
1
Introduction

Managed runtime environments have become popular targets for com-

pilers of high-level programming languages. Reasons for adoption of these

runtimes include a safe execution environment for foreign code, easier inter-

operability, and their existing libraries. These managed runtimes provide a

high-level type system with enforced runtime safety, as well as facilities such

as garbage collection, possibly sandboxed access to services of the underlying

platform, multithreading, and a rich library of data structures and algorithms.

Examples of managed runtimes include Microsoft’s Common Language Run-

time [Microsoft, 2005], the Java Virtual Machine [Lindholm and Yellin, 1999],

and more recently the JavaScript runtimes present in web browsers [ECMA,

1999, Manolescu et al., 2008].

As these runtimes are higher level than the usual compiler targets such

as machine languages and intermediate languages close to the hardware, they

inevitably lead to an impedance mismatch between the semantics of the

language that is being compiled and the semantics of the target runtime, which

translates to inefficiency in the generated code, changes in the language, or

both. The lack of a clear performance model for these runtimes, which can have

great variation even among different implementations of a particular runtime,

also hinder attempts at optimizing the generated code of any language that

does not have a direct mapping to the semantics of the runtime. Writing

an optimizing compiler for these runtimes has to involve guesswork and

experimentation.

The problem of efficient compilation is worse when compiling

dynamically-typed languages to statically typed runtimes, such as the CLR

and JVM. In this case, all of the operations of the language have to be

compiled using runtime type checks or using the virtual dispatch mechanism

of the runtime. If the language is object-oriented then it cannot use the

native method dispatch mechanism of the runtime, and has to implement its

own. Implementing arithmetic operations is particularly troublesome, as the

runtimes usually do not have tagged unions value types, so numbers have to

be boxed inside heap-allocated objects and treated as references.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 1. Introduction 11

Compiling to a dynamically-typed runtime is also problematic unless

the semantics of the types and operations of the source language exactly

match the semantics of corresponding types and operations of the target.

This kind of semantic match is very rare among high-level languages. In

practice, some form of wrapping and runtime checking, or even more radical

program transformations, such as trampolines for tail call optimization, are

still necessary.

Compiling dynamically-typed languages to machine language or low-

level languages also needs runtime type checks and dynamic dispatch, but

the low-level nature of the target language means these operations are more

efficient than their equivalent on managed runtimes and their performance

characteristics are better understood. When compiling to a machine language

you have a performance model, the performance model of the target processor,

that is missing in the intermediate languages of the managed runtimes.

Nevertheless, we assert that it is possible to generate efficient code from

a dynamically-typed source language to a managed runtime. By efficient we

mean at least as fast as the same code executed by a good native interpreter for

the source language and, in a modern managed runtime with a good optimizing

JIT compiler, matching or exceeding the performance of code generated by a

good optimizing compiler for the source language. We support our assertion

by implementing an optimizing compiler for the Lua programming language

that targets the Microsoft Common Language Runtime and benchmarking this

compiler against the Lua interpreter and an optimizing Lua JIT compiler.

Lua is a dynamically-typed language that has relatively simple semantics

and a very efficient1 interpreter implemented in C [Ierusalimschy, 2006]. Lua

has some advanced features such as extensible semantics, anonymous functions

with full lexical scoping (similar to the lexical scoping present in the Scheme

language), tail call optimization, and full asymmetric coroutines [Ierusalimschy

et al., 2007, de Moura et al., 2004]. It has a simple type system: nil, floating

point numbers, immutable strings, booleans, functions, and tables (associative

arrays), the latter having syntactical and semantic support for use as numeric

arrays, as user-defined data types, and as a way to implement object orientation

using prototypes or classes. Section 1.1 is a brief primer on the language.

Our approach for creating a compiler for the Lua programming language

was to start with a very simple compiler, and a suite of small to medium

length benchmarks that include Lua idioms used by actual programs. We

then built variations of this first compiler, validating optimizations against

this benchmark suite. This is a continuation of previous work we published

1Compared to other interpreters for dynamically-typed languages.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 1. Introduction 12

in Mascarenhas and Ierusalimschy [2008].

Benchmarking was an essential part of our approach; the CLR interme-

diate code that our compilers generate passes through the CLR optimizers on

conversion to native code, and we could not know beforehand how a particular

piece of CLR code would perform. This makes it very difficult to accurately as-

sess the impact of even simple changes in the compiler. In the worst case, what

we can think is an optimization may in fact make real programs run slower.

Benchmarks helped assess the impact of our changes, and anomalies found in

the results of some of the benchmarks are evidence of the unpredictability in-

troduced by the lack of a performance model. A benchmark suite is also useful

for programmers, being a source of tips on how to write efficient code for the

compiler.

Our simplest compilers did not use static program analysis, so the scope

of optimizations they implemented was limited to what was possible with

extremely local information. The compilers had different mappings of Lua

types to CLR types, such as using value types versus using boxing and reference

types and interning strings. The compilers also had different ways to implement

the return of multiple values from a function call.

Our more advanced compilers used type inference to extract more static

information out of Lua programs. Having more information let us generate

better code. For example, if we can statically determine the runtime types of

each variable and parameter then we can avoid boxing and type checking

for every variable that we are certain can only hold numbers. Sufficiently

precise type information let the compiler synthesize CLR classes for Lua tables,

transforming what was a hash lookup in the simpler compilers to a simple

address lookup.

We did both local and interprocedural type inference. The local inference

does not cross function boundaries and is much simpler to implement, but

the information it obtains is very imprecise. Languages that use local type

inference use explicit type annotation of function arguments to get more precise

results. Interprocedural type inference was harder to specify and implement,

but yielded much better results in our benchmarks. The basic problem of

an interprocedural type inference of Lua programs is the same as of other

languages with first-class functions: which functions are callable at each call

site is initially unknown, and has to be found during inference. To know which

function is callable at a call site you need the type of the variable referencing

the function, or the expression that yields it.

Type inference is a complex algorithm that can subtly alter the behavior

of a program if specified and implemented incorrectly. We did a formal

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 1. Introduction 13

specification of our typing rules and inference algorithm with regards to an

operational semantics of a subset of Lua to make the specification of our type

inference more precise and easier to understand. The actual inference algorithm

works on the full Lua language, but leaves parts of a program outside of this

subset dynamically typed.

Related work on implementing compilers for dynamic typed languages

that target managed runtimes uses approaches that are based on runtime op-

timization using the code generation and dynamic code loading facilities of

the managed runtimes. These approaches adapt the concept of polymorphic

inline caches [Deutsch and Schiffman, 1984, Hölzle and Ungar, 1994], while our

approach uses compile-time optimization via static analysis. Examples of the

former include Microsoft’s Dynamic Language Runtime for the CLR [Chiles

and Turner, 2009] and the invokedynamic opcode for the JVM [Sun Microsys-

tems, 2008]. The implementation of approaches such as the DLR and invoke-

dynamic is very complex, and their performance characteristics are even more

opaque than the performance characteristics of the underlying runtime, due to

the extra level of indirection in the compilation.

The following sections are a small primer on the Lua language and the

CLR. The rest of the dissertation is organized as follows: Chapter 2 presents our

basic Lua compiler and the variations that do not depend on interprocedural

type inference. Chapter 3 is a presentation of our type inference algorithm

for the Lua language, and how we used it in our Lua compiler; Chapters 2

and 3 also discuss related work. Chapter 4 presents our benchmark suite, our

benchmark results and the analysis of these results. Finally, Chapter 5 states

our conclusions and outlines possible future work.

1.1
A Lua Primer

Lua [Ierusalimschy, 2006] is a scripting language designed to be easily

embedded in applications, and used as a configuration and extension language.

Lua has a simple syntax, and combines common characteristics of imperative

languages, such as loops, assignment, and mutable data structures, with

features such as associative arrays, first-class functions, lexical scoping, and

coroutines.

Lua is dynamically typed, and has eight types: nil, number, string,

boolean, table, function, userdata, and thread. The nil type has a single value,

nil, and represents an uninitialized or invalid reference; values of type string

are immutable character strings; the boolean type has two values, true and

false, but every value except false and nil has a true boolean value for the

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 1. Introduction 14

purposes of tests in the language; values of type table are associative arrays;

the userdata type is the type of external values from the application that is

embedding Lua, and thread is the type of coroutines.

Table indexes can be any value except nil. Lua also has syntactic sugar

for using tables as records and objects. The expression tab.field is syntactic

sugar for tab["field"]. Lua functions are first-class values; storing functions

in tables is the base of Lua’s support for object-oriented programming. The

expression tab:method(x) is a method call and is syntactical sugar for

tab.method(tab, x). This syntactic sugar also works for defining methods,

as in the fragment below:

function tab:method(x)

-- method body

end

The fragment above is the same as the following one:

tab.method = function (self, x)

-- method body

end

The behavior of Lua values can be extended using metatables. A metat-

able is a table with functions that modify the behavior of the table or the type

it is attached to. Each table can have an attached metatable, but for the other

types there can only be one metatable per type. A common use of metatables

is to implement single inheritance for objects, as in the following fragment:

local obj = setmetatable({ a = 0 },

{ __index = parent })

function parent:method(x)

self.a = self.a + x

end

obj:method(2)

print(obj.a) -- 2

In the fragment above, whenever the code tries to read a field from

obj and this field does not exist, Lua looks it up in the index field of the

metatable, so the value of this field works as the parent object. Other metatable

fields modify operations such as assignment to a field, arithmetic operations,

and comparisons.

First-class functions, lexical scoping, and imperative assignment interact

in the same way as they do in Scheme [Steele, 1978, Adams et al., 1998].

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 1. Introduction 15

The following fragment creates a counter and returns two functions, one to

increment and one to decrement the counter. Both functions share the same

variable in the enclosing lexical scope, and each pair of functions returned by

make counter shares a counter variable distinct from the one of the other

pairs:

function make_counter()

local counter = 0

return function ()

counter = counter + 1

return counter

end,

function ()

counter = counter - 1

return counter

end

end

The fragment above also shows how Lua functions can return more than

one value. In most function calls Lua just takes the first returned value and

discards the others, but if the function call is part of a multiple assignment,

as in inc, dec = make_counter(), or if you are composing functions, as in

use_counter(make_counter()), then Lua will use the extra values.

A function call that has more or less arguments the the arity of the

function is legal in Lua. Extra arguments are simply ignored, and missing

arguments have the value nil.

1.2
The Common Language Runtime

The CLR [Microsoft, 2005] is a managed runtime created to be a common

target platform for different programming languages, with the goal to make it

easier for those languages to interoperate. It has an intermediate language and

shared execution environment with resources such as a garbage-collected heap,

threading, a library of common data structures, and a security system with

code signing. The CLR also has an object-oriented type system augmented

with parametric types with support for reflection and tagging of types with

metadata [Yu et al., 2004].

CLR types can be value types or reference types. Value types are the

primitive types (numbers and booleans) and structures; assignment of value

types copies the value. Reference types are classes, interfaces, delegates, and

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 1. Introduction 16

arrays. Assignment of reference types copies the reference to the value, and

the value is kept in the heap. The CLR has a single-inheritance object system,

rooted in the object type, but classes can implement interfaces which are

types that only have abstract methods. Delegates are typed function pointers.

Each value type has a corresponding reference type, used for boxing the value

type in the heap.

The CLR execution engine is a stack-based intermediate language with

about 200 opcodes, called Common Intermediate Language, abbreviated as

CIL or just IL. The basic unit of execution is the method; each method has

an activation record kept in an execution stack. The activation record has the

local variables and arguments of the method being executed, metadata about

the method, and the evaluation stack of the execution engine. IL opcodes

implement operations such as transferring values between local variables,

arguments, or fields and the evaluation stack, creation of new objects, method

calls, arithmetic, and branching.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA




