

Estudo por espectrometria de infravermelho dos efeitos da irradiação de gelos astrofísicos por íons pesados e rápidos

Tese de Doutorado

Tese apresentada como requisito parcial para obtenção do título de Doutor pelo Programa de Pós-Graduação em Física da PUC-Rio.

> Orientadores: Enio Frota da Silveira Philippe Boduch

Rio de Janeiro, julho de 2009

Eduardo Seperuelo Duarte

Estudo por espectrometria de infravermelho dos efeitos da irradiação de gelos astrofísicos por íons pesados e rápidos

Tese apresentada como requisito parcial para obtenção do grau de Doutor pelo Programa de Pós-Graduação em Física do Departamento de Física do Centro Técnico Científico da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Enio Frota da Silveira Orientador Departamento de Física – PUC-Rio

Prof. Philippe Boduch Co-Orientador Université de Caen-Basse Normandie

Prof. Jacques Raymond Daniel Lépine USP

> Prof. Emmanuel Dartois IAS-CNRS

Prof. Lucio Sartori Farenzena UFSC

> Prof. Pedro Luis Grande UFRGS

Prof. José Eugenio Leal

Coordenador Setorial do Centro Técnico Científico – PUC-Rio

Rio de Janeiro, 4 de agosto de 2009.

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Eduardo Seperuelo Duarte

Possui graduação em Astronomia pela Universidade Federal do Rio de Janeiro (2002) e mestrado em Astrofísica pelo Observatório Nacional (2004). Tem experiência nas áreas de Astronomia e Física, com ênfase nas áreas de Astrofísica estelar e Física atômica e molecular, respectivamente.

Ficha Catalográfica

Duarte, Eduardo Seperuelo
Estudo dos efeitos da irradiação de gelos astrofísicos por íons pesados e rápidos utilizando espectrometria de infravermelho por transformada de Fourier
115 f. : il. (color.) ; 30 cm
Tese (Doutorado em Física)-Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009.
Incluí referências bibliográficas.
1. Física – Teses. 2. Gelos astrofísicos. 3. Radiólise por íons pesados. 4. Seção de choque. 5. Rendimento de dessorção. 6. FTIR. 7. Rendimento químico de radiólise. I. Silveira, Enio da. II. Boduch, Philippe. III. Pontifícia Universidade Católica do Rio de Janeiro. Departamento de Física. IV. Título.

CDD: 530

PUC-Rio - Certificação Digital Nº 0510941/CA

À minha esposa Camila

Agradecimentos

A conclusão deste trabalho não seria possível sem a ajuda de pessoas especiais em momentos decisivos. A primeira delas e a mais especial de todas é minha esposa Camila, a quem eu tive a sorte de me casar durante o doutorado. Agradeço todo o seu apoio e compreensão. Aos meus pais e avós, agradeço os valores e princípios passados que são fundamentais neste momento de minha vida. Aos meus irmãos, agradeço o companheirismo e o incentivo nos momentos mais difíceis.

Durante toda a minha vida tive a sorte de conhecer pessoas que me acrescentaram profissionalmente e socialmente. No doutorado não poderia ser diferente. Agradeço ao professor Enio pela confiança depositada e pelos conselhos que certamente me guiarão pelos vários anos de minha carreira. Seu exemplo de profissionalismo e simplicidade certamente são qualidades a serem alcançadas. Agradeço aos companheiros e técnicos do laboratório Van de Graaf: Cassia, Sergio, Nilton, Édson, Carlos Augusto, Lucio, "Paquito", Peter, Rafael, Sergio Pilling, Diana e Ana Mônica.

Agradeço aos amigos de trabalho do IFRJ (antigo CEFET Química de Nilópolis) em especial ao prof. Vitor de Jesus a quem pude recorrer nos momentos mais decisivos de meu doutorado. Agradeço tabém a diretoria e a reitoria do IFRJ em permitir que parte do meu doutorado fosse feito na França.

Finalmente, gostaria de fazer um agradecimento especial ao laboratório CIMAP-GANIL, representados aqui por Philippe Boduch e Hermann Rothard, pelo acolhimento e simpatia que fizeram de nossa estadia na França uma experência única a ser lembrada com muito carinho. Ao final de minha estadia, Alicja Domaracka teve uma contribuição importante nos artigos redigidos e que estão em vias de publicação. Agradeço ao seu apoio.

Agradeço também ao apoio financeiro do programa CAPES-COFECUB dado durante minha estadia na França e a bolsa de isenção oferecida pela PUC-Rio.

Resumo

Seperuelo Duarte, Eduardo; Frota da Silveira, Enio; Boduch, Philippe. Estudo por espectrometria de infravermelho dos efeitos da irradiacão de gelos astrofísicos por íons pesados e rápidos. Rio de Janeiro, 2009. 115p. Tese de Doutorado - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

No Sistema Solar e em regiões densas do meio interestelar, mantos de gelo constituídos de moléculas pequenas estão expostos à irradiação de partículas ionizantes: fótons, elétrons e íons. A interação entre partículas energéticas e os mantos induzem uma série de processos físicos e químicos no gelo como: reações químicas, mudanças de fase e dessorção de moléculas. Os efeitos da irradiação provocados por fótons e íons leves como prótons e partículas alfas vêm sendo estudados há mais de 10 anos. Porém, experimentos envolvendo a irradiação com íons pesados e rápidos são escarsos na literatura. Apesar dos íons leves serem mais abundantes no espaco, a alta taxa de ionização e o alto rendimento de dessorção induzidos pelos íons pesados podem compensar sua menor abundância. Este trabalho consiste em estudar os efeitos da irradiação de gelos astrofísicos por íons pesados e rápidos, em projeto de colaboração entre as instituições PUC-Rio e CIMAP-GANIL. Os experimentos foram realizados nas linhas de baixa e média energia do acelerador GANIL, utilizando íons de Ni com 46 MeV e 537 MeV de energia cinética. Os gelos foram analisados utilizando a técnica de espectrometria de infravermelho por transformada de Fourier (FTIR). Os quatro gelos irradiados foram: H2O, CO, CO2 e H2O:NH3:CO. As grandezas analisadas foram as seções de choque de destruição destas moléculas, as seções de choque de formação de novas espécies moleculares formadas nos gelos e os rendimentos de dessorção. Os resultados mostram que os íons pesados são mais eficientes do que os prótons na dessorção de moléculas em mantos de gelo no espaço, mesmo considerando as baixas abundâncias deles nos raios cósmicos. Ao contrário, em se tratando de síntese de novas espécies moleculares, os prótons são mais eficientes do que os íons pesados.

Palavras-chave

Gelos astrofísicos; radiólise por íons pesados; seção de choque; rendimento de dessorção; FTIR; rendimento químico de radiólise

Resumé

Seperuelo Duarte, Eduardo; Frota da Silveira, Enio; Boduch, Philippe (Superviseurs). **Etude des effets de l'irradiation par des ions lourds sur des glaces d'intérêt astrophysique par spectroscopie infrarouge.** Rio de Janeiro, 2009. 115p. Thèse de Doctorat - Departamento de Física, Pontifícia Universidade Católica do Rio de Janeiro.

Dans le système solaire et dans les régions denses du milieu interstellaire, des manteaux de glaces constitués de petites molécules sont irradiés par des particules ionisantes : des photons, des électrons et des ions. L'interaction entre les particules énergétiques et les manteaux induit plusieurs processus tels que les réactions chimiques, les changements de phase et la désorption de molécules. Les effets de l'irradiation par des photons et des ions légers sont étudiés depuis 20 ans. Cependant, les expériences réalisées avec des ions lourds et rapides sont rares dans la littérature. Bien que les ions légers soient plus abondants, le grand pouvoir d'arrêt et le haut rendement de pulvérisation des ions lourds peuvent compenser cet écart numérique. Ce travail résulte d'un projet de collaboration entre la PUC-Rio et le CIMAP-GANIL. L'objectif de ce projet est d'étudier l'effet de l'irradiation de glaces astrophysiques avec des ions lourds et rapides. Les expériences ont été réalisées sur les lignes IRRSUD et SME du GANIL avec des ions Ni (46 et 537 MeV). L'analyse des glaces a été faite par spectroscopie infrarouge par transformée de Fourier (FTIR). Quatre cibles ont été irradiées et analysées : H₂O, CO, CO₂ et H₂O :CO :NH₃. Les sections efficaces de destruction, de création des molécules produites et les rendements de pulvérisation ont été déterminés pour chaque cible. Les résultats obtenus montrent que les ions lourds sont plus efficaces que les protons pour la pulvérisation des manteaux de glaces alors que les protons sont eux plus efficace pour la synthèse de nouvelles molécules.

