
2
“Naive” Compilation

This chapter presents our basic approach for compiling Lua programs

to the CLR, along with a series of variations of the basic approach that

try to improve performance of generated code without having to perform

non-trivial static analysis on the source code (type inference or data-flow

based optimizations). We focus on different ways of mapping Lua’s values and

operations to the Common Language Runtime. Evaluation on the effectiveness

of our choices is deferred to Chapter 4, where we present our benchmarks.

Although benchmarking was intertwined with the process of coming up with

the compilers in this chapter, and has informed this process, we believe that

presenting the benchmarks and discussion about them separately leads to a

better exposition.

The lack of static analysis and data-flow optimizations results in rela-

tively naive code generation. But the code we generate still has to interact

with the CLR’s optimizer and JIT compiler, and this interaction is hard to

predict even for relatively naive code. The CLR specification [Microsoft, 2005]

has no performance model for its intermediate language, and even the per-

formance of a particular implementation depends on the architecture of the

machine where it is executing [Blajian et al., 2006, Morrison, 2008a]. The Java

Virtual Machine, another managed runtime environment, has the same lack of

a clear performance model [Gu et al., 2006, Georges et al., 2007]. We believe

that the preferred approach with this lack of performance models is to gener-

ate straightforward code and then experiment to discover the impact of any

changes, instead of trying to generate optimized code from what we think will

be the behavior of the runtime.

Section 2.1 presents the basic compiler and how it is implemented.

Section 2.2 presents several variations on this basic compiler, detailing their

changes an the rationale for them. Section 2.3 reviews related work on

compilation of Lua programs and on compilation of other dynamic languages

to managed runtime environments.

Each compiler has a short name that we use to refer to it throughout

this chapter and the rest of the dissertation. Table 2.1 lists the names for
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each compiler along with its defining characteristic and the section where the

compiler is described. References to these names in the text are quoted.

Name Description
base Basic Compiler, Section 2.1

single Single Return Values, Section 2.2.1
box Boxed Numbers, Section 2.2.2

intern Interned Strings, Section 2.2.3
prop Local Type Propagation, Section 2.2.4
infer Type Inference, Section 3.2

Table 2.1: Compiler names

2.1
Basic Compiler

The basic LuaCLR compiler directly generates CLR Intermediate Lan-

guage code from an annotated (and desugared) Lua abstract syntax tree. There

is no separate intermediate language between Lua and IL, so describing the

compiler is a matter of describing the representation of Lua’s types by CLR

types and of describing the IL code for Lua’s operations. We present the rep-

resentation of Lua values in the next section, and Section 2.1.2 covers how the

operations are implemented.

2.1.1
Representing Lua Values

Lua is a dynamically typed language, so values of any of its types can be

operands to its operations, and Lua will raise a runtime error if the operands

are incompatible. This means that Lua types need an uniform representation

and this representation must carry type information that is checked at runtime.

Having to use an uniform representation automatically precludes directly using

the CLR’s primitive types (several types of numbers, and booleans), but still

leaves several approaches for representing Lua types.

The approach we use in the basic compiler is essentially the same as

the representation we used in Lua2IL [Mascarenhas and Ierusalimschy, 2005],

and is similar to the representation the Lua interpreter uses [Ierusalimschy

et al., 2005]. The Lua interpreter uses a C struct with a type tag and a C

union with the actual value. The value itself may be a double precision floating

point number, a boolean, an external pointer, or a GC-managed pointer. Other

types of structs and unions represent values of the GC-managed types, such

as functions and tables.
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The CLR does not have unions, just structures and classes. We use a

Lua.Value structure as our uniform representation for all Lua values. A field

of this structure is a reference to an instance of a subclass of the abstract

Lua.Reference class. The other field of this structure is a double precision

floating point number (CLR type double). The first field acts as a tag that

identifies if the value is a number or not; if the first field is null then the value

is a number, with the number stored in the second field.

Each of the other Lua types is represented by a subclass of

Lua.Reference. The nil type is the singleton class Lua.Nil, so the sole

instance of this class is the representation of the value nil. The Lua.Bool

class represents booleans, with a single instance for true and a single instance

for false. Strings are represented by instances of the Lua.String class,

which encapsulates CLR strings, as both Lua and CLR strings are immutable.

An important difference between our representation and the Lua interpreter

representation is that it is possible to have several instances of the same string

with our representation, while the Lua interpreter interns strings so there is

only one instance of each string. Our representation makes string creation

more efficient, at the cost of slower equality testing (and consequently slower

table lookups).

