
5
Conclusions

Writing an optimizing compiler for a managed runtime involves guess-

work and experimentation. Instead of targeting low-level machine code with a

clear performance model we are targeting a high-level language with its own

type system, runtime library, and optimizing Just-In-Time compiler. Not only

it is difficult to predict how a particular approach will perform, but the per-

formance can vary among different implementations of the managed runtime,

or even different versions of the same implementation.

We have shown the difficulty in compiling to a managed runtime by

building a series of compilers for the Lua programming language that targets

the Common Language Runtime. We built several compilers with different

ways to represent Lua types in the CLR type system and different ways to

compile Lua operations, and then benchmarked these compilers on different

implementations of the CLR. Our benchmarks show how the best approach

for compiling Lua to the CLR depends on what implementation of the CLR

we are targeting.

The choice of implementation approach and implementation target influ-

ences not only the performance of our Lua implementation but also its seman-

tics, as tail call optimization does not work for some combinations of implemen-

tations of our compiler and implementations of the CLR, even though it should

have worked by the CLR standard. There are other corners of Lua’s semantics

that are problematic to implement in the CLR: weak tables, finalizers, and

coroutines, but we already covered these in Mascarenhas and Ierusalimschy

[2005], so we focused on the efficient implementation of Lua’s core semantics

for the Lua compilers of this dissertation.

The influence of the implementation target on the semantics of Lua has

parallels to the work on definitional interpreters in Reynolds [1998], where

the closer the semantics of the language that you want to interpret is to the

semantics of the language you are using to write the interpreter the simpler

the interpreter can be. Where the semantics differ you have to implement

the correct semantics in terms of the underlying language. With compilers

for high-level targets such as managed runtime environments, the closer the

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 5. Conclusions 74

semantics of the language you are compiling to the semantics of the runtime

the more direct the compilation, and where the semantics differ you need extra

scaffolding and support to implement the correct semantics.

Lua is a dynamically typed language, and the CLR is a statically typed

runtime, so in most of our compilers all of Lua’s operations had to be compiled

using runtime type checks and the virtual dispatch mechanism of the CLR.

We also had to use a unified representation for Lua values that either wasted

memory and interacted in a less than optimal way with the JIT of one of

the CLR implementations we tested, or had to store all numbers in boxes in

the heap instead of using the efficient native representation for floating-point

numbers that the CLR has.

We specified a type system and type inference algorithm for Lua that

can statically assign more precise types to several kinds of Lua operations. We

implemented this algorithm in one of our compilers, and used its output to

generate more efficient representations for Lua values and better performing

code. Analysis of the output of the type inference algorithm and the perfor-

mance gains showed that the type inference algorithm correctly infers precise

types for most variables and operations in our benchmarks.

Compared to other Lua implementations, our best combination of Lua

compiler without type inference and CLR implementation has the level of

performance of version 5.1.4 of the Lua interpreter, being worse by a factor

of less than two in benchmarks that are heavily dependent on floating point

computation, and faster by a little over a factor of two in benchmarks that are

heavily dependent on recursion.

With type inference, our best combination of Lua compiler and CLR

implementation outperforms the Lua interpreter and performs better than

version 1.1.5 of the LuaJIT compiler for most benchmarks. Our results show

that it is possible to get good performance out of a dynamic language in a

managed runtime if the managed runtime has a good implementation.

We also benchmarked our Lua compilers against IronPython 2.0, a

Python compiler for the CLR that uses a different implementation approach

based on runtime generation of specialized code, in contrast to our simpler

approach that only uses offline compilation. Without type inference our best

compiler performs equal or better than IronPython in almost all benchmarks;

with type inference our best compiler outperforms IronPython by a large

margin in all benchmarks. We believe our approach is the best one for compiling

Lua on the CLR given the current state of the Dynamic Language Runtime

that IronPython is built on.

Future implementations of the CLR may change the impact of some of

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA



Chapter 5. Conclusions 75

our implementation decisions, so the specific results may change, but this only

restates our general thesis that the optimal implementation approach depends

on the specific implementations that are the targets.

Type inference was the key to the optimizations with the most impact

on performance, and this suggests directions for future research. Our type

inference algorithm works just as badly across module boundaries as the

local type propagation of Section 2.2.4 works across function call boundaries.

Parameters of exported functions in our type system always have the dynamic

type, and imported functions also always return values of this type.

Recent work on gradual typing [Siek and Taha, 2006, 2007] and Typed

Scheme [Tobin-Hochstadt and Felleisen, 2008] may lead to an approach com-

bining type annotations in module boundaries with type inference used for

intra-module optimization. Gradual typing is a type system where parts of a

program may be annotated with precise types, and parts not annotated have a

dynamic type. The type system guarantees that type errors only occur in the

dynamically-typed portions of the program. Typed Scheme is a gradual typing

system for Scheme that lets the programmer mix statically and dynamically

typed Scheme code. The Typed Scheme runtime is still the same runtime as

regular Scheme; the type annotations provide static type safety, not increased

performance through removal of type checks or better representations.

Gradual typing may be orthogonal to the type system we use for our

type inference algorithm. Siek and Vachharajani [2008] has already show that

gradual typing is compatible with Hindley-Milner type inference, and Herman

et al. [2007] use techniques taken from Heinglein’s work on dynamic typing

that we reviewed in Section 3.3.1 [Henglein, 1992a]. Combing gradual typing

and our type inference should make it possible to have inference working across

modules with minimal type annotations, as well as increasing the static type

safety of Lua programs.

DBD
PUC-Rio - Certificação Digital Nº 0510949/CA