Mots-clé

Glaces astrophysique; radiolyse des ions lourds; sections efficaces; rendement de pulvérisation; FTIR; rendement radiochimique.

Sumário

1 Introdução	16
2 Descrição Experimental	21
2.1. Radiometria	21
2.2. Criostato e porta-amostra	23
2.3. Câmara de análise	25
2.4. Pré-câmara e sistema de injeção de gás	27
2.5. Espectrometria de Infravermelho	28
2.5.1. Absorbância	29
2.5.2. Espectrômetro FTIR	31
3 Resultados	32
3.1. Gelo de H₂O	32
3.1.1. Introdução	32
3.1.1.1. Cristalografia do gelo de H_2O	34
3.1.2. Resultados	35
3.1.2.1. Análise quantitativa das seções de choque do gelo de H_2O	
irradiado	38
3.1.2.2. Síntese de novas espécies moleculares induzida pela	
irradiação: a formação do peróxido de hidrogênio (H ₂ O ₂)	43
3.1.3. Conclusões	49
3.2. Gelo de CO	52
3.2.1. Introdução	52
3.2.2. Resultados	54
3.2.2.1. Identificação dos produtos da radiólise do gelo de CO	55
3.2.2.2. Análise quantitativa das seções de choque e do rendimento	
de dessorção do gelo de CO irradiado	59
3.2.2.3. Comparação com resultados da literatura	60
3.2.2.4. Rendimento de dessorção do gelo de CO	61
3.2.2.5. Síntese de novas espécies moleculares induzida pela	

irradiação	63
3.2.3. Conclusões	65
3.3. Gelo de CO ₂	65
3.3.1. Introdução	65
3.3.2. Resultados	66
3.3.2.1. Identificação dos produtos da radiólise do gelo de CO_2	67
3.3.2.2. Análise quantitativa das seções de choque e do rendimento	
de dessorção do gelo de CO2 irradiado	68
3.3.2.3. Síntese de novas espécies moleculares induzida pela	
irradiação	70
3.3.3. Conclusões	72
3.4. Gelo de H ₂ O : NH ₃ : CO	72
3.4.1. Introdução	72
3.4.2. Resultados	73
3.4.2.1. Identificação dos produtos da radiólise do gelo de	
H ₂ O:NH ₃ :CO	74
3.4.2.2. Análise quantitativa das seções de choque do gelo de	
H ₂ O:NH ₃ :CO irradiado	80
3.4.3. Conclusões	81
4 Discussão	82
5 Conclusões e perspectivas	89
	00
Referências bibliográficas	91
Apêndice A Dinâmica da densidade de coluna de gelos irradiados em	
vácuo	103
1º caso Gelo de gás monomolecular condensado em vácuo	104
2° caso Gelo de gás condensado monomolecular interagindo com	
o gás residual	105
3° caso Formação de novas moléculas num gelo monomolecular	105
4° caso Formação de novas moléculas num gelo monomolecular que	
interage com o gás residual	106

5° caso Gelo de gás condensado polimolecular interagindo com	
o gás residual	107
Apêndice B Espectrometria de infravermelho	108
B.1 Vibrações moleculares	108
B.2 Variação do momento de dipolo	109
B.3 Transição entre os níveis de energia	111
B.4 Números de onda das bandas	113
B.5 Intensidades das bandas espectrais	114

