
4
Benchmarks

This chapter presents our suite of benchmarks and the results of those

benchmarks on different variations of our Lua to CLR compiler and different

implementations of the CLR. We analyze the performance impact of our

changes to build a partial performance model of these implementations. We

also benchmark our compilers against the Lua interpreter on x86, a Lua x86

JIT compiler, and a Microsoft-developed Python to CLR compiler. These

benchmarks respectively serve to find out how well Lua can perform on the

CLR relative to other Lua implementations, and how well our approach for

compiling a dynamic language in the CLR works relative to a compiler using

the Microsoft DLR.

Section 4.1 describes the programs we used in our benchmarks and the

Lua operations and idioms that they exercise. Section 4.2 gives the results and

analysis of our benchmarking of the different variations of our Lua to CLR

compiler, and Section 4.3 compares compilers with other Lua implementations

and with a Python compiler for the CLR. Appendix C has tables with running

times for all of the benchmarks in this chapter.

4.1
Benchmark Programs

Our first suite of benchmarks is a suite of small (less than fifty lines of

code) numerical benchmarks mostly taken from a suite of bencharks that com-

pare several programming languages [Brent A. Fulgham and Isaac Gouy, 2009].

They are useful because implementations of these benchmarks are readily avail-

able for several programming languages, they have few dependencies on Lua’s

standard library, and they have no dependencies on the platform facilities.

These benchmarks are naive, but useful for testing the impact of specific opti-

mizations. Small benchmarks are useful for comparing performance of different

implementations, and to guide programmers on how to tailor their programs

to get the best performance out of a particular implementation [Gabriel, 1985].

The benchmarks are listed on Table 4.1, with a brief description of what

they do and what they exercise (what are the main influences on their results).

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 63

Name Description
binary-trees allocation and traversal of binary trees, exercises small

records, memory allocation and GC
fannkuch array permutations with a small array, exercises array

operations
fib-iter fibonnaci function, iterative algorithm, exercises simple

arithmetic and loops
fib-memo fibonnaci function, recursive algorithm with memoiza-

tion, exercises array operations on a variable-sized array
and first-class functions

fib-rec fibonnaci function, recursive algorithm, exercises recur-
sion

mandelbrot mandelbrot fractal, exercises floating point arithmetic
and iteration

n-body newtonian gravity simulation, exercises floating point
arithmetic on records and arrays

n-sieve sieve of Eratosthenes using an array, exercises array
access

n-sieve-bits sieve of Eratosthenes using bitfields, exercises floating
point arithmetic and arrays

partial-sum iterative summation of series, exercises floating point
arithmetic and built-in functions with iteration

recursive several recursive functions, exercises recursion
spectral-norm spectral norm of an infinite matrix, exercises arithmetic

involving several cooperating functions

Table 4.1: First benchmark suite

The overlapping coverage of these benchmarks of the first suite is on

purpose; similar benchmarks should respond in a similar way to changes in the

implementation of the compiler.

We also implemented a second suite of benchmarks. It is a set of varia-

tions on the Richards Benchmark [Richards, 1999], a medium-sized benchmark.

The benchmark implements the kernel of a very simple operating system, with

a task dispatcher, input/output devices, and worker tasks that communicate

via message passing. The benchmark has implementations for several program-

ming languages. Its output is deterministic, so it is trivial to verify that a par-

ticular implementation is correct; the simulation uses pseudorandom numbers,

but the pseudorandom number generator is part of the benchmark.

We have six different implementations of the benchmark, with different

ways of implementing the core task dispatcher; the implementations have

around three hundred lines of Lua code each. For comparison, the C version

of the benchmark has four hundred lines of code, and the Python version has

about four hundred and fifty.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 64

Our implementations of the Richards benchmarks are listed on Table 4.2.

Name Description
richards the closest to the C implementation, it uses an explicit

state string and a sequence of ifs inside an endless loop
as the core of the dispatcher; the state string simulates
a bitfield

richards-tail has a state machine using tail calls for the state transi-
tions instead of an endless loop, with the code to imple-
ment each state factored out to a different function, but
otherwise is identical to the previous one

richards-oo embeds the dispatcher logic inside each task as several
methods, and keeps the state local in each task object;
state transition is via a trampoline: each task returns
the next task to be processed

richards-oo-tail the previous implementation using tail calls instead
of the trampoline, each task calls the next one to be
processed directly

richards-oo-meta like richards-oo but uses a parent table to hold the
methods, and a metatable associated with each task
object that delegates method calls to this parent table

richards-oo-cache also uses a parent table, but the metatable caches each
method in the task object itself after the first use, to
speed up subsequent lookups

Table 4.2: Second benchmark suite

4.2
Benchmarking the Variations

This section compares the different variations of our Lua compiler

on different implementations of the CLR. We present a series of graphs

of performance improvement (or worsening) relative to the base compiler

described in Section 2.1. All graphs show a base 2 logarithm of the running

time of the benchmark compiled by the base compiler divided by the running

time of the benchmark compiled by each of the other compilers (e.g. -1 means

the benchmark took twice as long, 2 means it took a fourth of the time). The

other compilers are identified by the short names listed on Table 2.1. All of

the tests are done on a computer with an AMD Phenom 8400 processor with

2Gb of RAM and executing in x86 (32-bit) mode.

The first CLR implementation we benchmarked is Microsoft .NET 3.5

SP1, the current version of the CLR released by Microsoft. Figure 4.1 shows

the results of the first benchmark suite on this version of the CLR.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 65

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binarytrees

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single

box

intern

prop

infer

log base 2 of relative time

Figure 4.1: .NET 3.5 SP1 Comparison

The results show barely any improvement with the optimization of the

function calls that only need to return a single value when we are using

a structure to represent Lua values. Changing the representation to avoid

structures and use boxing instead improves most benchmarks, specially the

ones that make heavy use of function calls. The CLR JIT does not optimize

code that uses structures as well as other code, so the performance gain in

avoiding allocation of the unnecessary arrays gets lost in the noise [Morrison,

2008b].

Interning strings leads to a good improvement in the benchmarks that

use records, confirming that this implementation of the CLR does not intern

strings. Local type propagation shows a big improvement only in the bench-

marks where the core of the benchmark is a numerical loop inside a single

function, but for these benchmarks it is about as good as the full type infer-

ence. The biggest improvement comes from doing full type inference on the

programs. The running time for the benchmarks of the first suite is dominated

by boxing, type checking, and dispatch, and type inference is eliminating most

of those.

The results for the second suite of benchmarks are on Figure 4.2. Neither

the base compiler nor the single return value compiler could run the richards-

oo-tail; they both blow the stack because the CLR JIT is not compiling the

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 66

richards-oo-cache

richards-oo-meta

richards-oo-tail

richards-oo

richards-tail

richards

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single

box

intern

prop

infer

log base 2 of relative time

Figure 4.2: .NET 3.5 SP1 Comparison, Richards benchmarks

tail calls in them as actual tail calls, and they continue using stack space. The

.NET JIT treats the tail call opcodes as just a suggestion, and ignores it in

several situations [Broman, 2007]. Only the JIT on version 4.0 of .NET for

the x64 platform will always honor the tail call opcodes [Richins, 2009]. The

results for richards-oo-tail on Figure 4.2 are relative to the “box” compiler.

All of the benchmarks in this suite do a great number of string equality

tests, so interning strings shows a good improvement for all of them. Local type

propagation shows a modest improvement, but the biggest improvement again

comes from doing full type inference. The big improvement in the richards-oo-

tail benchmark for type inference relative to the improvement in richards-oo

is due to another anomaly of tail calls in the .NET implementation of the

CLR, where a tail call to a function with a different number of arguments

than the current function interacts badly with the code that synchronizes

with the thread running the garbage collector [Borde, 2005]; type inference

is unifying all of the mutually recursive functions in richards-oo-tail to have

the same signature, avoiding the problem and thus increasing the amount of

improvement in relation to the other compilers.

The benchmarks that use metatables, richards-oo-meta and richards-

oo-cache, show little improvement with type inference, as our type inference

algorithm always infers the most general table type for tables that have a

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 67

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binarytrees

-1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single

box

intern

prop

infer

log base 2 of relative time

Figure 4.3: .NET 4.0 Beta 1 Comparison

metatable attached. This ends up spreading to functions used as methods.

We also ran our benchmarks on Microsoft .NET 4.0 Beta 1, the current

beta of the next version of Microsoft’s implementation of the CLR. The results

are on Figure 4.3 and Figure 4.4. They are about the same as the results for

.NET 3.5 SP1, showing that the behavior of the JIT compiler in both versions

is similar. Microsoft .NET 4.0 Beta 1 has the same issues with tail calls that

.NET 3.5 SP1 has, so our “base” and “single” compilers also cannot complete

the richards-oo-tail benchmark.

Finally, we ran our benchmarks on Mono 2.4, an open-source implemen-

tation of the CLR. Figure 4.5 shows the results for the first suite of benchmarks.

They are very different from the results of both Microsoft implementations,

showing the different performance models of Mono and .NET, even though

they both are implementations of the same managed runtime environment.

Boxing in Mono performs much worse than using structures, and when using

structures there is a good improvement in code that uses function calls when

avoiding unnecessary array allocations. The best results are still obtained by

doing full type inference.

Figure 4.6 shows the results for the suite of Richards benchmark on

Mono 2.4. Arithmetic is not as critical for the benchmarks in this suite as in

the benchmarks of the first suite, so the “box” compiler, which also optimizes

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 68

richards-oo-cache

richards-oo-meta

richards-oo-tail

richards-oo

richards-tail

richards

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

single

box

intern

prop

infer

log base 2 of relative time

Figure 4.4: .NET 4.0 Beta 1 Comparison, Richards benchmarks

returning single values, shows an improvement in these benchmarks despite

using boxed numbers. Mono also does not intern its strings, so we get a good

improvement when doing that, relative to the “box” compiler. But none of the

benchmarks that use tail calls ran on Mono without blowing the stack.

