspectJ version of this system. We identified twelve

classes affected by Divergent Change and eight by Shotgun Surgery.

Table 29 shows for each group and each bad smell: (i) the time spent on the

identification of the bad smell, and (ii) the number and percentage of hits, and the

number and percentage of false positives. A hit occurs when the group identified a

class which was in our list of classes affected by the bad smell. A false positive

occurs when the group identified a class which was not in our list. The percentage

of hits is calculated dividing the number of hits by the number of classes in our

list: 12 for Divergent Change, and 8 for Shotgun Surgery. The percentage of false

positives is calculated dividing the number of false positives by the total number

of classes identified by the group.

 Conventional
Metrics

Conventional
Metrics

Concern-driven
Metrics

Hybrid Metrics

Divergent Change Identification
Time
(minutes) 9 10 21 31

Hits 2 (17%) 2 (17%) 12 (100%) 9 (75%)
False positives 1 (33%) 2 (50%) 7 (36%) 0 (0%)

Shotgun Surgery Identification
Time
(minutes) 6 10 13 35

Hits 1 (12%) 1 (12%) 6 (75%) 1 (12%)
False
positives 3 (75%) 2 (33%) 11 (64%) 3 (75%)

Table 29: Results - identification of Divergent Change and Shotgun Surgery

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 218

As far as the identification of classes affected by Divergent Change is

concerned, we can observe in Table 29 that the two groups with conventional

metrics performed significantly worse than the others. Both only obtained two hits

(17%). Besides, 33% and 50% of the classes they indicated as suspects were false

positives. Both conventional metrics groups reported that the most useful metric

for identifying Divergent Change was Lack of Cohesion in Methods (LCOM)

(Section 2.4). As a consequence, this result is in line with studies in the software

metrics literature which states that LCOM is a problematic metric sometimes

because it leads to a number of false positives and false negatives (Fenton &

Pfleeger, 1999). This metric presented high values for classes with no design

problems.

Still regarding the Divergent Change bad smell, the group working with

concern-driven metrics had 100% of hits, however 36% of false positives. In fact,

we did not limit the number of classes to be listed by the groups. So the concern-

driven metrics group indicated a high number of classes as having Divergent

Change (19 classes). Nevertheless, as shown in the study guideline form

(Appendix B), we asked the students to rank their list of classes with the ones with

highest probability of having the bad smell coming first. The twelve first classes

in the list of the concern-driven group were exactly the same of our list. This

group reported that they used the Lack of Concern-based Cohesion (LCC) metric

to identify Divergent Change. The group working with the hybrid suite of metrics

also performed well. This group had 75% of hits and none false positive. Lack of

Concern-based Cohesion (LCC) and Lack of Cohesion in Methods (LCOM) were

the metrics considered useful by this group. However, in this case, the presence of

LCC was efficient to minimize the limitations of LCOM.

We can also observe from Table 29 that the group working with

conventional metrics did not perform well regarding the identification of the

Shotgun Surgery bad smell either. They had just 12% of hits. Besides, one of the

groups had 75% of false positives and the other 33%. Differently from the

analysis of Divergent Change, the performance of the hybrid metrics group was

not good for Shotgun Surgery identification: 12% of hits and 75% of false

positives. Apparently the reason for the low performance of these three groups is

the same: some conventional metrics (in general, size metrics) might have

introduced “noise” in the design assessment. Metrics such as Number of

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 219

Operations (NOO), Number of Attributes (NOA) and Weighted Methods per

Class (WMC) presented high values for classes not affected by the Shotgun

Surgery bad smell. The group working with concern-driven metrics had again a

high number of hits (75%), however an expressive number of false positives

(65%). The reason for the high number of false positives was again the high

number of listed classes. But again the correctly indentified classes were listed as

having the highest probability of having the bad smell. This group reported that

they used the Concern Diffusion over Components (CDC) metric to identify

Shotgun Surgery.

The study results partially contradict our hypothesis that the hybrid metrics

suite would be the most effective to support detection of design bad smells. This

occurred mainly because of the results associated with the Shotgun Surgery bad

smell. In spite of the high number of false positives, the concern-driven metrics

suite was the most effective for identifying the assessed bad smells. Apparently

the high number of metrics hindered the analysis made by the hybrid metrics

group. As we can see in Table 29, the group working with these metrics took the

longest time to finish their tasks. This might be because they spent too much time

analyzing non-useful measures for the bad smells under assessment.

8.3.
Study Constraints

This section discusses some constraints related to the studies regarding

detailed design metrics and heuristic rules. Similarly to the studies about

architectural metrics, the conclusions obtained here are restricted to the assessed

software systems and analyzed concerns. Results regarding advantages and

drawbacks in using concern-driven metrics and heuristic rules obtained in these

studies should not be directly generalized to other contexts. However, these

studies allowed us to make useful evaluations on whether the use of concern-

driven metrics and heuristic rules for assessing design modularity would be worth

studying further.

The studies in this section involve concern-driven metrics, thus they suffer

from limitations related to the fact that the process of assigning concerns to design

elements directly impacts on the measurement results. In order to make this

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

 220

process more systematic, we took here the same measures we took in the studies

with architectural metrics (Section 7.5): (i) “pair mapping”, where the assignment

of concerns to design elements was done by two people assisting each other, (ii)

consultation of the actual system developers, when possible, and (iii) we followed

the “remove concern – remove design element” guideline (Section 7.1).

Other issue that limits the conclusions from the studies about detailed design

metrics and heuristic rules is the fact that we played the role of the oracle while

deciding which classes and aspects were affected by the design flaws. This could

have biased the results mainly because the assessed concern-driven metrics were

proposed by us. In order to minimize this issue, we consulted and observed

comments of the real developers of the assessed systems as well as changes made

by them to improve the design, especially during aspect-oriented refactoring.

The evaluation studies showed that concern-driven metrics and heuristic

rules are promising means of modularity flaws detection, and are usable in

practice. However, it is clear that the number of systems used in the study is by no

means statistically relevant. Besides, we have not used rigorous statistical

methods in the empirical evaluation. Nonetheless, we are considering the sample

representative of the population due to the heterogeneity of systems and concerns

involved in this study. We have recently replicated this study with four other

groups of undergraduate and master students (total of 30 students) at the Lancaster

University and the results were similar with the ones presented here. We also

included other bad smells (e.g. God Class (Riel, 1996)) in these new studies.

DBD
PUC-Rio - Certificação Digital Nº 0410867/CA

