

Cintia Monteiro de Lima

Estudo da solubilidade de compostos de urânio do ciclo do combustível em LPS

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio.

Orientadores: Carlos Vieira de Barros Leite Filho Kenya Moore de Almeida Dias da Cunha

Rio de Janeiro Fevereiro de 2008

Cíntia Monteiro de Lima

Estudo da solubilidade de compostos de urânio do ciclo do combustível em LPS

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Física do Departamento de Física do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Carlos Vieira de Barros Leite Filho Orientador Departamento de Física – PUC-Rio

Profa. Kenya Moore de Almeida Dias da Cunha

Co-Orientadora Departamento de Física – PUC-Rio

Prof. Enio Frota da Silveira Departamento de Física – PUC-Rio

Prof. Jean Remy Davee Guimarães UFRJ

Prof. Heitor Evangelista da Silva UERJ

Prof. Rex Nazaré Alves

Prof. Carlos Eduardo Bonacossa de Almeida IRD-CNEN

> **Prof. José Eugenio Leal** Coordenador Setorial do Centro

Técnico Científico – PUC-Rio

Rio de Janeiro, 29 de fevereiro de 2008.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, da autora e do orientador.

Cintia Monteiro de Lima

Ficha Catalográfica

Lima, Cintia Monteiro de

Estudo da solubilidade de compostos de urânio do ciclo do combustível em LPS / Cintia Monteiro de Lima ; orientadores: Carlos Viera de Barros Leite Filho, Kenya M. de A. Dias da Cunha. – 2008.

137 f. : il. ; 30 cm

Tese (Doutorado em Física)–Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2008.

Inclui bibliografia

1. Física – Teses. 2. Urânio. 3. LPS. 4. PIXE. 5.
 252Cf-PDMS. I. Leite Filho, Carlos Viera de Barros. II.
 Cunha, Kenya M. de A. Dias da. III. Pontifícia Universidade
 Católica do Rio de Janeiro. Departamento de Física. IV.
 Título.

CDD: 530

PUC-Rio - Certificação Digital Nº 0412200/CA

Para meus pais, William e Denise, pelo apoio e confiança. E ao meu querido irmão Eduardo (in memorium).

Agradecimentos

A Deus pela vida, pela força para superar todas as dificuldades e pela possibilidade de chegar ao final de mais uma etapa.

Um especial agradecimento os meus orientadores: Dr. Carlos Viera de Barros Leite Filho da PUC-Rio e a Dra Kenya Moore de Almeida Dias da Cunha do IRD/CNEN pela orientação, apoio, incentivo e paciência no desenvolvimento deste trabalho.

Ao Departamento de física da PUC-Rio pela a oportunidade e a todos os colegas do laboratório Van de Graaff, pesquisadores, alunos e funcionários e em especial ao Sergio, Cássia, Nélio, Edson e Nilton amigos que muito me auxiliaram nas horas de acelerador. Na PUC agradeço também a Cristina Marlasca que foi uma amiga para todas as horas.

A todos os colegas de trabalho do Semin/IRD pesquisadores, alunos e funcionários. Á Técnica Geiza Celeste pela amizade e ajuda com os preparos das amostras no laboratório. A Dra Kely Cristine, ao MsC Lima Vaz. pela amizade, apoio. A química Rosilda do IEN por fornecer as amostras utilizadas.

Alguns amigos especiais merecerem destaque na realização deste estudo são eles: meus avós, meus tios, amigos (Carina, Alex, Jr e Aninha), Dr. Luiz Alves e a minha linda Bia e ao pequeno Arthur que esta para chegar em breve.

Por fim, mas jamais menos importante, meus agradecimentos carinhosos aos meus pais William e Denise, que sempre estavam pronto para qualquer tipo de ajuda e o apoio do meu namorado Ernani por todo amor e companheirismo no decorrer do desenvolvimento deste trabalho.

A coordenação de Aperfeiçoamento de Pessoal (CAPES) pela concessão de bolsa durante dois anos e ao CNPq pelos outros dois anos de bolsa.

A todos que, direta ou indiretamente, colaboraram para a realização deste trabalho.