We represent tables with instances of the Lua.Table class. The internal

implementation of this class is similar to the representation used by the Lua

interpreter, which has separate hash table and array parts to optimize some ac-

cesses using integer indexes. A description of the algorithm is in Ierusalimschy

et al. [2005], and implementing it for the CLR is straightforward.

Each function in the program source is represented by its own subclass

of Lua.Reference. Instances of the function’s class are the closures created

during execution of the program. Lua functions are first class values that can

reference and modify variables in their enclosing lexical scopes, so the closures

we create have instance variables that hold references to variables in enclosing

scopes that the function uses. In the next section we will cover the internals

of closures in greater depth. Each closure also has an instance variable to hold

the environment table, used to look up the value of global variables.

An important characteristic of our chosen representations is that Lua

code never manipulates “native” CLR objects directly, only instances of the

Lua.Value type. We will see in the next section that this leads to simpler

code generation and more efficient generated code. The drawback is that it

makes it harder to interface Lua with other CLR code. To interface with other

code we can wrap CLR values in a subclass of Lua.Reference that delegates

operations to the actual CLR type of the value (using reflection, for example).
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Any Lua values passed to CLR functions can also be converted to equivalent

primitive CLR values. This wrapping can be made transparent to the user,

and we have already used this wrapping both in Lua2IL and in a bridge from

the Lua interpreter to the CLR [Mascarenhas and Ierusalimschy, 2005, 2004].

2.1.2
Code Generation

The code the “base” compiler generates for most operations is similar:

there is code to test if both operands are numbers, then code that does the

operation inline if both operands are numbers, and finally a call to a function

in the runtime library that does the operation if one of the operands is not a

number. These functions of the runtime library are all virtual methods of the

base Lua.Reference class. So each operation involves a type check and then

either the inlined operation or a virtual dispatch to a method that implements

the operation.

We inline arithmetic and relational operations on numbers because

they are just a single IL instruction. Instead of generating tests and inlined

operations we could just compile each operation to a call to a runtime library

function that would do the checks, and rely on the CLR JIT’s inliner to inline

this code. But the type checks and inlined operations are straightforward to

generate.

Lua functions are first-class values with lexical scoping, as we saw in

Section 1.1. Distinct functions that use the same variable share the same

memory location for the variable, instead of each having a distinct memory

location that receives a copy of the variable’s value at the moment the function

is defined, like lexically scoped variables in Python [Mertz, 2001] and the “final”

restriction of Java’s inner classes [Gosling et al., 2005].

The “base” compiler uses the CLR stack for local variables and argument

passing, but the CLR denies access to local variables outside of the current

stack frame, and also does not allow references to local variable locations that

escape the function where the local variable is defined. To get around these

limitations we have to allocate in the heap all local variables that are used

outside the function that defines them, and keep just references to these heap

cells in the stack. Each closure also has a kind of display [Aho et al., 1986,

Friedman et al., 2001] that holds references to heap cells of all variables in

enclosing scopes that it uses. The basic compiler implements the display as

fields in the function’s type, so they are instance variables of the closures.

When instantiating the function at runtime (at the point in the program where

the function is defined) the closure’s constructor takes one argument for each
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field in its display, and sets the fields in the newly created instance.

For example, take this fragment:

local w

function f(x)

return function (y)

return function (z) return w + x + y + z end

end

end

The class of the innermost function has fields for variables w, x, and y.

The class of its enclosing function has fields for variables w and x, and the

class of the outermost function has a field for variable w. All these fields hold

a cell for a single Lua value. When instantiating the innermost closure, we

emit code to call its constructor passing the value of the w and x fields of

the enclosing closure, as well as the value of the y stack slot, which is also a

reference to a heap cell holding the value of y. Using references to these heap

cells allows two closures to share the same variable. The type of these heap

cells is Lua.UpValue.

Lua does not have arity errors when calling functions; extra arguments

are simply ignored, and missing arguments have value nil. Function calls

in the basic LuaCLR compiler are compiled to a call to a virtual method

of Lua.Reference called Invoke. Invoke is overloaded; Lua.Reference has

different versions of Invoke for different numbers of arguments in the call site,

from zero arguments to a maximum fixed by the compiler, plus a version of

Invoke that takes an array of arguments. The version of Invoke that takes

an array is used in call sites with more arguments than the maximum or with

call sites where the number of arguments is unknown at compile-time. The

latter case may happen because Lua functions can return a variable number

of values, and when a function call is the last argument to another function

call all the values returned by the first call get passed to other call (like when

composing functions).

