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[Ade84] ADELSON, E.; ANDERSON, C.; BERGEN, J.; BURT, P. ; OGDEN, J..

Pyramid methods in image processing. RCA Engineer, 29(6):33–41,

1984. 4.1

[Aga04] AGARWALA, A.; DONTCHEVA, M.; AGRAWALA, M.; DRUCKER, S.;

COLBURN, A.; CURLESS, B.; SALESIN, D. ; COHEN, M.. Interactive

digital photomontage. ACM Trans. Graph., 23(3):294–302, 2004. 4.6

[Ble06] BLEYER, M.; RHEMANN, C. ; GELAUTZ, M.. Segmentation-based

motion with occlusions using graph-cut optimization. p. 465–474.

2006. 4.6

[Ble07] BLEYER, M.; GELAUTZ, M.. Graph-cut-based stereo matching

using image segmentation with symmetrical treatment of occlu-

sions. Image Commun., 22(2):127–143, 2007. 4.6, 5

[Boy98] BOYKOV, Y.; VEKSLER, O. ; ZABIH, R.. Efficient restoration of

multicolor image with independent noise. Technical report, Ithaca,

NY, USA, 1998. 4.6, 4.7.1

[Boy04] BOYKOV, Y.; KOLMOGOROV, V.. An experimental compari-

son of min-cut/max-flow algorithms for energy minimization in

vision. IEEE Transactions on Pattern Analysis and Machine Intelligence,

26:359–374, 2004. 4.6.1, 4.6.1

[Bru07] BRUNNER, R.; DOEPKE, F. ; LADEN, B.. Object detection by

color: Using the gpu for real-time video image processing. In:

Nguyen, H., editor, GPU GEMS 3, chapter 26, p. 563–574. Addison Wesley,

July 2007. (document), 3.3.2, 3.3.2, 3.8

[CTM08] Ati ctm guide. technical reference manual. Technical report,

AMD, 2006. 2, 2.3

[CUDA08] Cuda programming guide 1.1. Website. , 2007. (document), 2,

2.1, 2.3, 3.1.2

DBD
PUC-Rio - Certificação Digital Nº 0510966/CA



Referências Bibliográficas 105
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[Vas07] VASCONCELOS, C. N.; SÁ, A.; CARVALHO, P. C. ; GATTASS, M..

Using quadtrees for energy minimization via graph cuts. In:

PROCEEDINGS OF THE 12TH VISION, MODELING, AND VISUALIZA-

TION WORKSHOP (VMV 2007), p. 71 – 80, 2007. 4.5, 4.5.1, 4.6, 4.6.4,

4.6.4, 4.7, 4.7.1
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Abstract

This paper presents MOCT, a multi-object chromatic tracking technique

for real-time natural video processing. Its main step is the MOCT localization

algorithm, that performs local data evaluations in order to apply a multiple

output parallel reduction operator to the image. The reduction operator is

used to localize the positions of the object centroids, to compute the number

of pixels occupied by an object and its bounding boxes, and to update object

trajectories in image space. The operator is analyzed using three different

computation layouts and tested over several reduction factors.

Figure 1: Multi-Object Real-Time Chromatic Tracking of Natural Images: (left) Original

Video Frame, (center) Composite and (right) Trajectories

1 Introduction
Object localization is a well studied topic in early vision research. Countless possibilities

are opened when such information is extracted in real-time, especially for the develop-

ment of augmented reality applications.

Motivated by current graphics hardware processing power, Brunner et al. [1] pre-

sented a GPU-based technique for finding the location (centroid position and mass) of

a single, uniquely colored object in a scene. This technique is attractive for its simplic-

ity, but has serious limitations: besides dealing with a single object, in the composition

step it assumes that the object has a square bounding-box (for instance, it does not treat

adequately long, thin objects).
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In this paper we present MOCT, a GPU-based technique for multi-object chromatic

tracking. Our main contribution is a reduction operator that works over the video frames

for localizing a set of n distinct objects, each with a unique color (in parallel programming,

a reduction is a computation that produces a smaller stream from a larger one [7, 5, 6]).

The proposed reduction operator is analyzed using three different computation lay-

outs: row, column and tile oriented. We also consider several reduction factors: tradition-

ally, reductions are computed halving each dimension at each step but we conclude that

computing time can be reduced by adjusting the reduction factor. The results of this anal-

ysis can be used to make more efficient use of GPU resources, by optimizing its memory

access pattern.

Additional contributions are: the extension of the reduction operator for computing

bounding boxes, thus extending its applicability to objects having non-square bounding

boxes; and the storage of the obtained results into a trajectory history texture, allowing

the tracking in time of the centroid position and bounding box coordinates for each ob-

ject. The trajectory history texture can be useful for computing movement predictions or

producing temporal video effects in GPU.

The paper is structured as follows: In Section 2 we briefly describe the founda-

tions of the parallel programming pattern used and its General-Purpose Computation on
GPU(GPGPU) version, in order to clarify the structure adopted in MOCT. The processing

steps of the MOCT technique are described in Section 3. In Section 4, the efficiency of

the MOCT localization algorithm is compared to the technique presented in [1] and also

compared against a CPU implementation. The comparison shows that our algorithm is

faster than both of them, obtaining real-time rates for a set of several markers. We also

show that for the MOCT the ratio between the computing time and the number of objects

gets smaller as the number of tracked objects increases. The operator layout analysis is

presented in Section 5. Finally conclusions are drawn and future work is discussed in

Section 6.

2 Background and Related Work
The MOCT localization algorithm takes advantage of a parallel programing pattern called

reduction operator. Such parallel programing pattern, also known as semigroup or fan-in

operator, is defined by Parhami in [7] as follows: given an associative binary operator ⊗,

a reduction is simply a pair (S, ⊗), where S is a set of elements on which ⊗ is defined.

Reduction computation is defined as: given a list of n values x0, x1, ..., xn−1, compute x0

⊗ x1 ⊗ x2 ... ⊗ xn−1. Common examples for the operator ⊗ include +, ×, ∨, ∧, ⊗, ∪, ∩,

max and min.

Parhami [7] shows that a binary-tree architecture is ideally suited for this computa-

tion. Each inner node of the binary-tree receives two values from its children, applies the

operator to them, and passes the result upward to its parent, and after O(lg2 p) steps, the

root processor will have the computation result.

The reduction operator pattern characteristics are extremely well suited for graphics

hardware architecture as they offer task balancing design across the processors into inde-

pendent kernels, and are widely used in GPGPU applications in cases where it is required

to generate a smaller stream (usually a single element stream) from a larger input stream

[3, 6, 5, 8].
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Its design attends to GPGPU challenges as each one of its nodes is responsible for

computing partial computations, in a manner that can be seen as an independent pro-

cessing kernel with gather operations on previously computed values, i.e, by reading the

corresponding values from an texture where the previous results have been saved. Thus,

while a reduction is computed over a set of n data elements in O( n
p logn) time steps using

the parallel GPU hardware (with p elements processed in one time step), it would cost

O(n) time steps for a sequential reduction on the CPU [6].

Traditionally, the reduction operator is used over a 2D texture by reducing by one-

half in both vertical and horizontal directions. In this case, instead of a binary-tree, its

structure is a pyramid representing a tree whose nodes have four children each. The input

image corresponds to the pyramid base, which is reduced in multiple passes creating

higher levels that correspond to intermediary computations until reaching its root, with

1×1 pixel dimension, corresponding to the final desired result.

The proposed reduction operator used by MOCT is generally classified as a multiple

parallel reduction, as it can run many reductions in parallel (O(log2N) steps of O(MN)

work [4, 2, 6, 5]). This class of reduction operators, despite of its applicability, has not

been widely explored yet.

An interesting example of a multiple parallel reduction operator is presented by Fluck

et al. [2]. In that work, it is used for computing a histogram over a entire input image

or over selected regions of it. The input image is initially subdivided into square tiles.

During the processing, each texel within a tile represents a counter for the occurrence of

the bin that it represents. Such subdivision prepares the input image for the reduction

by computing partial histograms within the area covered by each tile. Finally, the partial

histograms are then reduced by multiple halving steps into a single square tile, as proposed

in [4].

In the field of chromatic tracking, Brunner et al. [1] use a pyramidal reduction opera-

tor on GPU to find the centroid position and pixel mass of a uniquely colored object in a

scene. The obtained information is used for overlaying a textured square over the tracked

object, creating video composition effects. Their technique starts by creating a binary im-

age mask that indicates whether or not the pixel falls within the object, by comparing each

pixel with the target object color in a thresholding procedure. In a second pass, the mask

is reduced to a 1×1 image that stores the object mass and its centroid x and y coordinates

(scaled by the mass), by means of a multi pass reduction operator that computes the sums

of the positions of the pixels in the mask that are considered as belonging to the object.

Finally, the data obtained is used for image composition.

Bruner et al.’s algorithm can be used for tracking multiple objects, each with a unique

color, but this requires multiple executions of the algorithm, one for each object. Also,

the overlaid object does not adjust itself to the shape of the object being tracked. Our

algorithm, described in the next section, addresses these shortcomings.

3 MOCT: Multi-Object Chromatic Tracking
This section details MOCT - multi-object chromatic tracking - in GPU. The core of our

tracking proposal is a n-object localization procedure via a multiple parallel reduction

operator. The routine consists of two steps: a local evaluation (described in section 3.1)

and a multiple parallel reduction (in section 3.2). The operator can be extended to objects
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having non-square bounding boxes, by means of bounding box extraction (in section 3.3).

The thresholding sensitiveness can be reduced by transforming the input video frames

color space as shown in section 3.4. Finally, the MOCT routine cycle is completed by

storing a trajectory history of object movement as detailed in 3.5.

3.1 Local Evaluation
As in Fluck et al. [2] proposal for histogram computation, before applying the reduction

operator we prepare each video frame using local evaluations, producing what we call a

base texture. The basic idea is to build a texture that contains localization information

regarding the objects in the scene. However, since we are tracking multiple objects, a

masking texture where texels are in 1-1 correspondence with the pixels of the original

image, as the one used in [1], does not work. Instead, following the ideas in [2], our base

texture is subdivided into cells of size n, where n is the number of objects being tracked.

Each cell contains tracking information concerning the corresponding region in the imput

image. More precisely, the i-th texel of a given cell stores information regarding the count

and localization of the pixels in the corresponding image region that are identified with

object i. We investigate three different layouts for the cells in the base texture (Figure

2): a vertical layout, where cells are sets of n consecutive texels on the same column; a

horizontal layout, where the n texels are on the same row; and a square layout, where the

cells are squares with sides equal to �√n
 (this last one is the arrangement used in [2]).

Note that in the last layout some of the texels of the cell may be unused for storing object

information. Observe, also, that the size of the base texture may be slightly larger than

that of the input image, since each of its dimensions must be an integer multiple of the

corresponding cell dimension.

Figure 2: Operator Layouts: Vertical, Horizontal and Square

Whatever the layout chosen, local evaluation is done in a fragment shader that, for

each fragment being produced, stores information regarding the occurrence, in the image

region associated with the cell to which the fragment belongs, of pixels identified with the

object corresponding to the fragment position within the cell. More precisely, the shader

counts how many of the input image pixels are considered to belong to the corresponding

object and also stores information regarding the position of their centroid. In order to do

that, the fragment shader sweeps the region in the input image associated with the current

cell, keeping track of the number of pixels classified as belonging to the corresponding

object and of the sums of their x and y coordinates in image space. At the end of the local

evaluation, the data is saved in the R, G and B channels of the base texture (the alpha

channel can optionally be used to save the object ID).