Lista de figuras

Figura 2.1 - Stopping power eletrônico (S_e) e nuclear (S_n) do Fé e do Ni	
sobre gelo de CO, calculados utilizando o programa SRIM	
(Ziegler & Biersack 2006).	22
Figura 2.2 - Representação esquemática dos componentes do criostato e o	
porta-amostra.	24
Figura 2.3 - Porta-amostra antes e depois da instalação da blindagem.	25
Figura 2.4 - Ilustração da montagem experimental CASIMIR. Criostato e	
câmara de análise inseridos no compartimento da amostra do	
espectrômetro FTIR.	26
Figura 2.5 - Vista superior da posição da câmara de vácuo no	
compartimento da amostra do espectrômetro FTIR.	26
Figura 2.6 - Pré-câmara onde os gases são inseridos para o preparo de	
misturas.	28
Figura 2.7 - Espectro de infravermelho de CO_2	30
Figura 3.1 – Diagrama contendo as diferentes fases do gelo de H ₂ O.	34
Figura 3.2 - Espectros de infravermelho da água condensada a 13 K	
(gelo amorfo) em função da fluência de íons de Ni de 50 MeV.	36
Figura 3.3 - Espectros de infravermelho da água condensada a 144 K	
(gelo cristalino) em função da fluência de íons de Ni de 50 MeV.	36
Figura 3.4 - Posição do máximo da banda principal de absorção do gelo de	
H_2O em função da fluência de íons de Ni de 50 MeV.	37
Figura 3.5 – Densidade de coluna do gelo de $H_2O(13 \text{ K})$ em função da	
fluência de irradiação com íons de Ni ¹³⁺ de 50 MeV. A linha sólida	
representa o ajuste dos dados obtido com a equação A4 (Apêndice A).	
Os parâmetros obtidos pelo ajuste são a seção de choque de destruição	
da água (σ_d) e a diferença entre o <i>sputtering yield</i> e a taxa de condensação	
do gás residual (Y – L). A densidade de coluna inicial (N ₀) é obtida	
diretamente do espectro infravermelho do gelo irradiado com	
$1 \ge 10^{11}$ ions/cm ² .	39

Figura 3.6 – Densidade de coluna do gelo de H2O (144 K) em função da

fluência de irradiação com íons de Ni13+ de 50 MeV. A linha sólida	
representa o ajuste dos dados obtido com a equação A6 (Apêndice A).	40
Figura 3.7 – Densidade de coluna do gelo de $H_2O(13 \text{ K})$ bombardeado	
por Ni ¹³⁺ de 50 MeV, após a correção da absorbância integrada em função	
da fluência. A linha azul representa o ajuste feito com a função	
exponencial decrescente $y = y_0 \exp(-\sigma_d F)$.	41
Figura 3.8 – Extrapolação da função obtida pelos dados de	
Brown et al. (1982) para o valor de stopping power eletrônico do Ni em	
H2O (Se = $1,5 \times 10-12 \text{ eV cm} 2 / \text{H2O}$).	43
Figura 3.9 – Evolução dos espectros de infravermelho do gelo de água	
na região entre 3060 cm ⁻¹ a 2500 cm ⁻¹ durante a irradiação por íon de Ni ¹³⁺	
de 50 MeV.	44
Figura 3.10 – Evolução dos espectros de infravermelho do gelo de água	
na região entre 3060 cm ⁻¹ a 2500 cm-1 durante a irradiação por íons de	
$Ni^{13+} de 50 MeV.$	44
Figura 3.11 – Densidade de coluna do H2O2 em função da fluência de	
íons de Ni ¹³⁺ .	45
Figura 3.12 – Os pontos representam a razão H_2O_2/H_2O em função da	
fluência do feixe de íons de Ni ¹³⁺ . As linhas tracejadas representam os	
valores máximos descritos na literatura à temperatura de 16 K	
(Gomis et al. 2004).	48
Figura 3.13 – Razão H_2O_2/H_2O em função da fluência do feixe de íons	
de Ni ¹³⁺ . As linhas tracejadas representam os valores máximos	
obtidos na literatura à temperatura de 77 K (Gomis et al. 2004).	48
Figura 3.14 – Ajuste pela equação A9 dos dados da densidade de	
coluna do peróxido de hidrogênio em função da fluência de íons de Ni ¹³⁺	
sobre o gelo de água a 13 K.	51
Figura 3.15 - Ajuste pela equação A9 dos dados da densidade de	
coluna do peróxido de hidrogênio em função da fluência de íons de Ni ¹³⁺	
sobre o gelo de água a 144 K.	52
Figura 3.16 – Espectros de infravermelho do CO condensado a 13 K	
antes (abaixo) e depois (acima) da irradiação com feixe de Ni ¹³⁺ .	55
Figura 3.17 – Variação das densidades de coluna das moléculas	

principais observadas nos espectros de infravermelho do gelo de CO	
irradiado com íons de 58Ni11+ de 50 MeV de energia	57
Figura 3.18 – Dados da densidade de coluna do CO irradiado com íons de	
Ni de 50 MeV e 537 MeV ajustados pela equação A4.	60
Figura 3.19 – Relação entre o rendimento de dessorção e o stopping	
power eletrônico. Os dois últimos pontos representam as medidas realizadas	
nos experimentos da irradiação do gelo de CO por íons de Ni. Os demais	
pontos e o ajuste dos dados foram obtidos por Brown et al. (1984). A relação	
$Y = f(S_e)$ foi extrapolada para os valores de stopping power eletrônico	
utilizados neste trabalho.	63
Figura 3.20 – Ajuste, feito com a equação A8, dos dados de densidade	
de coluna do CO ₂ formado no início da irradiação de gelo de CO por íons	
de Ni de 50 MeV.	64
Figura 3.21 – Espectros de infravermelho do C18O2 condensado a 13 K	
e irradiado com íons de Ni de 46 MeV.	68
Figura 3.22 - Ajustes dos dados de densidade de coluna do gelo de CO_2	
irradiado com íons de Ni de 46 MeV. As três curvas, a, b e c,	
representam respectivamente: a) o ajuste pela eq. A2 considerando	
dessorção nula; b) o ajuste pela eq. A4 considerando destruição e dessorção	
das moléculas de CO_2 e c) o ajuste por uma função exponencial válida apenas	
no segundo regime de evolução da densidade de coluna, onde a interação do	
gelo com o substrato torna-se importante.	69
Figura 3.23 – Rendimento de dessorção em função da taxa de perda de	
energia eletrônica. Segundo Brown et al. (1982), o rendimento de	
dessorção apresenta dois comportamentos: o primeiro Y ~ $S_e^{1.94}$ e o segundo	
$Y \sim S_e^4$.	70
Figura 3.24 – Variação da densidade de coluna das espécies	
moleculares formadas no gelo de CO ₂ pela irradiação de íons de Ni de	
46 MeV. Com exceção do CO, as demais moléculas formadas pela	
irradiação desaparecem para $F \approx 10 \text{ x } 10^{12} \text{ cm}^2$.	71
Figura 3.25 – Espectros de infravermelho da mistura	
H ₂ O:NH ₃ :CO (1:0,6:0,4) condensada à 13 K e irradiada com íons de Ni de	
46 MeV. Os espectros foram deslocados de 0,05 em absorbância para	

melhor visualização.	75
Figura 3.26 – Espectros de infravermelho da figura 3.25 expandidos na região	
de $2400 - 1200 \text{ cm}^{-1}$.	75
Figura 3.27 – Comparação entre os espectros de infravermelho dos gelos de	
H ₂ O, NH ₃ e H ₂ O:NH ₃ . As linhas tracejadas indicam os números de onda	
onde H ₂ O e NH ₃ apresentam bandas espectrais. Os modos de vibração	
estão indicados.	76
Figura 3.28 – Evolução dos espectros de infravermelho do gelo da mistura	
após o término da irradiação	78
Figura 3.29 – Espectros de infravermelho da mistura H ₂ O:NH ₃ :CO a 13 K	
(preto) e a 300 K (vermelho).	79
Figura 3.30 – Ajuste dos dados de densidade de coluna dos componentes	
iniciais do gelo analisado.	81
Figura 4.1 – Taxa de perda de energia eletrônica de diferentes íons presentes	
nos raios cósmicos em função da energia no intervalo de 1 – 10 GeV/u.	83
Figura 4.2 – Rendimentos de dessorção de gelo de água pura induzidos	
por diferentes íons contituintes dos raios cósmicos, em função da energia do	
íon incidente.	84
Figura 4.3 – Fluxo diferencial dos íons próton, carbono, oxigênio,	
magnésio, silício, ferro e níquel no intervalo de energia de 1 – 10 GeV/u.	85
Figura 4.4 – Rendimentos de dessorção total em função das energia/massa	
dos projéteis induzidos por raios cósmicos em mantos de gelo	
compostos principalmente por H ₂ O. Os valores integrados para cada	
componente também estão presentes no gráfico.	86
Figura 4.5 – Seções de choque de dissociação iônica e de destruição da	
água irradiada por H^+ (Werner et al 1995), ${}^{12}C^{3+}$	
(Luna & Montenegro 2005), 4 He $^{+}$ e 40 Ar $^{2+}$ (Gomis et al. 2004) e	
⁵⁸ Ni ¹³⁺ (este trabalho) em função da taxa de perda de energia eletrônica.	87
Figura 4.6 – Taxa de destruição em função da energia por massa.	
Os valores integrados no intervalo entre 1 e 10^4 MeV/u também são mostrados	. 88
Figura B1 – Modelo massa-mola para a vibração da molécula do CO	109

Lista de tabelas

Tabela 2.1: Características dos feixes empregados para irradiar cada um dos	
gelos estudados	21
Tabela 3.1 – Seções de choque de destruição e de formação do peróxido	
de hidrogênio, a 13 K, obtidas neste trabalho e na literatura	
(Gomis et al. 2004, 2004b). As razões máximas H ₂ O ₂ /H ₂ O e os stopping	
powers eletrônico (S_e) e nuclear (S_n) também são mostrados.	50
Tabela 3.2 - Seções de choque de destruição e de formação do peróxido	
de hidrogênio a 144 K (neste trabalho) e a 77 K (Gomis et al. 2004, 2004b).	
As razões máximas H ₂ O ₂ /H ₂ O também são mostradas.	51
Tabela 3.3 – Produtos da radiólise do gelo de CO induzida por íons de Ni de	
50 MeV e 537 MeV, identificados por comparação com dados da literatura.	58
Tabela 3.4 – Valores de seção de choque de destruição (σ_d) e de rendimentos	
de dessorção (Y) obtidos na irradiação de gelo de CO com íons de Ni de	
energia E e as densidades de coluna iniciais dos gelos (N) analisadas.	60
Tabela 3.5 – Em negrito, as seções de choque σ (10 ⁻¹⁵ cm ²) e os	
rendimentos radioquímicos G (moléculas/100 eV) das principais	
moléculas identificadas na irradiação de gelo de CO por íons de Ni.	
O sinal negativo representa a destruição da molécula.	62
Tabela 3.6 – Números de onda e modos de vibração do isotopômero	
C ¹⁸ O ₂ condensado a 13 K	68
Tabela 3.7 – Números de onda e as respectivas moléculas identificados	
nos espectros de infravermelho do $C^{18}O_2$ irradiado. A terceira coluna lista	
as densidades de coluna máximas (N _{max}) obtidas com a fluência F mostrada	
na quarta coluna. Nas duas últimas colunas estão a absorbância integrada (A)	
e as respectivas referências.	72
Tabela 3.8 – Número de onda das bandas das principais moléculas	
identificadas nos espectros de infravermelho do gelo H ₂ O:NH ₃ :CO irradiado	
com íons de Ni	79