Each function always has a version of Invoke that matches the arity of

the function, and this version has the code generated from the function body.

Other versions of Invoke delegate to it, adjusting the number of arguments as

necessary. This means that calling a function with a small number of arguments

translates to a single CLR virtual call if the number of arguments matches the

arity of function. If there is a mismatch there is an adjustment, but then the

adjusted call to Invoke is a statically dispatched call, not another virtual call.
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The classes of all three functions in the example shown in the previous

page have Invoke methods similar to the ones shown in the fragment of C#

code below1:

Lua.Value[] Invoke() {

return this.Invoke(Lua.Nil.Instance);

}

Lua.Value[] Invoke(Lua.Value v1) {

... code that implements the function ...

}

Lua.Value[] Invoke(Lua.Value v1, Lua.value v2) {

return this.Invoke(v1);

}

... versions of Invoke with more parameters ...

Lua.Value[] Invoke(Lua.Value[] vs) {

if(vs.Length > 0)

return this.Invoke(vs[0]);

else

return this.Invoke(Lua.Nil.Instance);

}

2.2
Variations of the Basic Compiler

There are several changes that we can make in how we represent Lua

types and generate code for operations on these types that trade complexity

in the implementation of the compiler for faster programs. In the following

sections we present variations of the “base” compiler and the rationale for

these variations.

2.2.1
Single Return Values

Lua functions can return any number of values, so all functions in the

“base” compiler return an array of Lua.Value, even if they only return a

single value or the function call needs just the first one. This means that every

function call has to allocate an array on the heap to store the return values of

the call.

There are several situations where the compiler can be sure that it only

needs the first return value, or none at all. Some of these situations are when

1We use C# code just to make the fragment shorter, the compiler actually generates IL
directly.
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a function call is on the right side of an assignment, as in x = f(), when

a function call is used as a statement, when a function call is not the last

argument of another function call, as in g(f(), x), and when a function call

is used in a binary operation.

Our first variation of the basic compiler exploits this property by com-

piling each function twice; one version returns an array, just like in “base”,

while the other returns a single Lua.Value (possibly nil). So instead of a

Invoke method the functions have a InvokeM method, for multiple values,

and a InvokeS method, for single values. They are overloaded to take different

number of arguments, as in the basic compiler. In the code for f’s InvokeS,

the code generated for all return statements returns the first expression in

the statement and just evaluates and discards the others, while in the code

for f’s InvokeM a return statement allocates an array, stores the values of its

expressions in this array, and then returns it.

For example, in the function call g(f(), f()) the compiler emits a call

to a InvokeS method in the first call to f, and a call to a InvokeM method in

the second call to f, as all values returned by the second call have to be passed

as arguments to the call to g.

2.2.2
Boxed Numbers

The previous compiler still uses a Lua.Value structure as a uniform

representation for Lua values. This structure has two fields: one is used if

the value is a number, and the other is a pointer to other types of values,

which are all instances of subclasses of the Lua.Reference abstract class.

This arrangement tries to mimic the representation used by the Lua interpreter

(which uses a union instead of a structure), and avoids having to store numbers

in the heap.

We will see in Section 2.3 that other compilers for dynamic languages on

the CLR choose to represent all values as pointers to objects in the heap, with

most compilers using the CLR base object type as the common denominator

for the values of the language. We follow a similar approach in the variation

we present in this section.

Instead of having a Lua.Value structure we will use object as the type of

Lua values; all values are now pointers to either a boxed double in the heap, in

case the value is a number, or a pointer to an instance of one of the subclasses

of Lua.Reference, for all other types of values. The representation of these

other types remain unchanged, except for trivial changes in the signatures of

methods and the internal representation of tables to deal with object instead
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of Lua.Value.

All operations involving numbers in the “base” and “single” compilers

first check if the value is a number by checking if the Lua.Reference field

of the Lua.Value structure is null, and then unpack the number from the

structure, by loading the double field. In the “box” compiler these operations

become a type test, to see if the value is of type double, and an unboxing

operation if it is. These are the following fragment in the CLR intermediate

language:

isinst double

brfalse notnum

unbox double

After doing the operation, the “base” and “single” compilers had to store

null in the Lua.Reference field and the number that is the result of the

primitive operation in the double field of the Lua.Reference structure that

holds the result of the operation. The “box” compiler just does a box double

IL operation that takes the result and boxes it.

In operations that do not involve numbers, the “base” and “single”

compilers had to unpack the operand by loading the Lua.Reference field from

the Lua.Value structure and then invoking the correct virtual method. In the

“box” compiler this becomes a cast to Lua.Reference followed by the virtual

dispatch.

This variation presents a case where the high-level nature of the interme-

diate language of a managed runtime environment and a lack of information

on how the optimizer of this runtime translates this intermediate language to

machine code makes it hard to assess if a particular change improves or not

the execution time of compiled programs.

The number of intermediate language instructions to do each operation

in the “base”, “single”, and “box” compilers is roughly the same, but the cost

of these instructions is unpredictable. We have to use benchmarks to evaluate

how each approach performs. The change of unboxed to boxed representations

can have wildly different performance characteristics depending on how the

runtime’s heap allocator and garbage collector work, and even whether the

runtime optimizes boxing and unboxing of some numbers. For example, one

possible optimization a runtime can do is to pre-allocate a range of boxed

numbers, like small integers, and keep reusing them instead of allocating new

objects in the heap.
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2.2.3
Interned Strings

The Lua interpreter interns all strings so each string has only one copy.

This lets the test of whether two strings are equal be a simple test of pointer

equality, instead of a test of the strings’ contents. Tests of string equality

are always used when indexing tables with string keys, so interning strings

makes indexing using string keys faster. Indexing operations with string keys

are a common operation in Lua, specially in OO-style code, as field accesses

(obj.field) and method calls (obj:method()) get desugared to indexing

operations with string keys.

Our previous compilers represent Lua strings with the Lua.String sub-

class of Lua.Reference, and the internal representation is just a CLR string.

Like Lua strings, CLR strings are immutable, but the CLR specification does

not dictate how strings should be implemented, so implementations are free

to intern strings or not. Not interning is a better choice when string creation

(as a result of concatenation, for example, or slicing) is more common than

testing equality. In this section we present a variation of the “box” compiler

that tries to optimize equality tests, and benchmarking this variation against

“box” tells whether a particular CLR implementation is interning its strings

or not.

One optimization we can do is to implement the equality test between

two Lua.String objects as a pointer equality test first, with the CLR string

equality test done only when the pointer test fails. We then make sure all

string literals in the program, including desugared field and method names,

have only one instance. This completely avoids regular string comparison in

indexing operations if the particular Lua.String key is already in the table

and there are no hash collisions.

The optimization we actually do in the “intern” compiler is applicable to

a greater number of indexing operations; we add a new type for interned strings

that we call symbols, the type Lua.Symbol. This is a subtype of Lua.String,

the only difference being that symbols are interned in a global hashtable, so

two symbols can safely be tested for equality by pointer equality. All string

literals are symbols, and tables intern all strings that are used as keys, so

all internal equality tests in a hash lookup are done between symbols. Any

indexing operation that has a symbol key only needs pointer equality, even in

the case of collisions or if the key is not in the hash. This includes all indexing

operations caused by Lua’s OO syntactical sugar.

Operations that create new strings still create instances of Lua.String

instead of Lua.Symbol, so they do not have to pay the cost of interning strings.
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If the CLR implementation does not intern strings then this variation should

speed up OO-style code without slowing down code that does string processing.

2.2.4
Local Type Propagation

Working with boxed numbers can have a big performance impact on

code that does a lot of arithmetic, even if the runtime tries to optimize

boxing and unboxing operations and has a good memory allocator and garbage

collector. The Lua.Value representation of the “base” and “single” compilers

avoids boxing and unboxing, but wastes memory and uses a runtime feature,

structured value types allocated in the stack, that also relies on optimizations

by the runtime. If we statically know that we are only dealing with numbers

we can avoid both boxing and structures and use the native double type of

the CLR directly.

In Chapter 3 we present a way of extracting this information with type

inference, and show how it can have other uses besides just avoiding boxing

of numbers. In this section we present a much simplified, and local, version

of type inference. It is local because it does not try to infer types across

function call boundaries. It types variables and expressions in a function as

one of seven simple types: nil, boolean, number, string, function, table, and

the type any, which means that the variable (or expression) can have any type.

There are no structural types: having a type “function” or “table” just means

that operations can be dispatched to methods of Lua.Function or Lua.Table

without doing type checks; all functions have type “function” and all tables

have type “table”. Function calls and indexing operations always have type

“any”, and “any” is also the type of the parameters of a function.

The typing rules are straightforward. For assignment there are three

cases, which depends on the types of the lvalue (the left side of the assignment)

and the rvalue (the right side of the assignment):

1. If the lvalue does not have a type yet, then it gets the type of the rvalue;

2. if the lvalue has the same type as the rvalue, then nothing changes;

3. if the lvalue and rvalue have different types, then the lvalue now has type

“any”.

The rules for binary arithmetic operations are that the type of the

operation is “number” if the type of both operands is “number”, otherwise it is

“any”. In Lua, as a consequence of the metatables we mentioned in Section 1.1,

binary arithmetic operations are dispatched to user-defined operations if one
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of the operands is not a number, and our type inference has to assume that

these operations can return anything.

The representation that the “prop” compiler uses for most types is the

same as the one the “intern” compiler uses. The only type that has a different

representation is “number”, which uses the double type of the CLR. The

type “any” is an object pointer to either a boxed double or an instance of

a subclass of Lua.Reference, and other types continue to be represented as

subclasses of Lua.Reference.

We implement the type inference as an iterated traversal of each the

abstract syntax tree of each function. The inference stops when the types

converge. All the typing rules have the invariant that if the type of a term is

“any” it cannot change, and if the type of a term is not “any” then it can

either stay the same or change to “any”, so convergence is guaranteed.

Changes to the code generator are straightforward, with simpler code

for arithmetic expressions when the operands are numbers, and elimination of

type checks prior to calls to methods of Lua.Reference whenever possible.

2.3
Related Work

In this section we review previous work on compiling dynamic languages

to managed runtime environments. We focus on compilers targeting the Com-

mon Language Runtime first, as it was the first managed runtime specifically

created as a shared runtime for different high-level languages, with emphasis

on interoperation among these languages [Hamilton, 2003].

In 1999 and 2000 Microsoft sponsored the development of a compiler

for the Python scripting language, written by Mark Hammond and Greg

Stein. The compiler supported most of the Python language and allowed

Python programs to interface with CLR code, but the authors judged the

performance to be “so low as to render the current implementation useless

for anything beyond demonstration purposes” [Hammond, 2000]. This poor

performance was for “both the compiler itself, and the code generated by the

compiler” [Hammond, 2000]. The authors abandoned the effort in 2002.

Python for .NET used a type mapping similar to the one we used on

our basic compiler, with a CLR structure representing Python values, but

the authors noted that “simple arithmetic expressions could take hundreds

or thousands of Intermediate Language instructions”, so the operations were

inefficient. All the operations were dispatched to the Python for .NET runtime,

as the compiler did not do any inlining.

Common Larceny [Clinger, 2005] was an early Scheme compiler for the
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CLR that compiled MacScheme assembly code, used as an intermediate lan-

guage in the Larceny family of Scheme compilers [Clinger and Hansen, 1994],

to CIL instructions. It used instances of a SchemeObject class to represent

Scheme values, so all values were pointers to objects in the heap; Com-

mon Larceny preallocated booleans, characters, and small integers. Common

Larceny used its own stack for both values and control information, to make the

implementation of Scheme’s first-class continuations easier. The performance

of the compiled Scheme code was found to be similar to the performance of

the code running on the MzScheme interpreter [Clinger, 2005].

Bigloo.NET [Bres et al., 2004] was a later Scheme compiler for the CLR

which, like Common Larceny, was part of a family of Scheme compilers that

targeted different platforms (the Bigloo family [Serrano and Weis, 1995]).

Bigloo.NET was heavily derived from the BiglooJVM compiler [Serpette and

Serrano, 2002]. Its usual representation for Scheme values was a pointer (of

object type) to a value in the heap that could be a boxed number, a byte

array (for strings), or instances of classes that represented other Scheme

types. Bigloo.NET could also use an interprocedural flow analysis [Serrano and

Feeley, 1996] augmented with type annotations to use unboxed representations

for scalar values.

In contrast to Common Larceny, Bigloo.NET used the CLR’s stack for

control-flow, argument passing, and local variable storage, and did not have a

complete implementation of Scheme continuations. Bigloo.NET implemented

all closures in the same Scheme module as instances of the same class derived

from bigloo.procedure, with an index that identified the specific closure’s

entry point plus an array for the closure’s display. The code for all the functions

in a module was compiled to different entry points in the same CLR method,

indexed by a switch statement, because the authors claimed this was better

than having each closure be a separate subclass of bigloo.procedure for code

that makes heavy use of closures. Performance of Bigloo.NET was found to

be two to six times slower than the performance of BiglooC, a compiler of the

Bigloo family that compiles Scheme to C code, and about twice as slow as

BiglooJVM.

Lua2IL was another project for running Lua code inside the CLR, and

worked by translating Lua 5.0 bytecodes to CIL instructions, with the help

of a support runtime [Mascarenhas and Ierusalimschy, 2005]. Lua2IL used the

same mapping from Lua types to CLR types as our “base” compiler, with a

structure holding either a Lua number of a reference to other Lua types, and

the other types represented by CLR classes with a common subclass. Lua2IL

also inlined operations on numbers.
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Where Lua2IL differs form our “base” compiler is on the treatment of

local variables, function arguments and upvalues. Lua2IL kept a parallel stack

for Lua values in the CLR heap and threaded this stack through the compiled

Lua code, but still used the CLR stack for control. Code generated by Lua2IL

had performance similar to the same code when executed by the Lua 5.0.2

interpreter.

The research prototype of IronPython, another Python compiler for the

CLR, showed that Python could have good performance in the CLR if the

compiler was designed with careful consideration to performance [Hugunin,

2004]. IronPython boxed numbers and cast other types to object, like our

“boxed numbers” compiler, and also inlined common operations.

Later versions of IronPython have focused on generalizing its runtime

to other dynamic languages, building a Dynamic Language Runtime on top

of the CLR [Hugunin, 2008, Chiles and Turner, 2009]. The DLR uses a

generalization of inline caches [Deutsch and Schiffman, 1984, Hölzle and

Ungar, 1994, Hölzle et al., 1991] to implement operations, called dynamic

sites. Its runtime system generates CIL code that makes heavy use of static

method calls, relying on the CLR JIT for inlining and optimization. The

implementation of dynamic sites uses a complex runtime system and extensive

runtime code generation [Turner and Chiles, 2009]. Recent work on IronPython

has moved to mixed-mode execution, with an interpreter for DLR syntax trees

as the main mode of execution and the compiled dynamic sites for hotspots,

as the extensive code generation needed by the dynamic sites was found to be

too heavyweight [Hugunin, 2009].

Currently Microsoft has compilers that target the DLR for

Python (the IronPython compilers cited above), Ruby [Lam, 2009], and

JavaScript [Dhamija, 2007], and the set of the DLR features is biased towards

these languages. In particular, there is no native support for multiple return

values from functions, as these three languages implement multiple return

values using tuples or arrays. Tail call optimization is also not present in the

DLR, despite the CLR supporting for it. The semantics of Lua require tail

call optimization, and efficient implementation of Lua function calls requires

support for returning multiple values. Another issue is the implementation of

lexical scoping and varargs in the DLR, which revert to building stack frames

in the heap instead of using the CLR stack.

IronScheme [Pritchard, 2009] is a Scheme R6RS [Sperber et al., 2007]

compiler for the CLR in active development that uses the DLR, but it uses a

modified version of the DLR that implements the extra functionality needed

to compile the Scheme language. The author estimates that the modified DLR
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used by the IronScheme compiler uses only 20% of code the original DLR, and

wants to investigate the viability of writing his own code generator instead of

using the DLR [Vastbinder, 2008].

Phalanger [Benda et al., 2006] is a PHP compiler for the CLR. The unit

of execution in PHP is a script, and Phalanger compiles a script to a CLR

class, with the body of the script as a Main method of this class and other

functions declared in the script as static methods of the class. Each function

is compiled to two methods, one that takes the function’s arguments as formal

parameters, so uses the CLR stack, and another method that takes arguments

in an array and delegates to the other method, for function calls where the

target is unknown. Phalanger represents all values as a pointer of type object,

using a combination of boxing for PHP types that have corresponding CLR

primitive types (such as numbers), and subclasses of a PhpObject class for

other PHP types such as classes and interfaces.

Cuni et al. [2009] use a generalization of polymorphic inline caches called

flexswitches to implement a JIT compiler for a toy dynamic language targeting

the CLR, so there are two layers of JIT compilation, the flexswitch-based

JIT compiler and the CLR JIT compiler. While a polymorphic inline cache

optimizes just the specific operation at the site of the cache, and does not

affect other operations, a flexswitch can call back to the flexswitch-based JIT

compiler to generate specialized code for code reachable from the flexswitch.

This approach can generate code that is very efficient, but the extra level of

compilation and recompilation adds considerable overhead, with most of the

total running time of the microbenchmarks in the paper being compilation

overhead.
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