Figure 3 illustrates a local evaluation for the vertical layout, showing that the counter

indicates an evaluation over the area in the input image associated to the cell and not only

over the corresponding pixel (observe the zoomed area). In the figure, positions that are

not numbered have zero-valued counters.
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Figure 3: Base Preprocessing Using the Vertical Layout

3.2 Multiple Parallel Reduction
Now that local evaluators have set apart each object data into well defined cells within the

base texture, the goal of the step presented in this section is to assemble such data from

the texture generated into a single storage space for each object. Thus, the goal of this

procedure is to reduce the base texture into a new texture, by gathering the data corre-

sponding to each object. As in any reduction, each new fragment computed within a level

must read the appropriate samples from the previous level and gather their representative

data into the newly generated fragment. Usually, reductions are designed in such a way as

to group information regarding a set of 2×2 = 4 texels into a same texel, but in section 5

we discuss different reduction factors.

In our case we produce, at each level, a texture subdivided in cells, according to

the layout chosen for the base texture. Each texel in the newly generated texture stores

information regarding a specific object, obtained by simply adding the values in each R,

G, B channel of the texels in the same position in the cells being aggregated.

When the reduction process is completed, a texture composed of a single cell is pro-

duced. Each texel of this cell corresponds to one of the objects and stores the number of

pixels belonging to that object and the sums of their x and y coordinates from the input

image. Thus, centroid position for each object may be obtained by simply dividing those

sums by the number of pixels.

Figure 4: Reduction Processing for (left) Vertical and (right) Square Layouts

Figure 4 illustrates the reduction for the vertical and square layouts. A reduction for

the horizontal layout is a trivial variation of the vertical case presented. It is important

to notice here that, while in vertical and horizontal layouts the data gathered will be read

from neighboring positions, in the square layout case they will be separated by a distance
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corresponding to the square side. A more thorough analysis of the layouts efficiency is

presented in Section 5.

3.3 Bounding box
The use of the object centroid and mass for video composition suggested by Brunner et al.

[1] yields good results for objects having a square bounding-box, such as spheres, but not

for objects having other shapes. It is known that minimal bounding boxes can be used to

give the approximate location of an object, offering a very simple descriptor of its shape,

ideally suited for the composition effects desired.

Our operator can also be used to compute the objects bounding boxes. For that goal,

during the base texture creation, the pixels classified as belonging to a given object should

have their coordinates compared to local minimum and maximum coordinates. Thus,

after this computation the base texture will contain local bounding boxes over the cells.

During the reduction, the gathering is done again by choosing the minimum and maximum

coordinates. Then, after gathering all the data contained in the base texture into a single

cell, each object data will represent the minimum and maximum x and y coordinates, thus,

its axis-aligned minimum bounding box.

3.4 Color Space
When colors similar to the objects’ colors occur in other parts of the scene, it is difficult

to calibrate the colors representative of each object. In some cases, better results can be

obtained by working in a different color space. For instance, we may apply a preprocess-

ing step to convert the input image from RGB to HSV, using a simple fragment shader,

and then put more weight in the hue information. Figure 5 illustrates a situation, featuring

a yellow background with a similar yellow object, where classification using a RGB color

space fails, but classification in the HSV space succeeds.

Figure 5: Original Frame (left); When Normalized RGB Goes wrong (center); HSV pro-

cessing (right)

3.5 Trajectory History
For each video frame processed, after the localization procedure computed the objects

centroids localization and bounding boxes, the MOCT processing organizes such data in

order to maintain a sequential history of the trajectory of the objects. For that purpose,

we create what we call the trajectory history texture by using a new fragment shader that
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receives the reduced texture and a time counter indicating the frame from which the data

was extracted from. Then, the shader updates the trajectory by adding the object data to

the next appropriate position in a sequential order, thus fulfilling the trajectory history
texture. Figure 6 shows an illustration of the configuration for saving the data collected

by the vertical layout. When the frame number is larger then the trajectory history texture
width, the data is saved in a new row of texels as shown in figure 6 (center)).
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Figure 6: Trajectory History Textures (left and center); Trajectory Drawing (right)

4 Results
This sections presents the timing results comparing the MOCT localization procedure

with an CPU implementation and also with the multi-pass Brunner’s et al. algorithm

([1]), executed once for each object. The tests were performed using a Intel Core 2 Duo

processor E6550 2.33Ghz with 2GB of RAM memory processor and a NVidia GeForce

8800 GTX (768MB) graphics card. The tests with more than 32 objects were done using

synthetic images instead of natural ones.

As expected, the CPU implementation is slower than both of the others (left in Figure

7). It is interesting to note that while multi-pass Bruner’s et al. algorithm for a set of ob-

jects presents constant ratio between the computing time and the number of objects, in our

solution such ratio goes down, as the number of objects increases. The only configuration

for which the extension of Brunner’s et al. presents better performance than MOCT is the

case of a single object. In that case the small difference observed in performance is as-

sociated with overhead incurred with layout positioning computations. In all cases where

more than one object is localized, MOCT achieved significantly better performance. The

results are quite expected, as the MOCT localization procedure was developed for an

optimized texture access over the graphics card cache policy as detailed in next section.

Those results demonstrate the MOCT applicability to real time tracking applications, as

it achieves from 500 fps to 40 fps on tests using 1 to 128 objects, respectively.

5 Operator Layout Analysis
The present analysis is inspired by two observations: the number of texture access de-

creases when the proportion of the reduction increases, and, graphics card texture accesses

are faster if the texture was already cached in the corresponding processor.
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Figure 7: Comparison between CPU, multi-pass Brunner et al. and MOCT

Observe that the number of texture accesses of a reduction operator from a p-pixel in-

put, until reaching the n-sized desired output with a reduction factor of r, can be described

by the sum:

nri +nri−1 +nri−2 + ...+nr3 +nr2 +nr (1)

where

i = min
{

k | p ≤ nrk
}

(2)

This means that the higher the reduction factor used, the smaller the total number of

texture samples read. In the limiting case, a single step is used during the reduction, mak-

ing the total number of texture accesses equal to n∗ r, i. e., each sample is read only once.

That configuration may not be the better performance result for the parallel computation

as it can leave some processors without any work (as long as the number of processors

is larger than the number of objects, n) but it shows that increasing the reduction rates

induces a smaller number of multiprocessing steps and fewer texture sample readings.

As a second performance analysis factor, we test the three different proposed layouts.

Even though graphics card cache memory policy is not open, it is known that memory

access pattern does interfere in algorithm efficiency.

The graphs in figure 8 show how processing time changes as a function of the reduc-

tion rate, for each type of layout. We observe that better performance is obtained using the

vertical and horizontal layouts instead of the square layout, what can be explained by the

memory access localization principle. During the reducing, the texture samples read on

vertical or horizontal layouts are neighboring texture samples that have a higher chance of

representing a cache hit according to a cache policy that corresponds to caching a texture

region, while for the square layout, corresponding objects are spaced by the square side,

thus increasing the chance of a cache miss.

The different reduction scales and computation layouts presented in figure 8 provide

a basis for an attempt of reducing texture already cached waste while maintaining the

reduction computation distribution over the multi-processors. The graphs show that the

best configuration for the MOCT efficiency was obtained using the vertical layout with a

reduction rate of 40, i. e., 40 samples are read per reduction processing kernel.

We observe that the results presented in this section can be extended to other reduc-

tion operators such as the histogram computation presented by Fluck et al. [2]. Even
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Figure 8: Layout and Reduction Factor Analysis: (right) overview, (left) detail

though the timing numbers shown here reflect the specific graphics card used they show

that reductions other than the usual (simply halving the sizes) should be considered and

confirm our assumption that understanding texture samples access patterns is essential to

the development of an efficient reduction operator.

6 Conclusion
We presented MOCT, a technique under the General-Purpose Computation on GPU
paradigm that defines procedures for tracking a set of objects identified by their colors

from natural videos. It is composed by a localization procedure and a gathering step for

collecting the objects’ trajectory data.

The MOCT localization algorithm can be generally classified as a Multiple Parallel

Reduction, whose goal is to find object centroids, mass and bounding boxes (allowing its

applicability to objects having non-square bounding boxes).

As shown by the timing results, the MOCT localization algorithm is faster than a CPU

localization procedure and also faster than applying several times, one for each target

object, the technique proposed by Brunner et al. [1], originally devised to track a single

object.

As an additional contribution, we compare three different layouts for the reduction

operator and several reduction factors. We have shown how those choices can affect the

overall efficiency of the reduction operators as they can be used for optimizing the num-

ber of texture samples readings, multi-processors occupancy and texture sample access

patterns.

In summary, we conclude that the MOCT technique is well suitable for applications

requiring the identification and localization of a set of uniquely colored objects at real-

time rates.
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Abstract. The Centroidal Voronoi Diagram (CVD) is a very versatile
structure, well studied in Computational Geometry. It is used as the
basis for a number of applications. This paper presents a deterministic
algorithm, entirely computed using graphics hardware resources, based
on Lloyd’s Method for computing CVDs. While the computation of the
ordinary Voronoi diagram on GPU is a well explored topic, its extension
to CVDs presents some challenges that the present study intends to
overcome.

1 Introduction

The Voronoi Diagram is a well known partition of space determined by distances
to a specified discrete set of points in space. Formally it is defined as follows:

Given an open set Ω of �d, a set of n different sites (or seeds) zi, i = 1...n,
and a distance function d, the Voronoi Diagram (or Tessellation) is defined as n
distinct cells (or regions) Ci such that:

Ci = {w ∈ Ω|d(w, zi) < d(w, zj), for i, j = 1...n, j �= i} (1)

Voronoi Diagram computation is a topic of great interest not only in Com-
putational Geometry but also in several scientific fields. One of its important
variants is the Centroidal Voronoi Diagram (CVD), a special kind of Voronoi
Diagram for which the points comprising the set that generates the tessellation
are also the centers of mass of the Voronoi cells.

Generally speaking, CVD application is motivated by its capacity to cluster
data, to select the optimal location for point placement, and its characterization
as minimizer of an energy functional. Relevant theoretical and applied papers
involving the computation of CVDs, whose properties have been well studied,
are available in the literature [1–3].

A traditional sequential algorithm for CVD computation is Lloyd’s algorithm
[1], which iterates the computation of Voronoi tessellations and their regions’
centroids until a convergence criterion is satisfied (similarly to optimal k-means
cluster computation). Formally it is described as follows [1]: Given a set Ω ∈
�n, a positive integer k, and a probability density function ρ defined over the
considered domain:
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1. Initialization: select an initial set of k points {zi}k
i=1;

2. Voronoi Tessellation: compute {Ci}k
i=1 of Ω associated with {zi}k

i=1 ;
3. Centroid Computation: compute the mass centroids of the Voronoi re-

gions {Ci}k
i=1 found in step 2. These centroids are the new set of points

{zi}k
i=1;

4. Convergence Test: if this new set of points meets a convergence criterion,
terminate; otherwise, return to step 2;

The CVD has been used in several different contexts, such as data and im-
age compression, image segmentation and restoration, decorative mosaics, quan-
tization, clustering analysis, optimal distribution of resources, cellular biology,
statistics, studies on the territorial behavior of animals, optimal allocation of
resources, grid generation, meshless computing and many others [1, 4, 5].

As a consequence of its large applicability, algorithms for an efficient and ac-
curate construction of CVDs are of substantial interest. Our goal is to redesign
Lloyd’s algorithm in order to propose an efficient parallel implementation on
GPU, taking advantage of the decreasing cost of programmable graphics pro-
cessing units (GPUs).

The computation of Discrete Voronoi Tessellation using graphics hardware
has been explored using different approaches [6–10], but its extension to CVD
computation entirely on GPU presents some interesting challenges. Usually, in
the literature, the Voronoi diagram is computed on GPU, while centroid compu-
tation and update, and the convergence of Lloyd’s algorithm are computed on
CPU, demanding a data read-back time related to passing the GPU-computed
Voronoi diagram to the CPU as well as passing the new site positions computed
on the CPU back to the GPU.

Modern GPU architectures are designed as multiple pipelines with massive
floating-point computational power dedicated to data-parallel processing. The
algorithm proposed here fulfills its architectural requirements by presenting a so-
lution with independent data-parallel processing kernels, with no communication
between data elements in each step of Lloyd’s algorithm’s computation.

This paper is structured as follows: the next section describes the existing
methods for sequentially computing the CVD and the proposals found in the
literature for computing the Voronoi diagram on GPU (Section 2). Then, an
overview of the parallel algorithm suitable for current Graphics Hardware re-
sources is presented (Section 3), and centroid computation is detailed (Section
4).In Section 5 we present efficiency results for different scenarios that illustrate
the speed and quality of our solution compared to common CPU-GPU solutions.

2 Related Work

The computation of 2D and 3D Discrete Voronoi Diagrams using graphics hard-
ware was initially proposed by Hoff et al. [6]. In their proposal, a mesh is created
representing the distance function for each Voronoi site with bounded error. The
distance mesh is orthogonally projected in a way that, for each sample in im-
age space, the closest site and the distance to that site is solved by means of
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hardware-implemented polygon scan-conversion and Z-buffer depth comparison.
After projection, each pixel in the frame buffer stores a color-coded identification
of the site to which it is closest, while the depth buffer stores the distance to
that site.

The evolution of programmable graphics hardware spurred the development
of new methods for computing the Discrete Voronoi Diagram and its dual, the
Delaunay triangulation, as can be seen in recent publications [7–10].

Recently, Rong and Tan [8] proposed a novel algorithm called Jump Flooding
Algorithm (JFA) based on the idea of information propagation. This parallel
algorithm solves the 2D Voronoi Diagram with almost constant time throughput
regardless of the number of Voronoi sites used, but only in the final resolution
adopted. The approach was later extended by the authors ( [9] and [10]). We
have adopted the solution proposed in [8] to implement the discrete Voronoi
computation step of Lloyd’s Method, as will be discussed in Section 3.

CVD computation based on Lloyd’s method with a mixed CPU-GPU ap-
proach was initially proposed by Hausner [4], and formulated in the k-means
context by Hall and Hart [11]. In both studies, the GPU is used to perform
distance computations (computing the clusters, composed by Voronoi regions)
while the CPU is responsible for computing and updating the centroids and for
checking convergence at each iteration.

During the cluster/Voronoi region construction step, the graphics hardware
evaluates the covered space and writes the minimum metric value for each sam-
pled point of the space in the depth buffer. It also registers the IDs of the clus-
ter/Voronoi regions that generated those values in the color buffer, producing a
texture that represents the processing space within the cluster/Voronoi regions.
As the texture that stores the cluster IDs must be read back to the CPU for
further processing, these methods face a huge efficiency bottleneck related to
communication from the GPU to the CPU.

The centroid computation step has not been solved in GPU to date. In the
literature, the closest proposal to our method consists in finding the centroids
using a variant of the parallel programming pattern called parallel reduction
operator, adapted to generate multiple outputs as described in Subsection 4.1.

The reduction operator pattern is widely used in GPGPU applications in
cases that require generating a smaller stream (usually a single-element stream)
from a larger input stream [12–14]. Common examples of reduction operators
include +, ×, ∨, ∧, ⊗, ∪, ∩, max and min. Its design responds to GPGPU
challenges, as each one of its nodes is responsible for performing partial com-
putations, which can be seen as independent processing kernels with gather
operations over previously computed values, i.e. that operate by reading the cor-
responding values from a texture where the previous results have been stored.
Thus, while a reduction is computed over a set of n data elements in O(n

p log n)
time steps using parallel GPU hardware (with p elements processed in one time
step), it would cost O(n) time steps for a sequential reduction on the CPU [12].

A variant of the reduction operator, called multiple parallel reduction, can
run many reductions in parallel with (O(log2N) steps of O(MN) work [12–16]).
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It is useful for reducing an input dataset to multiple outputs, such as in the
proposal presented by Fluck et al. for computing image histograms [16], and the
uniquely colored object localization from natural images by Vasconcelos et al.
[17].

As described in Subsection 4.2, the algorithm proposed in this paper for cen-
troid computation can be seen as a multiple parallel regional reduction operator,
and can be extended to other applications beyond CVD centroid computation.

3 Parallel Pipeline for Lloyd’s Algorithm on GPU

This section presents an overview of our proposal designed for data-parallel
processing considering currently available GPU resources. The main questions
to be solved are how to formulate the processing steps for parallel computing
and how to define the data flow between processing steps, eliminating CPU-GPU
transfers.

The overview of the proposed data flow is illustrated in Figure 1. It repre-
sents the interaction between consecutive Lloyd’s Algorithm steps by producing
intermediate results within GPU memory to be read at the next step of the
pipeline. The following subsections describe how each step interacts with such
flow.
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Fig. 1. Algorithm Pipeline and Data Flow

3.1 Voronoi Tessellation

Motivated by the near constant output rate for a varying number of sites, our
study has adopted the solution proposed by [NOMES DOS AUTORES] [8]
to implement the discrete Voronoi Tessellation step of Lloyd’s Method. Other
GPU solutions could be used, as long as they generate a texture with the space
partition.

Traditionally, each Voronoi site is represented with a unique random color.
In our method, we initially create the colors (IDs) of the sites using a sequential
enumeration. By creating such sequential IDs, we are able to use them in the
mapping algorithm created for centroid computation. This enumeration is done
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only once in a preprocessing step, during the creation of the sites, so that for n
sites, the IDs vary between 0 and n-1.

Another adaptation implemented in our method is that the ID of each Voronoi
site is saved using a single channel of the output texture. Observe that when
Voronoi computation using graphics hardware [4] was proposed by Hausner,
representing the IDs using a single channel would limit the number of sites to
256, as in older graphics hardware each color channel was limited to 8 bits. Thus,
the use of the three color channels in previous proposals was a requirement for
the construction of Voronoi diagrams with more than 256 sites. However, modern
GPUs offer the resource of using float 32-bit textures, providing enough precision
to identify uniquely a huge set of sites using a single color channel.

In our pipeline, the Voronoi Tessellation processing step is responsible for
reading site positions from a texture and computing the corresponding space
tessellation. Site positions are read from a texture directly from GPU memory
space rather than being passed from CPU to GPU. This processing step only
reads from the texture, leaving the Centroid Computation step responsible for
writing the position updates to such texture. By arranging the site data into a
texture, our iteration cycle can pass its contents along the algorithm pipeline
without requiring CPU intervention.

In previous proposals, the CPU would calculate the new centroid positions
and then create primitives that set the sites over the centroid positions found.
In our algorithm, all primitives are created over the origin ((0,0) in 2D or (0,0,0)
in 3D) but are translated to their positions on GPU by the Voronoi Tessellation
procedure after the corresponding position of each site has been read from the
texture.

After a new Voronoi Tessellation is computed, the output generated is a
single-channel texture with enough resolution to cover the represented space,
where each sample of the space is represented with a texel with an identification
of the Voronoi site that is closer to that sample.

3.2 Centroid Computation and Convergence Test

The second step of our pipeline receives the texture representing the Voronoi
Tessellation and is responsible for generating a Centroid Matrix containing the
new (x, y) or (x, y, z) coordinates of the centroids. In a textural representation,
each channel of the texture can be used to save one of the centroid coordinates.
Centroid computation will be detailed in Section 4.

Each iteration of the proposed cycle generates a centroid matrix. Instead of
overwriting the previously calculated centroid matrix, we fit them sequentially
into a new texture, storing convergence history so that convergence analysis can
be done by processing this texture over time.

The criterion used for convergence is a threshold on the total sum of the
distances between current and previous centroid positions. The total sum of
distances is calculated by initially creating a 1D texture (the size of one texel
per Voronoi site) which, for each texel coordinate n, stores the distance between
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the current and the previous positions of the Voronoi site identified with the n-
th ID. Both current and previous values are read from the Convergence History
Texture using as texture coordinates a time counter (current iteration number)
and the ID of the site. The total sum is found by repeatedly applying a reduction
operator over this 1D texture that produces partial sums of the distance values,
until producing a single value representing the total.

4 Centroid Computation

The Centroid Computation step is responsible for generating the Centroid Matrix
by collecting data from a texture representing the space mapped into the Voronoi
Tessellation.

4.1 Centroid Computation by Multi-dimensional Reduction

Centroid Computation can be implemented by applying a multi-dimensional re-
duction operator as proposed by Fluck et al. and Vasconcelos et al. [16, 17]. Both
methods consist of two steps: several local evaluations analyzing the Voronoi Tes-
sellation texture against the site set, and a multiple parallel reduction to add up
these partial results. Here, we follow [17] rather than [16], as it also considers
texture cache patterns.

Initially a base is constructed containing partial sums of the location informa-
tion regarding the Voronoi regions, i.e. partial sums of their pixel coordinates.
The base texture has an implicit subdivision into tiles that defines the local
evaluation domains. Each tile is a grouping of size n, where n is the number
of Voronoi sites. The size of the base texture may be larger than that of the
Voronoi Tessellation texture as its resolution must be large enough to cover it
with the tiles; thus, each of its dimensions must be an integer multiple of the
corresponding tile dimension.

The parallel algorithm to create the base is defined in such a way that each
processing unit is associated with a single site and is responsible for producing an
evaluation of the Voronoi Tessellation texture restricted to the pixels covered by
a tile. More precisely, each processing unit counts how many pixels of the Voronoi
Tessellation texture within the tile domain actually belong to the corresponding
Voronoi region and stores the sum of their pixel positions. Thus, the ith texel of
a given tile stores information regarding the count and location of the pixels that
are identified with Voronoi site i. In order to do that, each processing unit sweeps
the region in the Voronoi Tessellation texture associated with the current tile,
keeping track of the number of pixels classified as belonging to the corresponding
Voronoi region (see figure 2) and of the sums of their x and y coordinates in image
space.

Once the base is created, a multi-dimensional parallel reduction is used to
assemble the local evaluators of each Voronoi site’s data from the different tiles
into the base texture and generate a global result in a single storage space for
each site, i.e. to produce a single tile output.
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Each site data is gathered by recursively adding the values read from the base
positions corresponding to that site, and storing the number of pixels belonging
to the site and the sums of their x and y coordinates from the input image. Thus,
centroid position for each object is obtained by simply dividing those sums by
the number of pixels.
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Fig. 2. Multi-dimension Reduction Operator: (from left to right) Voronoi Tessellation;
a Single Tile; Base Texture; and a Set of Reductions

It is important to note that the method described by Vasconcelos et al. [17]
creates a cell representing an object frequency in the base level by testing its rep-
resented color against each pixel covered by the corresponding tile. That means
that for base creation, such method performs enough operations to compare each
pixel in the input image against each object color, applying a total of (nP ×nO)
texture reads, where nP is the number of pixels in the original image and nO is
the number of objects. This number of texture reads is prohibitive in our context.
While for many natural video processing applications dealing with the object lo-
calization problem the number of objects is usually limited to a few dozen, in
Voronoi Tessellation applications there are usually hundreds of sites. Moreover,
since Lloyd’s Method is a cyclic procedure, the number of reads increases even
more as it has to be multiplied by nI, the number of iterations computed by the
algorithm before convergence, thus yielding a total of (nP × nO × nI) texture
reads.

4.2 Centroid Computation by Multi-Dimensional Regional
Reduction

We have shown that the multi-dimensional reduction operator suffers from scal-
ability as the number of Voronoi sites increases. To overcome this we propose a
new kind of parallel operator that we call Multi-Dimensional Regional Reduction.

The multi-dimensional reduction operator is designed as a data gathering
operator. It makes no assumption about where within the input data the relevant
regions are. When used for object localization from natural videos [17], it works
like a global search covering the whole frame once for each object search without
any region-of-interest clue. For the CVD we are interested in processing rendered
data (the previously generated Voronoi Tessellation), therefore our idea is to use
the sites’ primitive data as an initial guess about where the objects we are looking
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for are, and then create a distributed local search limited to an area around such
primitives.

Our method retrieves the local frequencies of the Voronoi sites by applying
a total of (nR × nO × nI) texture reads, where nR is the number of pixels in
a region around each primitive used as an adjustable input parameter for the
algorithm which is expected to be much smaller than the total number of pixels
nP . The local optimization proposed is based on the assumption that for any
fixed resolution of the Voronoi Tessellation texture (nP ), as the number of sites
grows (nO), fewer pixels are covered by each site and such pixels are arranged
around the site.

To compute such local evaluation, we have created a space subdivision hierar-
chy defined around each Voronoi site (see Figure 3) to be used by our algorithm.
The higher level of such hierarchy is the Quadrant level. It is composed by a set
of four quadrants Q0, Q1, Q2, Q3 surrounding a Voronoi site, which are placed
in a left-right, bottom-up order. The area covered by the four quadrants of a
site defines the region of interest within the Voronoi Tessellation texture to be
analyzed by the Multi-Dimensional Regional Reduction operator when looking
for the centroid of the Voronoi region corresponding to that site. By definition,
the dimensions of the quadrants should be chosen to cover the maximum area
expected for a single Voronoi region.

The next level of the hierarchy subdivides each quadrant into regular units
named patches. The set of patches inside a quadrant is placed in a left-right,
bottom-up order. Each patch defines an area within a quadrant (thus, within
the Voronoi Tessellation texture), to be evaluated by a single processing unit.
This level provides a mechanism to distribute centroid computation into as many
processing units and processors as desired.

Each patch receives an unique number, Idpatch, that represents its position
within the ordered set of patches related to the same Voronoi site. Such enu-
meration starts at the left-bottom patch from quadrant Q0 and is sequentially
incremented one by one in a left-right, bottom-up order. After all the patches
within a quadrant have been numbered, the enumeration continues in the next
quadrant, also in a left-right, bottom-up order. The identification number of a
patch (Idpatch) is determined using Equation 2:

Idpatch = Q ∗ α + y′ ∗ β + x′ (2)

where Q represents the number of the quadrant where the patch is located,
varying between 0 and 3; x’ and y’ are the horizontal and vertical coordinates
of the patch within its quadrant, measured in number of patches; and α and
β are constants that represent respectively the number of patches within each
quadrant and the number of patches per line of the quadrant. An illustrative
example using α as 9 and β as 3 (thus, a 3x3 patches-per-quadrant subdivision)
is shown in Figure 3.

Now that the space subdivision is defined, we will describe the Multi-Dimensional
Regional Reduction (MDRR) operator and how it is used to compute the CVD.
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The general similarity between MDRR and the algorithm presented in Sub-
section 4.1 is that both are composed by a two-step procedure where the first
step is responsible for computing local evaluations and the second step is re-
sponsible for collecting such data into a well-defined storage space with global
results. In both algorithms, the first processing step generates a 2D texture with
each texel saving a local evaluation of the Voronoi Tessellation texture against a
single Voronoi site. The significant differences between the algorithms are related
to how the local domains are defined (tiles versus patches) and the overall area
covered by the set of such local domains to process each site (the whole Voronoi
Tessellation texture versus the Quadrants defined around each site).

During the first step of the MDRR operator each processing unit is respon-
sible for outputting a texel. The texels placed in the same column represent
the results of the evaluations of the Voronoi Tessellation texture against a sin-
gle Voronoi site. More precisely, the horizontal coordinate of the output texel
defines the ID of the site currently being evaluated within the processing unit.
Different processing units producing texels to be placed in the same column are
responsible for testing the same Voronoi site but against different areas of the
Voronoi Tessellation texture. Such areas are defined using the vertical coordinate
of the texel, which therefore defines the space within the Voronoi Tessellation
texture to be swept by the processing unit. The texture storing local evaluations
is shown in the right side of Figure 3.
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Fig. 3. Quadrants (left); Patches (center); Local Evaluations Texture (right)

The area covered by each processing unit is determined by reversing the
patch enumeration procedure. The output texel’s vertical coordinate is used as
a patch number and an image space area within the Voronoi Tessellation texture
is generated.

Reversing Equation 2, as α and β are constants, can be accomplished with
the following procedure: Initially the patch quadrant is obtained through an
integer division of the patch number by α (the number of patches within each
quadrant). The remainder of this division represents the patch’s number within
its quadrant. This number is then divided (integer division) by β (the number
of patches per line of the quadrant) so that the result represents the vertical
position (y’ ), and the remainder is the horizontal position (x’ ) of the patch
within the quadrant.
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Q = Idpatch/α; y′ = Q/β; x′ = Idpatch − Q ∗ α − y′ ∗ β; (3)

Each patch location must be obtained in image space coordinates (pixels)
in order to access the Voronoi Tessellation texture. It is possible to use the
Voronoi site’s pixel coordinates and the input parameter defining quadrant size to
determine each quadrant’s origin in pixel coordinates (Qx0, Qy0). For simplicity,
we consider that the patches are square regions of pixels and that the number of
pixels on each side of such square is δ. As (x’ ) and (y’ ) are measured in number
of patches within a quadrant, the image space coordinate (x0, y0) of the origin
(left-bottom pixel) of a patch is retrieved through the following component-wise
sum:

(x0, y0) = (Qx0 , Qy0) + (x′ ∗ δ, y′ ∗ δ); (4)

By reversing the patch enumeration procedure, each processing unit will know
which area from the input image it should cover, and then it can sweep the
pixels within a patch comparing the texels read from the Voronoi Tessellation
texture against the represented site’s ID. During the evaluation, it counts the
frequency of pixels identified with the represented Voronoi region and sums their
coordinates, saving such values in the generated texel.

Finally, the Multi-dimensional Regional Reduction operator performs a re-
duction procedure in which the local results are added into a single line, where
each position represents a single site’s data. The centroids can be retrieved from
this line by dividing each coordinate sum by the total number of pixels of the
represented site.

5 Results

The quadrant sizes were chosen in order to cover a large area around each site
thus safely including the related Voronoi region. The quadrant area used was
four times larger than the area obtained by dividing the number of pixels of
the Voronoi Tessellation by the number of sites. From a parallel programming
point of view, it is important to stress that the total number of patches times
the number of Voronoi sites defines the number of individual processing units
to be distributed among the multiprocessors. Besides, patch dimensions define
how many pixels are read by each one of the processing units (the texture area).
Thus, the patch level was designed to provide a balance mechanism among the
several processors, as well as texture cache patterns that can be adjusted in order
to improve performance according to the architecture of the graphics card used.

To test the algorithm presented, an implementation using CUDA running
over a GeForce 8600 GT was created. The timings were obtained for sets of
different numbers of sites (from 128 to 128k) and two different resolutions of
the Voronoi Tessellation texture (512×512 and 1024×1024). They are shown in
Figure 4.
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For testing the sets composed of 128 and 256 sites, quadrants subdivided
into 9 and 4 patches, respectively, were used. For the other cases, 1:1 quadrants
were used in the patch subdivision. The results have shown that by properly
using the spatial subdivision hierarchy, centroid computation time is kept close
to constant even if the size of the site sets varies significantly.
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Fig. 4. Timing for Computing Voronoi Tessellations and Centroids over 512*512 and
1024*1024 Images

There is still room for optimization of the implementation tested, especially
exploring CUDA memory hierarchy, but the objective of the tests presented
was to compare the CPU-GPU model and the proposed algorithm. The tested
implementation was constructed using only GPU programming resources that
could be translated into shader languages.

We do not present the number of iterations before convergence because such
number is intrinsic to Lloyd’s Method’s formulation. Therefore, it is expected to
be the same for our GPU parallel formulation as for other CPU or CPU-GPU
formulations, as long as the same initial conditions (set of sites and distance
metric) are used.

6 Conclusions

This paper presented a computation of the Centroidal Voronoi Diagram through
Lloyd’s Method fully adapted to GPU resources. We showed how a data flow can
be constructed so that it passes data through Lloyd’s Method’s iteration steps,
eliminating the CPU-GPU texture reading presented in previous solutions. In
particular, we described an efficient parallel computation algorithm to compute
region centroids and to test convergence. By computing these steps on GPU we
eliminate the read-back time related to passing the Voronoi diagram to the CPU,
as is the case of previous proposals.

As future work, we plan to extend the proposed method to be used with
varying distance metrics and with varying density functions. This can be ob-
tained directly by changing the Voronoi Tessellation and by including a weight
in centroid computation, respectively.
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As a general contribution, the proposed Multi-dimensional Regional Reduc-
tion operator combined with the space subdivision hierarchy presented ensure
an almost constant time processing throughput for a varied number of sites, thus
motivating its use instead of the traditional reduction operator in cases where
an initial localization clue, or a region of interest, is available.
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QuadN4tree:
A GPU-Friendly Quadtree Leaves Neighborhood Structure

Abstract We propose a new model to represent the
neighborhood relationship of quadtree leaves, called
QuadN4tree. Quadtrees commonly store the represented
data in their leaf nodes. Thus, several applications re-
quire a method to navigate across leaves. In the two
traditional quadtree representations, namely hierarchi-
cal and linear representation, neighboring queries include
respectively traversing internal nodes or arithmetically
testing pairs of leaves. QuadN4tree allows the navigation
through such neighborhood systems from leaf to leaf,
without passing through internal nodes, thus achieving
an optimal cost for the retrieval of sets of neighbors.

A remarkable feature of QuadN4tree is that it is GPU-
friendly, due to the fact that it stores a predefined num-
ber of references per leaf. In this work we present how our
leaf neighborhood model can be used with both the hi-
erarchical and the linear representations, commonly im-
plemented in CPU, as well as how it can be constructed
for a quadtree representation on GPU.

Keywords Data Structures · Quadtrees · Quadtree
Leaves Neighborhood System

1 Introduction

QuadN4tree is a new model for the representation of
quadtree leaf neighborhood system that allows the con-
struction of query and navigation algorithms through
neighboring leaves without traversing through any in-
ternal node of a quadtree. We achieve such properties
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economically by storing four references to specially cho-
sen neighbors that allow spanning the 2D space covered
by the quadtree.

This idea was motivated by the widespread use of
quadtree data structures in applications such as image
processing, spatial indexing, 2-D collision detection, view
frustum culling of terrain data, sparse data storage and
many others.

A key advantage of using quadtree structures is the
reduction of the analysis space of a given input spatial
data. For instance, it is useful for solving the lack of scal-
ability of known computer vision methods, such as when
dealing with large-resolution images or video streaming
processing.

Using quadtree leaves as the basic processing unit
may require querying their leaf neighborhood system.
QuadN4tree allows retrieving the complete neighborhood
relationship at a cost of one reference reading per neigh-
bor.