The differences between the Mono and .NET implementations are big

enough to change the optimal compilation: for Mono the best approach is to

combine type inference with a structure as a fallback uniform representation,

while for .NET it is to combine type inference with a uniform representation

that uses boxing, the one we actually implemented. Our previous work showed

that the penalty for using structures was even greater in a previous version

of the .NET CLR [Mascarenhas and Ierusalimschy, 2008]; the current version

of the .NET CLR is just over one year old at the time of the writing of this

dissertation, and is the first to have improved code generation for programs

that use structures [Morrison, 2008b]. The performance characteristics vary

not only between competing implementations of the same runtime, but also

between different versions of the same implementation, so the best approach for

building a compiler that targets a managed runtime environment can depend

on a specific version of a specific implementation of the runtime.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 69

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binarytrees

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

single

box

intern

prop

infer

log base 2 of relative time

Figure 4.5: Mono 2.4 Comparison

4.3
Other Benchmarks

This section compares our Lua compilers first with other Lua implemen-

tations and then with IronPython 2.0, a Python compiler for the CLR that

we already reviewed in Section 2.3. We first show the results of benchmark-

ing our Lua compilers that were able to run all of the benchmarks in both

suites (“box”, “intern”, “prop”, and “infer”) against version 5.1.4 of the Lua

interpreter and LuaJIT 1.1.5, a JIT compiler for Lua 5.1. The graphs for this

benchmark show the performance of each of our compilers, plus LuaJIT, rela-

tive to the Lua interpreter, also as the base 2 logarithm of the relative running

times.

Figure 4.7 shows the results of the first benchmark suite. With type

inference our last compiler is able to generate, with the help of the .NET

JIT, code that performs better than LuaJIT for most benchmarks, and better

than the Lua interpreter for all benchmarks. Local type propagation, in the

three benchmarks where it was most useful, gets similar results. Our other

two compilers still outperform the Lua interpreter in several benchmarks, but

are worse than the interpreter in benchmarks that depend on floating point

arithmetic, by a factor of two in some cases. The Lua interpreter is very efficient

doing floating point computations, as it always works with unboxed numbers.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 70

richards-oo-cache

richards-oo-meta

richards-oo

richards

0 0.25 0.5 0.75 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3

single

box

intern

prop

infer

log base 2 of relative time

Figure 4.6: Mono 2.4 Comparison, Richards benchmarks

The results of the second benchmark suite are on Figure 4.8. The issue

with tail calls in the .NET CLR is clearer to see here, as we are now comparing

against the Lua interpreter. While the “box” compiler is about a factor of

two slower than the Lua interpreter in most benchmarks, for the richards-oo-

tail benchmark it is approximately ten times slower than the Lua interpreter.

The gap narrows for the “intern” and “prop” compilers but is gone only for

the last compiler, where this benchmark performs similarly to the richards-

oo benchmark. This is consistent with the reason for the anomaly that we

discussed in the previous section.

Combining the results of both benchmark suites, we have the benchmarks

running in at most twice the time as the Lua interpreter, but usually running

in a similar amount of time (except for the outlier, the richards-oo-tail

benchmark). The performance is on par or exceeds the performance of a

x86 Lua JIT compiler when our type inference algorithm is able to assign

more precise types. These results support our assertion in Chapter 1 that it is

possible to generate efficient code from a dynamically-typed source language

to a managed runtime.

Our last benchmark compares our compilers with IronPython 2.0, a

Python compiler for the CLR that we reviewed in Section 2.3. For this

benchmark we added the richards-oo benchmark to the benchmarks of the

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 71

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binary-trees

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3 3.5 4

box

intern

prop

infer

luajit

log base 2 of relative time

Figure 4.7: Comparison with Lua 5.1.4

first suite, as there is a single implementation of the Richards benchmark for

Python. Figure 4.9 shows the performance relative to our “box” compiler,

again by showing the base 2 logarithm of the relative running times (“ipy” is

the IronPython compiler).

Python has separate array and dictionary types, while Lua arrays (in the

absence of precise type inference) are an optimization of tables. This explains

the better performance of IronPython in the binarytrees, fib-memo and n-

sieve benchmarks, relative to our compilers that do not have type inference.

Our compilers outperform IronPython in the other benchmarks even without

type inference. With type inference we outperform IronPython in all of the

benchmarks, in almost all of them by more than a factor of four, as the code

IronPython generates is still doing runtime type checking and still boxing

numbers.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

Chapter 4. Benchmarks 72

richards-oo-cache

richards-oo-meta

richards-oo-tail

richards-oo

richards-tail

richards

-4 -3 -2 -1 0 1 2

box

intern

prop

infer

luajit

log base 2 of relative time

Figure 4.8: Comparison with Lua 5.1.4, Richards benchmarks

richards-oo

spectral-norm

recursive

partial-sum

n-sieve-bits

n-sieve

n-body

mandelbrot

fib-rec

fib-memo

fib-iter

fannkuch

binary-trees

-2 -1 0 1 2 3 4 5

intern

prop

infer

ipy

log base 2 of relative time

Figure 4.9: Comparison with IronPython

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA

