Cláudio Nogueira Sant'Anna

On the Modularity of Aspect-Oriented Design: A Concern-Driven Measurement Approach

DOCTORAL THESIS

COMPUTER SCIENCE DEPARTMENT

Graduate Program in Computer Science

Rio de Janeiro April 2008

Cláudio Nogueira Sant'Anna

On the Modularity of Aspect-Oriented Design: A Concern-Driven Measurement Approach

Doctoral Thesis

Thesis presented to the Graduate Program in Computer Science of the Pontifical Catholic University of Rio de Janeiro in partial fulfillment of the requirements for the degree of Doctor in Computer Science.

> Supervisors: Carlos José Pereira de Lucena Alessandro Fabricio Garcia

Rio de Janeiro, April 2008

PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO

Cláudio Nogueira Sant'Anna

On the Modularity of Aspect-Oriented Design: A Concern-Driven Measurement Approach

Thesis presented to the Graduate Program in Computer Science of the Pontifical Catholic University of Rio de Janeiro in partial fulfillment of the requirements for the degree of Doctor in Computer Science. Approved by the following Examination Committee.

> Carlos José Pereira de Lucena Supervisor **PUC-Rio**

> > **Alessandro Fabricio Garcia** Co-supervisor Lancaster University

> > > Arndt von Staa PUC-Rio

Julio Cesar Sampaio do Prado Leite PUC-Rio

> Itana Maria de Souza Gimenes Universidade Estadual de Maringá

> > Paulo César Masiero Universidade de São Paulo

José Eugenio Leal Graduate Programs' Coordinator for the Center of Science and Technology - PUC-Rio

Rio de Janeiro, April 11th, 2008

All rights reserved. Copying portions or the entirety of the work is prohibited, except as otherwise permitted by the university, the author and the supervisors.

Cláudio Nogueira Sant'Anna

He received his BSc in Computer Science from the Universidade Federal da Bahia (UFBA) in 1997. He worked as a software developer from 1997 to 2001. He received his MSc degree in Computer Science from PUC-Rio in 2002.

Ficha Catalográfica

Sant'Anna, Cláudio Nogueira On the modularity of aspect-oriented design: a concerndriven measurement approach / Cláudio Nogueira Sant'Anna ; orientadores: Carlos José Pereira de Lucena, Alessandro Fabricio Garcia. – 2008. 253 f. : il. ; 30 cm Tese (Doutorado em Informática)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008. Inclui bibliografia 1. Informática – Teses. 2. Design de software. 3. Modularidade. 4. Arquitetura de software. 5. Métricas de Desenvolvimento de software orientado a software. 6. aspectos. I. Lucena, Carlos José Pereira de II. Garcia, Alessandro Fabrício. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Informática. IV. Título.

PUC-Rio - Certificação Digital Nº 0410867/CA

To my parents Moema and Roberto

Acknowledgments

I consider myself fortunate and privileged to have Dr. Alessandro Garcia as one of my supervisors. I am deeply indebted for all the essential guidance and permanent encouragement that I received from him. I am very thankful for the enthusiasm with which he motivated and helped me to go on. This work would not have been possible without his support and friendship. Furthermore, Alessandro gave me the opportunity to work at the Computing Department at Lancaster University during one year of my PhD. To Alessandro, my deepest gratitude.

I am honored and especially grateful to have Prof. Carlos Lucena as one of my supervisors. I would like to thank him for giving me freedom and shaping my path to research by guiding me with his extensive knowledge. I owe him so much for every occasion in which he trusted me fully. At the same time, I want to thank him for the whole financial support that made possible my regular participation in a number of conferences.

I would like to thank all my colleagues and professors from the Computer Science Department at PUC-Rio for providing a stimulating work environment. My thankful admiration goes to Professor Arndt von Staa whose highly competent and constructive criticism on my work will always remain very precious to me. Besides, the seed of this work was planted during his course about software metrics. I also thank Professor Julio Leite who taught me two very interesting courses – on software evolution and software requirements – which enlarged my vision on software engineering and indirectly contributed to this thesis.

I've been particularly lucky to have collaborated with a number of research colleagues who contributed to this thesis in different ways. Individually, I want to thank: (i) Christina Chavez, for all the good pieces of advice and for introducing me to the software engineering group at PUC-Rio; (ii) Uirá Kulesza, for the insightful discussions and comments, and for being a great friend; (iii) Eduardo Figueiredo, for all the fruitful discussions and for the time we spent together measuring and analyzing measurement results; (iv) Thaís Batista, for all the

shared knowledge and experience on software architecture; (v) Miguel da Silva, for the time we spent together working on the implementation of COMET; and (vi) Cidiane and Nélio, for their contributions on the empirical studies used in this thesis. It was a pleasure to work with them on a number of papers.

This work would not have been possible without the stimulating environment in the Software Engineering Laboratory (LES) at PUC-Rio. I am very grateful for the privilege of having worked together with all my colleagues from LES. It is difficult to name them all but I will try. My thanks to Akeo, Anarosa, Andrew, Camila, Carol, Choren, Cidiane, Daflon, Dani Brauner, Elder, Espinha, Felipe, Firmo, Guga, Ingrid, Karla, Küsel, Léo Cunha, LF, Lyrene, Maíra, Miriam, Pádua, Rodnei, Roberta, Rodrigo Alagoano, Rodrigo Gaúcho and Viviane. I also want to express my sincere thanks to Vera for her friendship and for the kind way in which she always succeeded in solving my administrative issues.

This research work was partially conducted at the Computing Department at Lancaster University. I want to thank my colleagues from Lancaster for making my stay there an extraordinary experience. Thanks to Ambra, Américo, Awais, Chiara, Eduardo, Fabiano, Ivone, Jan Wloca, Luca, Neil, Nélio, Nelis, Nelly, Paula, Phil, Roberta, Safoora, Thiago and Vander. During my time in Lancaster, I also had the opportunity to collaborate with researchers from the University of Malaga in the context of the AOSD-Europe project. Thanks to Lidia Fuentes, Mónica Pinto and Nadia Gámez.

Very special thanks to all my friends from Salvador, in particular, Daniel, Diva, Eguinhas, Igor, Jupião, Karina, Kiko, Léo and Queiroz, that never forgot me despite being so far away for such a long time.

I am also thankful to the members of my examination committee, Arndt von Staa, Itana Gimenes, Julio Leite and Paulo Masiero, who have generously contributed their time and expertise.

My doctoral studies have been financially supported by CNPq and CAPES. The funders of this work have my gratitude.

Finally, I would like to warmly thank my wonderful parents, Moema and Roberto, for all their love and mental support, for believing in me since day one and for giving me all the opportunities in life.

Abstract

Sant'Anna, Cláudio Nogueira; Lucena, Carlos José Pereira de; Garcia, Alessandro Fabricio. **On the Modularity of Aspect-Oriented Design: A Concern-Driven Measurement Approach.** Rio de Janeiro, 2008. 253p. Doctoral Thesis - Computer Science Department, Pontifical Catholic University of Rio de Janeiro.

Several modularity problems in software designs are related to the inadequate modularization of key broadly-scoped concerns, such as exception handling, distribution, and persistence. However, most of the current quantitative assessment approaches are not sensitive to concerns that drive the design, thereby leading to a number of shortcomings in the modularity evaluation process. Therefore, there is a need for measurement approaches that support a more effective identification of modularity anomalies related to crosscutting concerns. Also, this necessity becomes more apparent in an age that a number of different forms of design decompositions, such as aspect-oriented software development, are emerging. In this context, this thesis aims at investigating a novel approach for quantitative modularity assessment of software design by promoting the concept of concern as a measurement abstraction. Our concern-driven measurement approach encompasses a set of mechanisms for assessing software modularity from architectural to detailed design. The proposed concern-sensitive approach includes: (i) a suite of architectural metrics, (ii) a suite of detailed design metrics, (iii) a suite of design heuristic rules for supporting the interpretation of metrics in meaningful ways, and (iv) a tool, called COMET, that supports both concerndriven notation and measurement of architectural designs. We evaluated the usefulness of our concern-oriented measurement technique in a series of empirical studies, comparing the modularity of conventional and aspect-oriented software design.

Keywords

Software design, modularity, software architecture, software metrics, aspect-oriented software development

Resumo

Sant'Anna, Cláudio Nogueira; Lucena, Carlos José Pereira de; Garcia, Alessandro Fabricio. **Modularidade de Design Orientado a Aspectos: Uma Abordagem de Medição Dirigida por Interesses.** Rio de Janeiro, 2008. 253p. Tese de Doutorado – Departamento de Informática, Pontifícia Universidade Católica do Rio de Janeiro.

Muitos problemas de modularidade de design de software estão relacionados à modularização inadequada de interesses importantes e que têm impacto sistêmico no design, tais como tratamento de exceção, distribuição e persistência. No entanto, a maioria das abordagens atuais de avaliação quantitativas não leva em conta os interesses que guiam o design, o que acaba fazendo com que o processo de avaliação de modularidade se torne deficiente. Portanto, existe a necessidade de abordagens de medição que promovam uma identificação mais efetiva dos problemas de modularidade relacionados a interesses transversais. Além disso, essa necessidade se torna ainda mais evidente à medida que surgem novas formas de decomposição de design, tais como desenvolvimento de software orientado a aspectos. Nesse contexto, essa tese tem o objetivo de definir e investigar uma nova abordagem de avaliação quantitativa de modularidade de design de software que promove o conceito de interesse a uma abstração de medição. Esse trabalho define uma abordagem de medição dirigida por interesses que inclui um conjunto de mecanismos para a avaliação de modularidade de software desde o design arquitetural até o design detalhado. A abordagem sensível a interesses proposta é composta por: (i) um conjunto de métricas arquiteturais, (ii) um conjunto de métricas de design detalhado, (iii) um conjunto de regras heurísticas de design que dão apoio a interpretação das métricas, e (iv) uma ferramenta, chamada de COMET, que dá apoio tanto à notação quanto à medição dirigida por interesses de design arquitetural. A utilidade da técnica de medição dirigida por interesses proposta foi avaliada em uma série de estudos empíricos, onde a modularidade de designs convencionais e orientados a aspectos foram comparados.

Palavras-chave

Design de software, modularidade, arquitetura de software, métricas de software, desenvolvimento de software orientado a aspectos

Table of Contents

1 Introduction	24
1.1. Problem Statement	26
1.2. Limitation of Conventional Measurement Approaches	27
1.2.1. Inaccuracy on Identifying Non-localized Concerns	28
1.2.2. Inaccuracy on Identifying Dependence between Concerns	29
1.2.3. Inaccuracy on Identifying Instabilities	30
1.2.4. The Tyranny of Dominant Modularity Attributes	31
1.3. Proposed Solution	31
1.4. Empirical Evaluation	34
1.5. Thesis Outline	35
2 Design Modularity Measurement	36
2.1. Modularity Definition	36
2.2. Modularity Attributes	37
2.3. Conventional Architecture Metrics	38
2.3.1. Metrics by Martin	39
2.3.2. Metrics by Briand et al.	40
2.3.3. Metrics by Lung & Kalaichelvan	41
2.4. Conventional Detailed Design Metrics	42
2.5. Design Heuristics Rules	45
3 Aspect-Oriented Software Development	48
3.1. Aspect-Oriented Programming	48
3.2. Aspect-Oriented Architecture Design	52
3.2.1. AOGA	55
3.2.2. AO Visual Notation	57
3.3. Aspect-Oriented Metrics	59
3.3.1. Metrics by Ceccato & Tonella	59
3.3.2. Metrics by Sant'Anna et al.	60

3.3.3. Metrics by Zhao and Xu	61
3.3.4. Connection between Aspects and Classes	61
4 Concern-Driven Metrics	62
4.1. Classification of Software Concerns	62
4.2. Concern Representation	64
4.2.1. Architectural Design	66
4.2.2. Architectural Concern	69
4.3. Suite of Concern-Driven Architecture Metrics	73
4.3.1. Metrics for Concern Diffusion	76
4.3.2. Metrics for Interaction between Concerns	78
4.3.3. Concern-based Cohesion	80
4.3.4. Concern-Sensitive Coupling Metric	81
4.3.5. Number of Concern Interfaces Metric	82
4.3.6. Metrics for Coupling and Interface Complexity	83
4.4. Classification of the Metrics	86
4.4.1. Measurement Framework Criteria	87
4.5. Related Work	90
4.5.1. Metrics by Sant'Anna et al.	91
4.5.2. Metrics by Ducasse et al.	93
4.5.3. Metrics by Wong et al.	94
4.5.4. Metrics by Eaddy et al.	95
5 Concern-Driven Design Heuristic Rules	97
5.1. Limitation of Conventional Heuristic Rules	98
5.2. Concern Representation at Detailed Design	100
5.2.1. Detailed Design	101
5.3. Concern-Driven Metrics for Detailed Design	103
5.3.1. Concern Diffusion	105
5.3.2. Interaction between Concerns	106
5.3.3. Concern-based Cohesion	107
5.3.4. Concern-Sensitive Coupling	108
5.3.5. Concern-Sensitive Size	110
5.4. Concern-Driven Design Heuristic Rules	111

5.4.1. Crosscutting Concern Analysis	112
5.4.2. Octopus and Black Sheep	116
5.4.3. Concern-Aware Bad Smells	117
5.4.4. The Issue of Threshold Values	119
6 Tool Support for Concern-Driven Measurement	121
6.1. Limitation of Related Work	122
6.2. The Concern-Oriented Measurement Tool	123
6.2.1. User Interface	126
6.2.2. Extracting an Architecture Specification	131
6.2.3. Managing the Architecture Model and Assigning Concerns	132
6.2.4. Applying metrics and heuristic rules	135
6.3. Concern Templates	136
6.3.1. Composition Rules	139
6.3.2. Using Concern Templates	142
6.3.3. Related Work	150
7 Evaluation of the Architectural Metrics	152
7.1. Study Procedures	153
7.2. AspectT and MobiGrid study	155
7.2.1. The AspectT Architectures	157
7.2.2. The MobiGrid Architectures	161
7.2.3. Results	164
7.2.4. Discussion	171
7.3. Health Watcher study	173
7.3.1. The Health Watcher Architectures	175
7.3.2. Results and Discussion	178
7.4. Mobile Media Study	186
7.4.1. Mobile Media Architectures	189
7.4.2. Results	193
7.4.3. Discussion	198
7.5. Study Constraints	200
8 Evaluation of the Detailed Design Metrics and Heuristics	202

8.1. Design Heuristic Rules Study	202
8.1.1. Target Systems	203
8.1.2. Accuracy of the Heuristic Rules	205
8.1.3. Detection of Specific Design Flaws	210
8.1.4. Solving Measurement Shortcomings	212
8.2. Detailed Design Metrics Study	214
8.2.1. Study Format and Procedures	215
8.2.2. Hypothesis and Results	217
8.3. Study Constraints	219
9 Conclusions	221
9.1. Contributions	222
9.2. Future Work	224
10 References	227
Appendix A – Mobile Media Architecture Description	237
Appendix B – Detailed Design Metrics Study: Form and Metrics	
Values	249

List of Figures

Figure 1: Architecture of the Health Watcher system	28
Figure 2: Design to illustrate Martin's coupling metrics	40
Figure 3: Example of an aspect in AspectJ	51
Figure 4: Java (left side) and AspectJ (right side) version of the same	
program.	52
Figure 5: AOGA architecture elements	56
Figure 6: AO Visual Notation: Aspectual Connectors	57
Figure 7: Simpler notation for aspectual connectors	58
Figure 8: Simplified representation of the Health Watcher software	
architecture	64
Figure 9: Mapping between concerns and design elements	65
Figure 10: Aspect-oriented design alternative of Health Watcher	
architecture	68
Figure 11: Simplified representation of the Health Watcher system	
architecture	76
Figure 12: Transition points	92
Figure 13: Distributed Map	93
Figure 14: Design slice of an OpenOrb-compliant middleware system	99
Figure 15: Observer and Factory Method patterns used in the design	
of an OpenOrb-compliant middleware system	104
Figure 16: Concern classification	113
Figure 17: Design heuristic rules for crosscutting concern analysis	114
Figure 18: Design heuristics rules for Black Sheep and Octopus	117
Figure 19: Heuristic rules for detecting bad smells	118
Figure 20: Overview of COMET's modules	124
Figure 21: Architecture measurement meta-model	124
Figure 22: Heuristic rules supported by COMET	127
Figure 23: COMET Views	128
Figure 24: The Projects View	129

Figure 25: The Architecture View for the Health Watcher system	130
Figure 26: The Properties View for the transactionExceptionalEvent	
operation	130
Figure 27: The Properties View for the saveEntity interface	130
Figure 28: The Concern Model View for the Health Watcher system.	131
Figure 29: The Properties View for the Distribution concern	131
Figure 30: Wizard for creating a new project	132
Figure 31: Adding new architecture element	133
Figure 32: Adding new concerns	133
Figure 33: Selecting concerns related to an architecture element	134
Figure 34: Selecting architecture elements related to a concern	135
Figure 35: Metrics View	136
Figure 36: Heuristic Rules View	136
Figure 37: Concern Template: Distribution	138
Figure 38: BNF description of language for low-level composition rules	140
Figure 39: Add primitive	141
Figure 40: Connect primitive	141
Figure 41: Health Watcher Architecture	143
Figure 42: Concern template for the persistence concern	145
Figure 43: Low-level composition rules (continuation of the persistence	
concern template shown in Figure 42)	146
Figure 44: Concern template for the exception handling concern	148
Figure 45: Low-level composition rules (continuation of the exception	
handling concern template shown in Figure 44)	149
Figure 46: The AspectT architecture	159
Figure 47: Details of AspectT interfaces	160
Figure 48: Non-AO mediator-based architecture equivalent to AspectT	
architecture	162
Figure 49: The non-AO MobiGrid architecture	163
Figure 50: The AO MobiGrid architecture	163
Figure 51: Non-AO architecture of the Health Watcher system	176
Figure 52: Aspect-oriented architecture of the Health Watcher system	177

Figure 53: Business_Rules component: Number of Concern Interfaces	;
and Concern-Sensitive Coupling measures	184
Figure 54: Simplified Mobile Media feature model	187
Figure 55: Non-AO architecture of the Mobile Media product line	191
Figure 56: AO architecture of the Mobile Media product line	192
Figure 57: Concern Diffusion and Interaction between Concerns	
metrics for favorite feature	194
Figure 58: Concern Diffusion and Component-level Interlacing betwee	n
Concerns metrics for the exception handling concern	196
Figure 59: Concern Diffusion and Interface-level Interlacing between	
Concerns metrics for the label media mandatory feature	197
Figure 60: Concern Diffusion over Architectural Operations metric	
for the favorite feature	200
Figure 61: Observer and Factory Method patterns used in the design	
of an OpenOrb-compliant middleware system	213
Figure 62: Concern-driven metrics for Façade and Singleton	214
Figure 63: Non-AO architecture of the Mobile Media product line –	
Releases 1 and 2	237
Figure 64: Non-AO architecture of the Mobile Media product line –	
Releases 3 and 4	238
Figure 65: Non-AO architecture of the Mobile Media product line –	
Release 5	239
Figure 66: Non-AO architecture of the Mobile Media product line –	
Release 6	240
Figure 67: Non-AO architecture of the Mobile Media product line –	
Release 7	241
Figure 68: Non-AO architecture of the Mobile Media product line –	
Release 8	242
Figure 69: AO architecture of the Mobile Media product line –	
Release 2	243
Figure 70: AO architecture of the Mobile Media product line –	
Release 3	244

Figure 71: AO architecture of the Mobile Media product line –	
Release 4	244
Figure 72: AO architecture of the Mobile Media product line –	
Release 5	245
Figure 73: AO architecture of the Mobile Media product line –	
Release 6	246
Figure 74: AO architecture of the Mobile Media product line –	
Release 7	247
Figure 75: AO architecture of the Mobile Media product line –	
Release 8	248

List of Tables

Table 1: Summary of the suite of concern-driven architectural metrics	75
Table 2: Classification of our architecture metrics according to	
Figueiredo and colleagues' measurement framework (Figueiredo et a	l.,
2008a)	90
Table 3: Classification of related metrics according to Figueiredo and	
colleagues' measurement framework (Figueiredo et al., 2008a)	96
Table 4: Summary of the suite of concern-driven detailed design	
metrics	105
Table 5: Conventional metrics used in the definition of the heuristic	
rules	111
Table 6: Primitives for defining low-level composition rules	142
Table 7: AspectT and MobiGrid study configuration	158
Table 8: AspectT: concern diffusion measures	165
Table 9: MobiGrid architectures: concern diffusion measures	167
Table 10: AspectT architectures: coupling and cohesion measures	168
Table 11: MobiGrid architectures: coupling and cohesion measures	168
Table 12: AspectT architectures: interface complexity measures	170
Table 13: MobiGrid architectures: interface complexity measures	170
Table 14: Health Watcher study configuration	175
Table 15: Health Watcher architectural concerns	177
Table 16: Health Watcher: concern diffusion measures	179
Table 17: Health Watcher: interaction between concerns measures	180
Table 18: Health Watcher: concern-based cohesion measures	182
Table 19: Health Watcher: interface complexity measures	183
Table 20: Summary of the change scenarios	186
Table 21: Summary of the evolution scenarios implemented in Mobile	
Media	188
Table 22: Mobile Media study configuration	189
Table 23: Systems and concerns used in the evaluation study	204

Table 24: Comparing the specialists opinion with the rules outcomes	206
Table 25: Results of the heuristics application in the object-oriented	
version of the systems	207
Table 26: Results of the heuristics application in the aspect-oriented	
version of the systems	209
Table 27: Statistics about the application of the heuristic rules	209
Table 28: Concern-driven vs. Conventional heuristic rules: statistics	
about the application of the heuristic rules for detecting bed smells	211
Table 29: Results - identification of Divergent Change and Shotgun	
Surgery	217
Table 30: Results of the metrics for the Health Watcher design	249
Table 31: Results of the metrics for the Health Watcher design	250

List of Acronyms and Abbreviations

- ADL Architecture Description Language
- AFI Architectural Fan-in
- AFO Architectural Fan-out
- AMT Aspect Mining Tool
- AO Aspect-oriented
- AOGA Aspect-Oriented Generative Approach
- AOP Aspect-Oriented Programming
- AOSD Aspect-oriented software development
- ATAM Architecture Tradeoff Analysis Method
- CAE Coupling on Advice Execution
- **CBC** Coupling between Components
- CBO Coupling between Object Classes
- CC Changing Classes
- C&C Component-and-connector
- CDA Crosscutting Degree of an Aspect
- CDAC Concern Diffusion over Architectural Components
- CDAI Concern Diffusion over Architectural Interfaces
- CDAO Concern Diffusion over Architectural Operations
- CDC Concern Diffusion over Components
- CDLOC Concern Diffusion over Lines of Code
- CDO Concern Diffusion over Operations
- CFA Coupling on Field Access
- CIBC Component-level Interlacing Between Concerns
- CIM Coupling on Intercepted Modules
- CM Changing Method
- CMC Coupling on Method Call
- **CME** Concern Manipulation Environment
- **COF** Coupling Factor
- **COMET Concern-Oriented Measurement Tool**

- **CONC** Concentration
- CSC Concern-Sensitive Coupling
- DAC Data Abstraction Coupling
- DAOP Dynamic Aspect-Oriented Platform
- **DEDI Dedication**
- DOF Degree of Focus
- DOS Degree of Scattering
- FEAT Feature Exploration and Analysis Tool
- GUI Graphical User Interface
- ICP Information-flow-based Coupling
- ICSC Intra-component Concern-Sensitive Coupling
- IIBC Interface-level Interlacing Between Concerns
- LCC Lack of Concern-based Cohesion
- LCO Lack of Cohesion in Operations
- LCOM Lack of Cohesion in Methods
- LCOO Lack of Cohesion in Operations
- MAS Multi-agent System
- MPC Message Passing Coupling
- MVC Model-View-Controller
- NC Number of Components
- NCA Number of Concern Operations
- NCI Number of Concern Interfaces
- NCO Number of Concern Operations
- NI Number of Interfaces
- NO Number of Operations
- NOA Number of Attributes
- NOO Number of Operations
- OMG Object Management Group
- OO Object-oriented
- OOBC Operation-level Overlapping Between Concerns
- RFC Response for a Class
- RFM Response for a Module
- SAAM Software Architecture Analysis Method

UML - Unified Modeling Language

WMC - Weighted Methods per Class

PUC-Rio - Certificação Digital Nº 0410867/CA

To measure is to know Lord Kelvin, n.d