Resumo

Lima, Cintia Monteiro de; Leite Filho, Carlos Vieira de Barros. **Estudo da solubilidade de compostos de urânio do ciclo do combustível em LPS**. Rio de Janeiro, 2008. 137p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

O ciclo do combustível nuclear é o conjunto de etapas do processo industrial que transforma o mineral urânio até sua utilização como combustível nuclear. Em todas as etapas do ciclo os trabalhadores estão expostos a partículas contendo urânio. Para avaliar os riscos é necessário conhecer a taxa de deposição, a concentração e a cinética da partícula no trato respiratório. Os testes de solubilidade in vitro, permitem um estudo sistemático da solubilidade de qualquer composto. Nesse estudo foram utilizadas amostras de DUA, TCAU e UO2 em contato com o liguido pulmonar simulado e estas foram analisadas pela técnica de PIXE (Particle Induced X rays Emission) para determinação da fração de urânio solubilizada e pela técnica de Cf-PDMS (Plasma Desorption Mass Spectrometry) para a determinação da especiação química. Os objetivos específicos foram: (i) Identificar os compostos de urânio na fração respirável do aerossol nas etapas selecionadas do ciclo de combustível nuclear; (ii) identificar e determinar a solubilidade dos compostos de urânio em líquido pulmonar simulado; (iii) Determinar os parâmetros de solubilidade dos compostos de urânio. Os valores dos parâmetros de solubilidade determinados neste estudo para o DUA, TCAU e UO2 são: fr, = 0,83; sr = 0,51 d e ss = $0,0075 \text{ d}^{-1}$; fr = 0,60; sr = 0,70 d e ss = 0,00089 d e fr = 0,19; sr = 0,47 d e ss = 0,0019 d, respectivamente.

Palavras-chave

Urânio, LPS, PIXE, ²⁵²Cf-PDMS.

Abstract

Lima, Cintia Monteiro de; Leite Filho, Carlos Vieira de Barros. **Study of uranium compounds solubility in the nuclear fuel cycle in LPS.** Rio de Janeiro, 2008. 137p. Tese de Doutorado.- Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

The nuclear fuel cycle is the industrial process that converts the uranium ore, to its use as fuel, inside of a nuclear power station. In all steps from the nuclear cycle workers are exposure to uranium dust particles. To evaluate the risk due particles incorporation data like deposition, concentration and kinetics of the particles in the respiratory tract must be know The in vitro solubility test allows a systemic understanding about the compound solubility. Samples of DUA, TCAU e UO2 and SLF was collected in different time interval and the uranium concentration was determined by PIXE (Particle Induced X rays Emissions) technique and the uranium compounds were identified by ²⁵²Cf-PDMS (Plasma Desorption Mass Spectrometry). The specific objectives were: (i) identifying uranium compounds in the respirable fractions of aerosol (ii) identified and determinated the uranium coumpounds solubility in simulated lung fluid (iii) determinated the solubility parameters to this uranium compounds. The solubility parameters to DUA, TCAU and UO2 are: fr, = 0,83; sr = 0,51 d⁻¹ and ss = 0,0075 d⁻¹; fr = 0,60; sr = 0,70 d⁻¹ and ss = 0,00089 d⁻¹ e fr = 0,19; sr = 0,47 d⁻¹ e ss = 0,0019 d⁻¹, respectively.

Keywords

Uranium, SLF, PIXE, ²⁵²Cf-PDMS.

Sumário

1 Introdução	17
2 Fundamentos Teóricos	20
2.1. O urânio	20
2.1.1. Ocorrência Mundial	22
2.1.2. Urânio no Brasil	23
2.1.3. Limites de toxidade química e radiológica do Urânio	23
2.1.4. Comportamento químico do urânio no ser humano	24
2.2. O Trato Respiratório	25
2.3. Modelos Biocinéticos	26
2.3.1. Modelo Pulmonar Sugerido na Publicação 66 da ICRP	28
2.3.2. Modelo de deposição	29
2.3.3. Mecanismos de liberação	30
2.3.4. Absorção no sangue	32
2.3.5. Modelo do Sistema Trato Gastrintestinal	34
2.3.6. Modelos Sistêmicos para o Urânio	35
2.4. Medidas in vitro de taxa de dissolução	37
2.4.1. Técnicas aplicadas em Estudos in vitro	38
2.4.2. Líquido Pulmonar Simulado	40
2.5. Fatores que afetam os testes de solubilidade	41
3 O Ciclo do Combustível Nuclear	42
3.1. Mineração e beneficiamento	42
3.2. Conversão e enriquecimento do urânio	44
3.3. Fabricação do combustível nuclear	45
3.4. A fábrica de combustível nuclear (FCN)	45
4 Técnicas Analíticas	48
4.1. PIXE	48
4.1.1. Método PIXE (PARTICLE INDUCED X RAY EMISSION)	49
4.1.2. Incertezas do Método	53
4.2. PDMS (Plasma Desorption Mass Spectrometry)	54