Storing topology relations directly with a structure
is not a novelty and can be found in solutions like the
Winged Edge Structure [4]. Winged edge topology is a
method that mathematically defines all elements in a
model by their relationships to other elements of the
model. This is done through a set of tables, namely
face, edge and node tables. Maintaining and storing such
structure can be impractical for applications dealing with
a large volume of data. As discussed in section 3.1, the
QuadN4tree achieves a balance between storing refer-
ences to all neighbors within each leaf (which can be
costly for updating space and time) and not storing any
reference (like in traditional hierarchical and linear quad-
tree representations). QuadN4tree represents neighbor-
hood relations in a compact way that allows retrieving
neighboring sets of each leaf at the optimum cost of one
reference reading per neighbor.

Several applications can benefit from the proposed
QuadN4tree model. In Section 5 we exemplify how the
recent computer vision applications proposed by Agar-
wala [1], Vasconcelos et. al [8] and Loaiza et. al [5] can
take advantage of the QuadN4tree in different ways.
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The remainder of this paper is structured as follows.
In Section 2, we briefly describe previous works on quad-
tree representation and how neighborhood searches are
queried in each of them, as well as on representing such
structures using graphics hardware. In Section 3, the
QuadN4tree model is presented and it is also described
how to use the QuadN4 references in navigation queries
and how to update it. In Section 4 we discuss how to
aggregate the proposed reference model to traditional
quadtree representations and how to construct such ref-
erence model using GPU resources for representing the
proposed neighborhood system on GPUs. In Section 5
we discuss why existing applications would benefit from
the proposed model. Finally, conclusions are addressed
in Section 6.

2 Quadtree Representation

In this section we briefly describe the two main forms
used for representing quadtrees: hierarchical and linear
(pointerless) representations (Figure 1). Detailed infor-
mation can be found in the extensive literature on the
subject, as in [7,6,9,2]. We also describe the GPU im-
plementation proposed by Ziegler et al. [3].

Fig. 1 Quadtree spatial subdivision(upper-left); Hierar-
chical Representation (upper-right); Linear Representation
(bottom)

The hierarchical representation represents a quadtree
by a tree structure composed by a root node, internal
nodes, and leaf nodes [9]. For each tree node, pointers
for its parent and children are stored. The basic oper-
ations, like point localization (search for the leaf that
contains a point of the covered space) and leaf neighbor
query (search for the leaves with common edges), are
done following paths through the tree using the point-
ers.

The linear representation uses a pointerless repre-
sentation [2]. In this case, only the quadtree leaves are
stored, organized into a list of leaves. A localization code
is associated to each leaf, working as a key for leaf posi-
tioning inside the list of leaves. Different rules are used
for defining the localization codes, according to the query-
ing method proposed. They encode a directional code se-
quence that allows leaf localization by using arithmetic

expressions related to identifying different paths through
the quadtree.

The construction of a quadtree structure for general
purposes in GPU is proposed by Ziegler et al. in [3].
In that work, the result of the quadtree construction is a
list of the found leaves. A reduction operator is described
that creates an image pyramid called QuadPyramid. The
operator writes in each fragment of the pyramid texture
whether it represents a grouping of similar pixels or if it
should be threaded as a quadtree internal node, in this
case saving the number of leaves covered by the region
represented by the fragment. A second shader is used to
identify the quadtree leaves reading the pyramid texture
repeatedly, simulating tree traversals from root to leaves.
Relative counters, read from the pyramid texture, are
used to control such traversals. The origin and size of the
found leaves are saved in a output texture, organized as
a point list.

Ziegler et al. [3] does not explore any leaf neighbor-
hood relation and, as a consequence, the leaf list gener-
ated by the algorithm is not properly sorted for local-
ization or leaf neighborhood queries. The QuadN4tree
model offers characteristics that are well suited for a
GPU implementation, and can be used to aggregate neigh-
borhood relations to the output generated by [3].

3 QuadN4tree Model

The first attempt to create a structure that answers to
neighborhood queries within the set of quadtree leaves
would be to store references in each leaf to all of its
neighboring leaves. The problem is that the number of
neighbors of a leaf can vary up to, in the worst case, ap-
proximately the number of leaves of the entire tree. This
happens even if a topological data structure (such as the
winged edge) is used. Therefore, such reference structure
requirements for storage space and updating time could
be impractical for many applications. In order to solve
this problem, we propose a structure for storing the leaf
neighborhood allowing efficient neighborhood queries.

Our purpose is to save a minimum number of neigh-
bors for each leaf in a manner that it should span the
quadtree neighborhood system. Observing the quadtree
subdivision rules, such minimum should cover both the
vertical and horizontal neighboring queries, each of them
in its both opposites directions. We conjecture that this
minimum is achieved by using four references for each
leaf and we show how to choose a reference quartet that
spans the quadtree neighborhood system allowing to cir-
culate along the neighboring leaves.

Our model, named QuadN4tree (where N4 refers to
the number of references to neighbors) considers as origin
for the references a pair of opposite corners of each leaf.
We standardize the left bottom corner (lbc) and right top
corner (rtc) as reference origins. From the lbc we take
references to the north and right neighbors and from the
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Fig. 2 QuadN4: The Neighborhood Reference Model
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Fig. 3 QuadN4tree model for Figure 1

rtc we take references to the south and left neighbors,
as illustrated in Figure 2. We applied the QuadN4tree
model to the example of Figure 1 to get the neighborhood
illustrated in Figure 3.

To see why such references span the neighborhood
system we initially observe the trivial case of a pair of
neighboring leaves with the same size. In this case each
leaf of the pair necessarily has a reference to the other
as the quadtree space subdivision rules impose a border
range alignment. Thus, neighbors in horizontal direction
will reference each other with right and left references
respectively. Analogously, neighbors in vertical direction
will reference to each other using north and south refer-
ences.

The non trivial case happens with a pair of differ-
ently sized neighboring leaves. In this case, the smaller
Ls has a reference pointing to the larger Ll, since the
quadtree space subdivision guarantees that the border
of the smaller is completely contained within the range
of the border of the larger one. However, we can not be
sure about if the larger has a reference pointing directly
to the smaller. Thus, the question about if it is possi-
ble to reach the smaller leaf looking for the neighbors
of the larger one remains. If the smaller leaf is aligned
to one of the four references the answer is trivial: it can
be reached by following such reference. Otherwise, there
is another leaf Ls1 aligned to the border of Ll where
the leaf Ls is situated. Such new leaf Ls1 should also be
smaller than Ll or the first assumption, that Ll and Ls

are neighbors, would be broken. The QuadN4tree allows
us to walk along the border of Ll where both Ls and
Ls1 are located, initially using a reference from Ls1, and
then navigating to same direction, from leaf to leaf, until
reaching the desired leaf, Ls.

The ability of walking along each one of the four
borders of any leaf, no matter its size, guaranties that
the QuadN4tree spans the neighborhood system over the

2D space. Navigation rules will be presented in subsec-
tion 3.1.

The QuadN4tree property that a leaf always points
directly to any neighboring leaf of the same size or larger
than it can be used in queries for testing directly the
neighborhood relation between a pair of leaves. For in-
stance, it is possible to conclude whether two leaves are
neighbors or not by checking if at least one of them has
a reference to the other.

Finally, we observe that such model can be extended
to include more references if that makes sense in some
specific context. In particular, the natural extension to
3D would be to carefully choose six references from each
leaf (taken from opposite corners), aiming to cover the
three dimensions, each one in both opposite directions.
Analogously to the QuadN4tree nomenclature, its 3D ex-
tension would be named as OctN6tree. Its formalization
is left as future work.

In the next subsections we show navigation queries
using the QuadN4tree (Sect. 3.1) and how such refer-
ences can be updated in response to union or splitting of
leaves operations (Sect. 3.2).

3.1 QuadN4tree Neighborhood Navigation

This section describes simple rules for querying the neigh-
bors of a leaf using the proposed structure. Note that the
internal nodes of the quadtree hierarchy are not used.
After such rules, the cost of the proposed structure is
compared to the traditional quadtree representation ap-
proaches.

Rules for finding the neighbors . Without loss of gener-
ality, consider a given a leaf A, To retrieve the neighbors
along the north border of A, follow A’s reference to the
north and for each found neighbor B, if B does not cross
the horizontal limit of A (defined by A’s horizontal posi-
tion and size), continue the search for new neighbors of
A, by following B’s reference to the east. Figure 4 illus-
trates the neighborhood navigation. The same reasoning
should be used to retrieve the neighbors along the east
border, that is, follow A’s reference to the east then for
each found neighbor follow it’s references to the north
while checking for the vertical limit of A (defined by
A’s vertical position and size). Analogously, to retrieve
neighbors along the west border follow A’s reference to
the west then to the south. Finally, to retrieve neighbors
along the south border follow A’s reference to the south
and then to the west. Observe that for south and west
borders cases, the limits used are A’s left-bottom corner
positions.

Observe that the tests for the limits of a leaf used
during navigation can be adapted for including the leaf
neighbors in diagonal direction, by allowing the inclu-
sion of the leaf covering the pixel situated just after such
limits.
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Fig. 4 Navigation Rules Along Borders (from left to right):
North, East, West, South

The navigation rules can be used for converting from
the QuadN4 neighborhood representation to a represen-
tation that stores all the neighbors of a leaf. For each
leaf, such conversion would cost exactly one reference
reading per neighbor, showing that the cost of manipu-
lating the set of neighbors of a leaf in our structure is
associated with following one reference per consecutive
neighbor. Thus, finding the n consecutive neighbors of a
leaf is obtained with the minimum cost O(n), which is
the same cost of reading all the neighbors in a structure
that stores all the references to them, but requiring much
less storage space for the references.

Using the hierarchical representations, as it do not
offer a circulation along neighbors method, the search
for a set of neighbors of size n is related to the cost of
n times a neighboring query. Thus, finding the set of n
neighboring leaves using the hierarchical representation
would be proportional to n searches for a neighbor in a
quadtree of depth d (resulting in O(n ∗ d)). In a linear
representation, the search for neighbors is made through
a pairwise comparison testing between the input leaf ver-
sus the set of existing leaves. Considering each test with
cost O(1), the search for neighboring sets of a leaf is
associated with O(number of leaves).

However, the cost of looking for a specific neighbor
using the QuadN4 neighborhood has some interesting
cases. The worst case happens when looking for the last
leaf along a border, and the search is coming from a
leaf with the biggest size that can be represented in the
quadtree, and all of its neighboring leaves in the border
to be followed have the smallest size represented in the
quadtree. In a scenario where a quadtree represents a
2n × 2n space, that the minimum sized leaves represent
1 × 1 areas, and that the maximum sized leaves repre-
sent 2(n−1)×2(n−1) areas, the worst case would consider
following 2(n−1) − 1 leaves before reaching the last leaf
of such huge border.

In that case, the use of a hierarchical representation
for looking for one specific node would be preferable. Any
neighbor is found by transversing the tree looking for an
common ancestral and then going down until finding the
desired neighbor [7]. In the hierarchical representation
the worst case happens when both neighbors have the
smallest size represented in the tree (sited in the highest
depth) and only have the root node as common ances-
tral. In this case, the search for the neighbor would re-
quire following a number of references equal to two times

the depth of the tree. However, using the QuadN4tree
the cost of reaching such neighbor would be associated
with reading only one reference, as they have the same
size. Therefore, when looking for a specific neighbor, the
performance of the proposed structure improves as the
borders size ratio of neighboring leaves gets closer to 1,
requiring less readings than the hierarchical representa-
tion if such ratio do not get higher that the depth of the
tree.

In so far as, Section 3.1 showed that the QuadN4tree
is optimum for queries involving the search of a leaf set of
neighbors; that pairwise neighboring testing can be done
just by checking if at least one of them has a reference to
the other; and that the performance of the search for a
specific neighbor is improved diminishing the difference
between the size of neighboring borders.

3.2 Neighborhood Updating

The two basic operations that require the updating of a
quadtree structure are: grouping four leaves into a new
one and splitting a leaf into four new leaves [7]. This
section examines the updating process of the references
proposed in the QuadN4tree model.

Fig. 5 (Left) References after grouping; (center) references
after splitting and (right) external references affected

When creating a new leaf from the union of four
leaves the references of the new one can be read directly
from the original by reading the new north and left ref-
erences from the input leaf situated in the north left po-
sition, while the south and right references can be read
directly from the input leaf situated in the south right
position (the chosen references are illustrated in the left
side of figure 5)

When splitting a leaf into four new leaves, eight of
the new references created inside those leaves are point-
ing to themselves, four of it are read from the original leaf
and another four have to be searched within the neigh-
borhood of the affected area by testing the new leaves
limits versus those neighboring leaves for obtaining the
missing references (see right side of figure 5).

Updating is a local operator in the sense that it af-
fects only the neighborhood of the updated leaves, re-
ferred here as operation area (cross hatched area in fig-
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ure 5). The alignment imposed to these operations guar-
antees that such set can be found by circulating along
the operation area, as demonstrated in subsection 3.1, by
using the operation area limits as the navigation limits
criterion. Updating steps are detailed below:

Updating process: 1) create a new leaf (in case of
union), or four new leaves (in case of splitting); 2) up-
date the new leaf(ves) internal references that can be
read from the input leaves, and also the references that
point to themselves (only during split); 3) find the af-
fected neighbors external to the operation area; 4) for
each affected neighbor, if it has a reference that previ-
ously was pointing to the operation area, it should be
updated to the new leaf created. In case of split opera-
tion, also test if this neighbor range is located over the
new border created and, in such case, update the proper
missing reference in the new leaf.

Observe that the cost of the updating operations are
related to the cost of creating the new leaf(ves) refer-
ences, and finding the affected neighbors to update at
most one of their references. As we previously showed
that we optimally retrieve the set of neighbors of any
leaf by using the proposed structure, and that the af-
fected neighbors can be found by circulating the opera-
tion area, then, clearly, the number of references to be
updated and created here is much smaller than in struc-
tures that store references for all the leaf references.

4 Representing the QuadN4tree

This section demonstrates how natural is to aggregate
the QuadN4tree to traditional representations, and then,
in subsection 4.2, that the QuadN4tree can be used for
representing the quadtree neighborhood system using
the graphics hardware.

4.1 The QuadN4tree and the Quadtree Traditional
Representations

The QuadN4 reference model can be easily aggregated to
both quadtree traditional representations. For the hierar-
chical representation, where relations are usually stored
as pointers, four pointers should be included for each
leaf, referencing the QuadN4tree neighbors. Then, such
pointers can be used for navigating between leaves with-
out traversing through internal nodes.

For the linear representation, supposing that each leaf
is represented as a data in a linear list, associated with
a identifier related to its list position, the QuadN4 refer-
ence model can be incorporated by adding four fields per
leaf, representing the linear list position of the referred
neighbors. Such fields can be used for non-linear navi-
gation within the linear list, reproducing the navigation
through our reference model.

Fig. 6 Image Pyramid: grouping similar pixels into leaves

4.2 The QuadN4tree and the GPU Representation

This subsection shows how the QuadN4tree can be con-
structed for a GPU quadtree representation. It is impor-
tant to notice that, since it is not know a priori how many
neighbors a leaf will have, and the existing graphics hard-
ware lack of variable-sized data structures, a parallel con-
struction for saving all of its neighbors using the graphics
hardware resources is not trivial. It is beyond our knowl-
edge any previous proposal for representing the quadtree
neighborhood system on GPU. The QuadN4tree model,
being a compact neighborhood structure of predefined
size (four references for each leaf), also contributes en-
abling a quadtree leaves neighborhood representation on
GPU. The steps for aggregating the QuadN4 model into
a GPU representation are presented bellow.

4.2.1 Quadtree Construction

As in Ziegler et al. [3], the quadtree construction on GPU
starts by a reduction operator that creates an image
pyramid, called by them as QuadPyramid. In order to
do that, a texture is created over the 2D space area to be
covered by the quadtree in such a way as that each texel
represents the smallest grid element of the quadtree.

From the input image, one creates a image pyramid
by using a recursive fine-to-coarse approach (Figure 6).
Starting at the most refined level, all pixels are initially
considered as candidates to be leaves of the quadtree.
Then, in each level, for each fragment in the current pyra-
mid level, the algorithm reads four texture samples the
previous pyramid level, representative of its four children
in the quadtree. Depending on the data represented by
the quadtree, different criteria are used to decide if the
leaves in the previous level should be grouped.

When following Ziegler et al.’s processing steps, the
QuadPyramid constructed is processed for creating a list
of leaves representing the quadtree. We are going to use
the resulting list of leaves of [3] later, as the quadtree
data representation. However, in this section we are fo-
cused in reviewing the QuadPyramid construction in a
manner that allows the extraction of the neighborhood
relations from this texture. The reduction operator pro-
posed here prepares the QuadPyramid for being used as
input for the extraction of the leaf mask texture as de-
scribed in next subsection.
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Our reduction operator analyses if the four samples
read represent nodes that should not be grouped using
the adopted criterion, and, in this case, classifies the frag-
ment as a tree internal node. Otherwise, the fragment is
provisionally classified as a new leaf, and receives a value
representative of its four children. Such grouping are not
yet the final leaves as they can be regrouped later, in
the subsequent processing levels, into larger leaves. This
evaluation is saved in the alpha channel of the pyramid
to be analyzed in the next step. The reduction operator
is performed level by level until reaching the pyramid
root level (a single pixel representing the entire image).

Aiming the neighborhood system extraction, such
tests describes a reduction operator that is simpler than
the one presented in [3]. While grouping leaves, [3] also
computes relative counters in fragments representing in-
ternal nodes. Those counters indicate how many leaves
are covered by the internal node being processed and
are used in [3] method for creating the leaves list. We
do not use these partial counters during the neighbor-
hood processing steps because we are interested in pro-
ducing a mask with the found leaves, and not a list of
leaves as in [3] since the neighborhood disposition was
already lost in such list. For grouping both operators in
one QuadPyramid, our classification of leaves candidates
or internal nodes can be read respectively from zeroed
and non-zeroed counters of [3] pyramid classification.

The next subsection explains how this pyramid tex-
ture is processed in other to identify, among the nodes
provisionally classified as leaves, the ones that are actu-
ally leaves.

4.2.2 Identifying Final Leaves

In order to identify the quadtree leaves in the pyramid
texture, we propose a leaf isolation method that does not
require computing several texture transversal, as used in
[3]. Our leaf isolation algorithm reads the image pyramid
previously constructed and discards texels representing
nodes that are not leaves. For that, we use a new shader
that reads our pyramid texture and discards all frag-
ments that should not be leaf nodes in the final tree.
This shader produces the output texture in a single ren-
dering pass that makes at most two texture accesses per
fragment, creating a mask with the identified the leaves.

Initially the fragment classification (candidate leaf /
non-leaf) is read from the alpha channel of the pyramid
texture. If the sample is already classified as non-leaf
(internal node), the fragment is immediately discarded.
Otherwise, the pyramid texture is queried again, now on
its corresponding parent texture coordinate. When the
parent was classified as a leaf it means that this frag-
ment was grouped with its neighbors into a higher level
leaf, so it can also be discarded. However, in the case of
a non-leaf parent, this means that the previous shader
could not group this node with its neighbors and that
the fragment represents a leaf in the final tree.

Fig. 7 Leaves Mask Texture

The fragments that pass through those tests are con-
sidered as being the final quadtree leaves and are written
in the output texture that we call the leaf mask texture,
saving in its channels the data to be associated with
the leaves that the fragments represent (see figure 7).
The leaf mask texture can be compared to a hierarchical
representation as the identified leaves are still stored in
different levels while Ziegler’s leaves list [3] can be com-
pared to the quadtree traditional linear representation.

Observe that the leaf mask texture can also be con-
structed with an operator that recreates a pyramid by
reading the output generated by [3] and by repositioning
each leaf from their list to its position and corresponding
level within the pyramidal structure.

To construct the list of leaves for a quadtree of m
leaves over a square image of N pixels, [3] algorithm
may need (m ∗ log(

√
(N))) texture accesses in the worst

case. The algorithm presented here does at most two
texture accesses for each leaf candidate, identifying real
leaves from the previously created pyramid with less than
O(2 ∗ m) texture accesses.

4.2.3 Querying with the leaf mask texture

This section shows how the leaf mask texture can be
used for mapping each point of the space covered by the
quadtree to the unique leaf that contains that point –
that is, the leaf bottom-left corner x and y coordinates
and level. With this information, we can retrieve all ele-
ments required for the QuadN4tree navigation.

In order to build such a mapping function, we use
the leaf mask texture as a binary mask. Recall that each
point in space is covered by a single leaf. Since the leaf
mask texture preserves the leaves level and spatial ar-
rangement, it is used as a mask for activating within the
mapping function the unique level in which the consid-
ered point of the 2D space was represented into a leaf.
Thus, the mapping between the (x, y) displacement of
the 2D space and its representative leaf in the quadtree
is given by the following sum:

LeafData(x, y) =
N∑

i=1

αi ∗ (leveli, dxi(x), dyi(y)) (1)

where N is the maximum level of the quadtree, αi in-
dicates whether i is the level of the leaf covering (x, y)
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Fig. 8 2D Space Mapping Channels: leaves levels (in red);
corner horizontal position (in green); corner vertical position
(in blue); Composed Map

(a binary variable read from the leaf mask texture), and
dxi(x), dyi(x) denote the coordinates of the bottom-left
corner of a leaf of level i that covers point (x, y) (obtained
by quantizing the x and y coordinates to the appropriate
leaf size). Figure 8 applies the space mapping to the leaf
mask texture presented in Figure 7.

4.2.4 Representing QuadN4tree in a texture

Computing the map described in the previous subsec-
tion is extremely simple and efficient, and queries re-
garding the neighbors of a given leaf can be answered
by a few texture accesses in such map. However, one
of the main goals for using a quadtree structure is to re-
duce the space required for data representation, and such
mapping would require a storage space of the same size
of the space covered by the quadtree. The representation
presented next uses the mapping proposed, but only for
finding the four QuadN4 neighbors of each leaf.

�

�

�

� � �

� � �

� �
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Fig. 9 QuadN4tree on GPU: Diagram and actual Texture

After creating a leaves list (as in Ziegler’s [3]), and a
leaf mask texture (as described above), four extra lists are
created, each one storing one of the QuadN4 references
(Figure 9). Such references are found by applying the
mapping to a coordinate inside of a QuadN4 neighbor to
obtain its leaves list position. Thus, the mapping between
the (x, y) coordinate referred by a quadN4 reference and
its leaves list position is given by the following sum:

Reference(x, y) =
N∑

i=1

αi ∗ (LLx(x, y, i), LLy(x, y, i))(2)

where (x, y) are the coordinates within a neighbor (found
by following the QuadN4 model), N , and αi represent
the same as in equation 1, and LLx(x, y, i), LLy(x, y, i)
denote the texture coordinates within the leaves list of
the neighboring leaf that covers point (x, y) in level i.