4.2.1. Introdução	54
4.2.2. PDMS	55
4.2.3. Calibração de massa	59
5 Materiais e Métodos	61
5.1. Estudo da Solubilidade	61
5.1.1. Seleção das etapas do ciclo do combustível nuclear	61
5.1.2. Preparação do Líquido Pulmonar Simulado	62
5.1.3. Preparação das amostras	63
5.1.4. Arranjo experimental para estudo da solubilidade do urâ	nio em Líquido
Pulmonar Simulado (LPS)	63
5.2. Caracterização de Aerossóis	66
5.2.1. Coleta de amostras de aerossóis	66
5.2.2. Amostras Biológicas	68
5.3. Técnicas Analíticas	69
5.3.1. Técnica de PIXE	69
5.3.2. Técnica de PDMS	74
6 Resultados	76
6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es	76 studo da
6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade.	76 studo da 76
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 	76 studo da 76 los. 76
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudad 6.2. Solubilidade dos compostos de urânio em líquido pulmona 	576 studo da 76 los. 76 ar simulado 78
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudad 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 	54udo da 76 los. 76 ar simulado 78 78
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 	76 studo da 76 los. 76 ar simulado 78 78 s. 79
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 	76 studo da 76 los. 76 ar simulado 78 78 s. 79 80
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 	76 studo da 76 los. 76 ar simulado 78 78 s. 79 80 o 83
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula 	76 studo da 76 los. 76 ar simulado 78 78 s. 79 80 o 83 s contendo
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 	54udo da 76 los. 76 ar simulado 78 78 s. 79 80 o 83 s contendo 84
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 6.3.1. Caracterização de aerossóis 	5tudo da 76 los. 76 ar simulado 78 s. 79 80 o 83 s contendo 84 85
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudado 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 6.3.1. Caracterização de aerossóis 6.4. Amostras biológicas 	5tudo da 76 los. 76 ar simulado 78 s. 79 80 o 83 s contendo 83 s contendo 84 85
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudad 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 6.3.1. Caracterização de aerossóis 6.4. Amostras biológicas 6.5. Determinação da especiação química – Espectrometria de 	76 studo da 76 los. 76 ar simulado 78 78 s. 79 80 o 83 s contendo 84 85 89 e massa
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudad 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação das curvas de solubilidade 6.2.3. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 6.3.1. Caracterização de aerossóis 6.4. Amostras biológicas 6.5. Determinação da especiação química – Espectrometria de por tempo de vôo 	5tudo da 76 los. 76 los. 76 ar simulado 78 78 s. 79 80 o 83 s contendo 83 s contendo 84 85 89 e massa 90
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudad 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 6.3.1. Caracterização de aerossóis 6.4. Amostras biológicas 6.5. Determinação da especiação química – Espectrometria de por tempo de vôo 6.5.1. Amostras de ar da FCN-Resende 	5tudo da 76 los. 76 los. 76 ar simulado 78 78 s. 79 80 o 83 s contendo 84 85 89 e massa 90 90
 6 Resultados 6.1. Caracterização dos compostos de urânio utilizados nos es solubilidade. 6.1.1. Determinação do teor de urânio nos compostos estudad 6.2. Solubilidade dos compostos de urânio em líquido pulmona 6.2.1. Caracterização do Líquido pulmonar simulado (LPS) 6.2.2. Determinação da Solubilidade dos compostos estudado 6.2.3. Determinação das curvas de solubilidade 6.2.4. Determinação dos valores dos parâmetros de dissolução 6.3. Caracterização da exposição de trabalhadores a partícula U na FCN-Resende 6.3.1. Caracterização da especiação química – Espectrometria de por tempo de vôo 6.5.1. Amostras de ar da FCN-Resende 6.5.2. Solubilidade do TCAU em solução de LPS 	5tudo da 76 los. 76 los. 76 ar simulado 78 80 s. 79 80 o 83 s contendo 84 85 89 e massa 90 90 90

7.1. Curvas do percentual de urânio não dissolvido comparando com	
dados da literatura	102
7.2. Simulação da excreção urinária diária após a incorporação	105
7.3. Excreção urinária trabalhadores FCN-Resende	109
8 Conclusões	111
9 Recomendações	113
10 Referências Bibliográficas	114
Apêndice A	124
A1. Aerossóis	124
A2 Tamanho das partículas	124
A3. Diâmetro Geométrico	125
A5.2 Impactador em cascata	130
Apêndice B	131
Caracterização das amostras de aerossóis coletadas na fábrica de	
combustível nuclear	131
B1. Impactador em Cascata (IC)	131
Apêndice C	133

Lista de figuras

Figura 1 Decaimento radioativo da serie do urânio – 238.	21
Figura 2 Reservas, produção e demanda de urânio (OECD/IAEA, 2005).	22
Figura 3 Reservas nacionais de urânio, unidades de extração, beneficiamento)
e produção de elementos combustíveis e usina termonuclear de Angra dos	
Reis (Eletrobrás, 2001).	23
Figura 5 Principais tipos de deposição de partículas no sistema respiratório.	27
1- impactação; 2 – sedimentação; 3- difusão;	27
Figura 4 Esquema do trato respiratório sugerido ICRP 66.	28
Figura 5 Modelo Pulmonar ICRP 66	29
Figura 6 Rotas de liberação do trato respiratório	31
Figura 7 Modelo de transporte de partículas pelos compartimentos.	32
Figura 8 Modelo de absorção no sangue do material inalado.	33
Figura 9 Modelo do sistema gastrointestinal proposto na ICRP 30	35
Figura 10 Modelo sistêmico do urânio.	36
Figura 11 Localização do município de Caetité / Ba, onde encontra-se	
a jazida de urânio.	43
Figura 12 vista aérea da INB Caetité localizada na Bahia.	44
Figura 13 Desenho esquemático do processo para obtenção do UO ₂ .	46
Figura 14 Processo de fabricação de pastilhas de UO ₂ .	46
Figura 15 Pastilhas de urânio.	47
Figura 16 Emissão de Raio X característico e espectro de PIXE.	50
Figura 17 Esquema simplificado do arranjo experimental.	64
Figura 19 arranjo experimental no laboratório de caracterização de aerossóis	
IRD/CNEN.	65
Figura 20 Fotografia do amostrador do tipo impactador em cascata no local	
de coleta.	67
Figura 21 Locais de coleta na FCN/ Resende utilizando IC.	68
Figura 23 Curva de eficiência absoluta do detector de Raios-X.	71
Figura 24 Curva do limite de detecção do método PIXE, para os elementos	
leves (Z \leq 42), identificados pelas linhas de energia K α .	72
Figura 25 Curva do limite de detecção do método PIXE, para os elementos	
pesados Z \ge 43), identificados pelas linhas de energia L α .	72
Figura 26 esquema da eletrônica da técnica de 252Cf – PDMS.	74

Figura 27 Câmara com arranjo experimental para PDMS.	75
Figura 28 Relação entre o percentual de massa experimental e teórico.	77
Figura 29 Composição elementar do LPS.	78
Figura 30 Esquema simplificado da cinética de dissolução do material inalado	
ICRP 66 (ICRP, 1994).	80
Figura 31 curva de solubilidade do percentual de urânio acumulado dissolvido	C
na amostra de DUA em LPS na base temporal.	82
Figura 32 curva de solubilidade do percentual de urânio acumulado dissolvido	C
na amostra de TCAU em LPS na base temporal.	82
Figura 33 Curva de solubilidade do percentual de urânio acumulado dissolvido)
na amostra de TCAU em LPS na base temporal.	83
Figura 34 esquema da distribuição de amostragem dos ICs.	87
Figura 35 Espectro de massa das partículas impactadas no primeiro estágio	
do IC baseado nos íons secundários dessorvidos da superfície da amostra.	90
Figura 36 Espectro de ar da etapa do TCAU – expansão de 10 a 60 e de	
60 a 110 u.m.a.	92
Figura 37 Espectro de ar da etapa do TCAU – 100 a 200 u.m.a.	93
Figura 38 Espectro de ar da etapa do TCAU – 200 a 400 u.m.a.	94
Figura 39 Espectro de íons positivos para a amostra de TCAU + LPS	
em contato por 30 minutos.	95
Figura 40 espectro positivo de LPS + TCAU – 30 minutos 0 ate 100 uma.	97
Figura 41 espectro positivo de LPS + TCAU – 30 minutos 200 ate 550 uma.	98
Figura 42 Percentual de urânio não dissolvido no DUA usando os valores de	
parâmetros de solubilidade determinados neste estudo, disponíveis na	
literatura e os recomendados pela ICRP para o composto tipo M.	102
Figura 43 Percentual de urânio não dissolvido no TCAU usando os valores	
de parâmetros de solubilidade determinados neste estudo, disponíveis na	
literatura e os recomendados pela ICRP para o composto tipo M.	103
Figura 44 Percentual de urânio não dissolvido no UO2 usando os valores de	
parâmetros de solubilidade determinados neste estudo, disponíveis na	
literatura e os recomendados pela ICRP para o composto tipo S.	104
Figura 45 Curvas da excreção urinária diária supondo incorporação de 1Bq	
e os diferentes parâmetros de dissolução determinados para o DUA.	106
Figura 46 Curvas da excreção urinária diária supondo incorporação de 1Bq	
e os diferentes parâmetros de dissolução determinados para o TCAU.	107
Figura 47 Curvas da excreção urinária diária supondo incorporação de 1Bq	

e os diferentes parâmetros de dissolução determinados para o UO ₂ .	108
Figura 48 Curvas da concentração de urânio na urina incorporação contínua	
de 60µ Bq e os parâmetros de incorporação específicos da FCN.	110
Figura 49 Esquema simplificado ilustrando as definições dos Diâmetros de	
Ferret, de Martin e da área projetada.	125
Figura 50 Esquema simplificado das linhas de corrente do fluido em um	
sistema onde as linhas apresentam um desvio de 90°.	126
Figura 52 Esquema de um impactador em cascata e os diâmetros de corte	
correspondentes a cada estágio	130

Lista de tabelas

Tabela 1 Reservas, produção e demanda de urânio (OECD/IAEA, 2007).	20
Tabela 2 Valores de referência para os parâmetros de absorção para	
materiais dos tipos F, M ou S (ICRP, 1994).	33
Tabela 3 Composição iônica do líquido pulmonar simulado e do líquido	
pulmonar.	62
Tabela 4 Limites de concentração de U em massa e o equivalente em	
atividade, calculados para amostras analisadas pelo método PIXE.	73
Tabela 5 Teor de urânio nos compostos.	76
Tabela 6 Percentual acumulado de urânio dissolvido	81
Tabela 7 Parâmetros de solubilidade para os compostos de urânio deste	
estudo e padrão internacional ICRP.	84
Tabela 8 Concentração elementar nas amostras coletadas nas três etapas	
da FCN. Amostras coletadas com o impactador em cascata.	86
Tabela 9 Valores de MMAD determinado para partículas coletadas nas três	
etapas do processo na FCN.	88
Tabela 10 Concentrações na urina dos trabalhadores.	89
Tabela 11 parâmetros de solubilidade obtidos por diferentes autores.	101
Tabela 12 Condições de coleta de amostras com IC na FCN – Unidade de	
Reconversão (Precitpitação do TCAU e Filtro Rotativo).	131
Tabela 13 Condições de coleta de amostras com IC na FCN – Unidade de	
Reconversão (Precitpitação do TCAU e Filtro Rotativo + Forno de Leito	
Fluidizado).	131
Tabela 14 Condições de coleta de amostras com IC na FCN – Unidade de	
Fabricação de Pastilhas (Retífica).	132
Tabela 15 Valores máximos dos contaminantes no NaCl de acordo com o	
fabricante.	133
Tabela 16 Valores máximos dos contaminantes no CaCl ₂ de acordo com o	
fabricante.	134
Tabela 17 Valores máximos dos contaminantes no $NA_3C_6H_50_7.2H_2O$ de	
acordo com o fabricante.	134
Tabela 18 Valores máximos dos contaminantes no KCI de acordo com o	
fabricante.	135

Tabela 19 Valores máximos dos contaminantes no CH ₃ COONa de acordo	
com o fabricante.	135
Tabela 20 Valores máximos dos contaminantes no NaHCO3 de acordo	
com o fabricante.	136
Tabela 21 Valores máximos dos contaminantes no Na ₂ SO ₄ de acordo com	
o fabricante.	136
Tabela 22 Valores máximos dos contaminantes no MgCl2 de acordo com	
o fabricante.	137
Tabela 23 Valores máximos dos contaminantes no Na3PO4 de acordo com	
o fabricante.	137

Queria ter aceitado As pessoas como elas são Cada um sabe alegria E a dor que traz no coração...

Epitáfio-Sérgio Britto