The presented representation limits the memory used
to at most five times the number of leaves of a quadtree,
at the same time allowing a navigation through neigh-
bors by following the QuadN4tree navigation model. Stor-
ing a list of leaves and four lists of references into a tex-
ture can be further optimized. As the four references are
2D data, they can be grouped two by two for using the
four texture channels. Thus, the representation would re-
quire a texture space of only tree times the number of
leaves. We do not consider the storage space of textures
generated by the intermediary processing steps (fot the
QuadPyramid and Leaves Mask Texture) in this required
storage space analysis as they can be discarded along the
algorithm pipeline.

Table 1 presents the processing time (in milliseconds)
for constructing the QuadN4tree representation on the
GPU by grouping similar pixels into leaves for images
of different resolutions. A NVidia GeForce 8800 GTX
graphic card was used. It shows that the construction
of the structure can be done in high frame rates, what
makes the QuadN4tree representation suitable for real-
time applications.

Table 1 Processing time (in ms)

Space Resolution: 29 × 29 210 × 210 211 × 211

Image Pyramid: 0.14 0.29 0.37
Mask: 0.28 1.00 1.29
Leaves List: 0.47 1.02 1.37
Neighbors List: 0.22 0.72 1.17

5 Application Scenarios

In order to illustrate the applicability of the QuadN4tree
structure in Graphics Problems this section discusses
how it can be used in three recently proposed algorithms.

5.1 Panoramic Image Processing

In [1], Agarwala uses a quadtree structure to improve
the efficiency of gradient-domain compositing by solving
the problem in a reduced space. The use of a quadtree is
motivated by the lack of scalability of gradient-domain
compositing that was not previously practical to use for
large resolution images. To obtain a smooth solution,
a restriction is imposed to the quadtree: no two nodes
that share an edge may differ in tree depth by more
than one level. Agarwala’s approach uses a pointer-based

DBD
PUC-Rio - Certificação Digital Nº 0510966/CA



8 Cristina Vasconcelos et al.

representation, where neighboring relations are found by
tree traversals.

With the depth variation restriction over the neigh-
boring leaves, the cost to find an specific neighbor in
the QuadN4tree is at most the cost of two references
reading, or at most eight references reading for finding
all the eight neighbors of any leaf. The small number
of reference reading must yields an improvement on the
traversal efficiency.

5.2 Quadtree and Graph-Cuts

In [8], we proposed to accelerate the computation of en-
ergy minimization using graph-cuts over images by ap-
plying a preprocessing step that reduces the number of
graph nodes and edges. During the preprocessing step,
pixels are grouped into quadtree leaves using a similar-
ity criteria. A general formulation for the energy function
using the leaves as its variables and a general graph-cut
formulation over the quadtree leaves is presented.

The construction of a graph using the leaves of a
quadtree as its nodes requires retrieving all the neigh-
bors from each leaf, as each neighborhood relation should
be represented with an edge in the graph [8]. Applica-
tions with the same requirement (of retrieving the whole
neighborhood system), can be greatly benefited from the
QuadN4tree as our structure presents the optimum cost
for retrieving all the neighbors of a leaf, with the cost of
one reading per neighbor.

5.3 Tracking Markers Detection

In [5], Loaiza et al. present an algorithm to group, la-
bel, identify and perform optical tracking of marker sets.
Such markers are grouped into two specific configura-
tions, defining collinear and coplanar patterns. The quad-
tree structure is initially used in a divide and conquer
strategy to segment an image for finding the coordi-
nates of markers that are spread over unknown posi-
tions. Then, quadtree traversals are used to group track-
ing markers into the specified patterns. Loaiza et al.’s
grouping step suffers from scalability as tests are made
with all possible combinations of markers positions.

With the QuadN4tree structure it is possible to re-
trieve the markers neighborhood within a chosen area,
yielding to a grouping algorithm that does not have to
consider all the marks presented in the image to test for
pattern candidates. Thus, neighborhood relations would
diminish the combinatorial grown of the algorithm pro-
posed by [5], which can improve their scalability to a
larger number of tracking markers.

6 Conclusions

In this work we have presented the QuadN4tree model.
QuadN4tree’s neighborhood scheme is based on a set of
four neighbors and allows navigating throughout leaves
that span the space covered by the quadtree. The pro-
posed navigation method provides an optimum retrieval
of the set of neighbors of any leaf. We also observe that
the model can be extended to octrees by choosing the
correct set of neighbors.

In Section 4 the QuadN4tree structure representa-
tion on GPU was modeled to offer independent compu-
tation of separate stream elements within a single ker-
nel. The transcription of algorithms from CPU-based to
GPU-based is not straightforward. The main restriction
related to the representation of data structures is the
lack of dynamic variable-sized data structures. This lim-
itation precludes the direct use on GPUs of traditional
quadtree representations designed for CPU use, but, as
showed, does not preclude the use of the QuadN4tree
model, making it GPU-friendly.

Although the proposed neighborhood scheme is quite
natural, to the best of our knowledge it has not yet been
proposed in the literature on data structures.
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Abstract

Energy minimization via graph cut is widely used

to solve several computer vision problems. In the

standard formulation, the optimization procedure is

applied to a very large graph, since a graph node

is created for each pixel of the image. This makes

it difficult to achieve interactive running times. We

propose modifying this set-up by introducing a pre-

processing step that groups similar pixels, aiming

to reduce the number of nodes and edges present in

the graph for which a minimum cut is to be found.

We use a quadtree structure to cluster similar pixels,

motivated by fact that it induces an easily retriev-

able neighborhood system between its leaves. The

resulting quadtree leaves replace the image pixels in

the construction of the graph, substantially reduc-

ing its size. We also take advantage of some of the

new GPGPU concepts and algorithms to efficiently

compute the energy function terms, its penalties and

the quadtree structure, allowing us to take a step to-

ward a real time solution for energy minimization

via graph cuts. We illustrate the proposed method in

an application that addresses the problem of image

segmentation of natural images by active illumina-

tion.

1 Introduction

Many important problems in image analysis can be

posed as optimization problems involving the mini-

mization of some kind of energy function. For some

of those problems, methods based on computing

the minimum cut on graphs offer the possibility of

finding global minimum for some classes of energy

functions [3].

These methods explore the fact that algorithms

for computing minimum cuts in polynomial time

have been known for some time [1].

Much research has been done in setting the math-

ematical requirements for the energy functions that

justify the use of Graph Cut minimization for both

exact and approximate cases [1],[2],[3]. The appli-

cability of the technique has also been shown by

several papers in themes like image segmentation

[7], foreground/background extraction [11], cluster-

ing [4], texture synthesis[10], photo composition[9]

and so on.

However, the use of graph-cut methods for real-

time applications has been limited by the size of the

graph in which optimization must take place. In

this paper we propose a pre-processing of the in-

put images, in order to produce a new set of nodes

and edges, instead of the image pixels and its neigh-

borhood commonly used for the graph construction.

The proposed sets are considerably smaller, induc-

ing a significant reduction on the running time of

the graph-cut procedure. We call Quad Cut the use

Figure 1: Quad Graph
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of graph cut minimization in this modified way, the

concept is illustrated in Figure 1.

The idea of the preprocessing is to group simi-

lar pixels, but in a way that creates a well known

neighborhood system. For that reason, we choose to

group them into Quadtree nodes. The metric used

for grouping should be a similarity criteria appro-

priate to the context being analyzed by the energy

function.

After constructing the quadtree, its leaves are

used, instead of image pixels, as the basis for the

construction of the graph. An appropriate energy

function and neighborhood relationships are created

to be used in this new procedure.

As we are interested in offering a fast approxi-

mation for the computer vision problems that rely

on computing the minimum cut on an appropri-

ately constructed graph, in addition to reducing the

graph size, we also explore graphics hardware to ef-

ficiently compute energy function terms, its penal-

ties and the Quadtree structure. Inspired by [15], we

can take advantage of the Graphics Processing Unit

(GPU) parallelism to compute all the preprocess-

ing steps, including an efficient construction of a

Quadtree with all the information needed for the op-

timization algorithm, leaving the CPU free to mini-

mize the Graph constructed with the quad leaves.

As an application, we address the problem of

foreground/background image segmentation aided

by active illumination, in which graph cuts are used

to compute an optimal binary classification, start-

ing with an initial background/foreground separa-

tion, provided by the difference in intensity levels

for two different illumination levels [11]. Figure 2

illustrates the application. Observe that the quality

of the binary segmentation produced can be used for

matting.

The paper is organized as follows: some applica-

tions that use energy minimization via graph cuts in

vision are reviewed in the next Section; Section 3

briefly describes the basic concepts for energy min-

imization via Graph Cuts; then, in Section 4 we ar-

gue that grouping pixels into the Quadtree structure

is useful to substantially reduce the nodes of the

final graph to be cut. An GPU implementation to

construct the quad tree structure is discussed in sec-

tion 5. In Section 6 we present an illustrative imple-

mentation to accelerate the active illumination seg-

mentation problem. Results are discussed in Sec-

tion 6.4 followed by conclusions and future work.

(a) (b) (c)

(d) (e)

Figure 2: Example of minimization via Graph Cuts

to the image segmentation of natural images aided

by active illumination. In (a) and (b) the input

images are shown. In (c) the initial segmentation

provided by active illumination is compared to the

final optimized segmentation shown in (d). The

composition result (using parameters σL = 0.25,

σC = 0.05) is shown in (e).

2 Related Work

In the Computer Vision and Graphics context, the

graph cut method, can be interpreted as a cluster-

ing algorithm that works in a image feature space to

produce spatially coherent clusters as result. Sev-

eral recent works creatively models different ap-

plications as a labeling problem, then uses graph

cuts to optimize the proposed labeling. This is the

case in [9], where a framework for composing dig-

ital photos into a single picture, called d̈igital pho-

tomontage,̈ is described. Having n source images

S1, ..., Sn to form a photo composition, the prob-

lem is posed as choosing a label for each pixel

p, where each label represents a source image Si.

The proposed method extends the applicability of

graph cuts to compute selective composites, photo

extended depth of field, relighting, stroboscopic vi-

sualization of movement, time-lapse photo mosaics

and panoramic stitching.

In [4], the spatial clustering problem is modeled

as a labeling problem. The spatial coherence is

guaranteed by the penalty imposed for neighbor-

ing pixels to have different labels, that are used as

weights for the edges between neighbor pixels in

the graph.
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In [10], texture synthesis is modeled as label-

ing. The method generates textures by copying in-

put texture patches into a new location, the graph-

cut technique is used to find the optimal region in-

side the patch to be transferred to the output image.

Such patch fitting step is a minimum cost graph cut

problem using a matching quality measure for pix-

els from the old and new patch.

The problem of monochrome image colorization

is modeled as a segmentation problem in [5]. The

input image is partitioned interactively while the

user specifies input colors, maintaining smoothness

almost everywhere except for the sharp discontinu-

ity at the boundaries in the image.

Image segmentation problem can also be solved

by minimization via graph cuts. The main work

lies in defining the energy function that mod-

els the specified application. In particular, back-

ground/foreground segmentation can be solved by

means of Graph Cuts. In [6], [7] and [8] the user has

to indicate coarsely the foreground and the back-

ground pixels, as initial restrictions for a minimiza-

tion process. Then, graph cuts are used to find auto-

matically the globally optimal segmentation for the

rest of the image.

Similarly to our algorithm, [8] proposed the use

of the image uniform regions as the nodes used in

the graph construction in stead of the image pix-

els. They group similar pixels into such regions

segmenting the original image using the watershed

method. We believe that such segmentation do not

provide a neighborhood system neither a boundary

perimeter and area as easy to compute as the one

presented in our proposal provided by the quadtree

structure.

In this paper we will concentrate on applying

graph cuts for image foreground-background seg-

mentation aided by active illumination, as in [11].

Active illumination consists of using an additional

light source in the scene that illuminates the fore-

ground objects more strongly than the background.

This gives a priori clues of the foreground. The

information derived from this difference in illumi-

nation replaces the indication of object and back-

ground pixels by the user. These initial clues are

then used as seeds for an optimization procedure in

order to obtain a high quality segmentation. Poten-

tially, the approach could be used for video capture,

since a projector can be controlled to produce alter-

nating illumination conditions at 60 Hz.

3 Basic concepts in Energy Minimiza-
tion via Graph Cuts

In Computer Vision and Graphics, energy func-

tions minimization is commonly computed using

the min-cut/max-flow algorithms. The general goal

for using the min-cut/max-flow algorithms is to find

a labeling L, that assign each variable p ∈ P (usu-

ally associated with the pixels of the input image)

to a labeling Lp ∈ L, which minimizes the corre-

sponding energy function.

The number of possible values assumed by the

variables of the energy function is assumed finite,

and modeled as a set of labels L, each label repre-

senting a possible output value.

The energy function to be optimized can be gen-

erally represented as [2]:

E(L) =
∑
p∈P

Dp(Lp) +
∑

p,q∈N

Vp,q(Lp, Lq), (1)

Traditionally, N ⊂ P × P is a neighborhood

system on pixels, Dp(Lp) is a function that mea-

sures the cost of assigning the label Lp to the pixel

p, while Vp,q measures the cost of assigning the la-

bels {Lp, Lq} to the adjacent pixels p and q and is

used to impose spatial smoothness.

The method of Graph Cuts to minimize (1) is ap-

plied by the creation of a graph normally contain-

ing nodes corresponding to each of the image pixels

and some additional special nodes, called terminals,

corresponding to each of the possible labels. There

are two types of edges in the graph: n-links and

t-links. N-links are the edges connecting pairs of

neighboring pixels, representing the neighborhood

system in the image, while t-links are edges con-

necting pixels with terminals nodes. All edges in

the graph are assigned some weight or cost related

to the energy function terms. The cost of a t-link

corresponds to a penalty for assigning the corre-

sponding label to the pixel, derived from the data

term Dp in (1). The cost of a n-links corresponds

to a penalty for discontinuity between the pixels.

These costs are usually derived from the pixel in-

teraction term Vp,q in (1).

The Graph Cut finds a minimum of the energy

function (1), providing an optimal labeling for the

graph nodes [2].
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4 Grouping Pixels into Quadtrees
Leaves

When modeling computer vision problems as a

energy-minimization problem, one can use different

kinds of image features (e.g., luminance, color, gra-

dient, frequency) and different metrics (e.g., statisti-

cal functions, differences between images, min/max

relations). However, whatever the image feature or

the metric used in the energy function, most natural

images have areas of pixels presenting similar val-

ues according to them. Those pixels are expected to

receive the same label in the energy minimization

output. Our approach takes advantage of this fact,

grouping pixels of such uniform areas, thus decreas-

ing the graph size on which the min-cut algorithm

is to be applied.

One more question arises here. If, on one hand,

grouping pixels reduces the size of the graph, on

the other hand, it may cause its adjacency topol-

ogy to be more complex than the usual 4- or 8-

connected pixel neighborhood systems. This may

lead to spending considerable time both to find suit-

able clusters of pixels and to compute their adja-

cency relationships, overcoming the benefits by the

smaller graph size.

Driven by these observations, we propose the use

of a quadtree structure for grouping pixels into re-

gions using a similarity criteria, while, at the same,

creating a manageable neighborhood system be-

tween the quadtree leaves, in which adjacency re-

lationships are easily retrievable.

In the next subsections we show how a graph

for energy minimization can be constructed using

quadtree leaves. The construction of the quadtree

itself is discussed in section 5.

4.1 Graph Cuts using Quadtree Leaves

Using the quadtree leaves as the input data for the

energy minimization via graph cuts, our goal is to

find a labeling L, that assigns a label Lt ∈ L to

each leaf t ∈ T of the quadtree, that minimizes the

energy function adopted. The same set of the labels

L may be used here. The modified energy function

can be generally represented as:

E(L) =
∑
t∈T

α∗Dt(Lt)+
∑

t,u∈N

β ∗Vt,u(Lt, Lu),

(2)

Where N ⊂ T × T is a neighborhood system on

the quadtree leaves, Dt(Lt) is a function that mea-

sures the cost of assigning label Lt to leaf t, and

Vt,u measures the cost of assigning labels {Lt, Lu}
to the adjacent leaves t and u. The α and β terms

are weights for balancing the energy function, ex-

plained below.

In such energy function model, the energy vari-

ables represent the quadtree leaves. Thus, graph cut

minimization is applied to a graph containing nodes

corresponding to each leaf of the quadtree and ter-

minal nodes corresponding to each of the possible

labels. Now, the n-links connect pairs of neighbor-

ing leaves, while t-links connect leaves with termi-

nals nodes.

4.1.1 Weighting the Quadtree Nodes

The α and β factors were added to equation (2)

in order to balance the energy metric according to

leaves topology. The number of pixels inside a leaf

t is (2level(t))2, while the number of pixels in the

border between two neighboring leaves t and u is

2min(level(t),level(u)). Therefore, we can rewrite (2)

by taking α, that represents the weight for the re-

gional term, as the leaf area, and β, that represents

the weight for the boundary term, as the number of

neighboring pixels between the two leaves.

With the suggested weights, we ensure that larger

leaves have greater impact than smaller ones, while

also enhancing the neighborhood influence of larger

borders.

E(L) =
∑
t∈T

(2level(t))2 ∗ Dt(Lt)

+
∑

t,u∈N

2min(level(t),level(u)) ∗ Vt,u(Lt, Lu), (3)

5 Efficiently computing the Quadtrees

In this section we describe how the quadtree can be

constructed efficiently using graphics hardware.

5.1 Quadtrees in GPGPU

The increasing use of the Graphics Processing Unit

(GPU) for general-purpose computation (GPGPU)

is motivated by its newest capability of performing

more than the specific graphics computations which

they were designed for.
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In the context of our proposal, the GPU can

be used for efficiently computing the energy func-

tion terms and also for constructing the quadtree

whose leaves will be used as nodes in the graph

cut minimization. For saving the partial results,

we apply the useful concept of ”Playing Ping-Pong

with Render-To-Texture” [17], rendering to Frame

Buffer Objects (FBO) [19] when 32-bit floating-

point precision is necessary.

A solution for constructing a quadtree structure

for general purposes in GPU is presented in [15].

A reduction operator is described that creates an

image pyramid called QuadPyramid. The opera-

tor writes in each fragment of the pyramid texture

whether it represents a grouping of similar pixels or

if it should be threaded as a quadtree internal node,

in this case saving the number of leaves covered by

the region represented by the fragment.

In a second shader, they identify the quadtree

leaves reading the pyramid texture repeatedly, sim-

ulating tree traversals from root to leaves. Relative

counters, read from the pyramid texture, are used

to control such traversals. The origin and size of

the found leaves are saved in a output texture, or-

ganized as a point list. To construct such list for

a quadtree of m leaves over a square image of N

pixels, their algorithm may need (m∗ log(
√

(N)))
texture accesses in the worst case.

For our purposes, the resulting quadtree leaves

will be used in CPU for graph construction. In addi-

tion to the origin and size of the leaves, we will also

need leaf values that are used as the graph weights.

We propose a simpler image pyramid operator for

quadtree construction than the used in [15] and a

new algorithm for identifying leaves from the pyra-

mid texture. Next sections explain our methods for

quadtree construction and leaves identification.

5.2 Quadtree Construction

Once a similarity criteria has been selected, the in-

put image should be transformed to the adopted

metric space, previously to the quadtree construc-

tion. For example, when grouping pixels by lumi-

nance, the original image should be transformed to

the luminance space.

Here, as in [15], the quadtree construction starts

by a reduction operator, creating an image pyra-

mid. For each fragment in the pyramid level being

constructed, the operator reads four texture samples

from the previous pyramid level, representative of

its four children in the quadtree. If the samples rep-

resent similar nodes, then, the fragment is classified

as a leaf, grouping them into a single node that re-

ceives its children mean value. Otherwise, the frag-

ment is classified as a tree internal node. The re-

duction operator is performed until the pyramid top

level (1 × 1 pixel dimension) is reached.

Our algorithm is simpler than the one presented

in [15]. While grouping leaves, [15] also computes

relative counters in fragments representing internal

nodes. Those counters indicate how many leaves

are covered by the internal node being processed. In

our case, we do not count the existing leaves inside

a internal node region because this information is

not needed in our leaves isolation solution.

For our purposes, the pyramid texture is used for

saving the grouping decision (alpha channel) and

the leaves values (RGB channels). Figure 3 shows

an image pyramid found using the example applica-

tion of section 6.

Figure 3: image pyramid found using the example

application

5.3 Identifying Final Leaves

In order to identify the quadtree leaves in the pyra-

mid texture, we propose a leaf isolation method that

does not require computing several texture transver-

sals, as used in [15], and, as a consequence, does not

impose the use of a GPU supporting several nested

branches.

Using the pyramid image as input, this process-

ing step produces a texture whose pixels contain the

data corresponding to a quadtree leaf (its size, po-

sition and representative value), or a color associ-

ated with empty data. This texture saves all the data

needed for building the graph a posteriori.
Our algorithm erases texels representing other

than leaf nodes in the pyramid texture. For that, we

use a new fragment shader that reads our pyramid

texture and discards all fragments that should not be
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leaf nodes in the final tree. This shader produces the

output texture in a single rendering pass that makes

at most two texture accesses per fragment.

The cleanup shader initially reads the fragment

classification (leaf/non-leaf) from the alpha channel

of the pyramid texture. If the sample is already clas-

sified as non-leaf, the fragment is immediately dis-

carded. Otherwise, the pyramid texture is queried

again, now on its corresponding parent texture co-

ordinate. When the parent was classified as a leaf,

this means that this fragment was grouped with its

neighbors into a higher level leaf, so it can also be

discarded. However, in the case of a non-leaf par-

ent, this means that the previous shader could not

group this node with its neighbors and that the frag-

ment represents a leaf in the final tree.

The fragments that pass through those tests are

considered as final quadtree leaves and are written

in the output texture, saving in its channels all the

data to be associated with the leaf that the fragment

represents (see figure 4). By doing this, we guaran-

tee that subsequent steps of the graph construction

do not have to query any other texture.

Figure 4: Quadtree Leaf Texture

All the information necessary for graph-cut com-

puting is contained in this texture. For illustration,

in figure 5 we reconstruct the entire quadtree using

only the leaf texture shown in figure 4). Each leaf is

painted according to its level.

6 Application to Active Segmentation

In this section we describe in detail an application of

the proposed method to the problem of image seg-

mentation by active illumination using graph cuts.

Segmentation using active illumination employs

a single, intensity-modulated light source that stays

in a fixed position between shots, as proposed in

[11]. The two shots, differently illuminated, are

used to obtain an initial segmentation used as a

seed, referred as segmentation seed, and to attribute

Figure 5: Found Quadtree (leaf color according

with its level).

weights to the pixels that are used in graph cut opti-

mization step to produce a improved final segmen-

tation.

6.1 Energy Function Definition

The objective function adopted is the same pro-

posed in [11]. The regional term considers the lu-

minance difference between the two input images

and the object color histogram as information that

characterize the segmentation. The luminance dif-

ference for background pixels is considered to have

Gaussian distribution, with density

pB(p) =
1√

2πσL

exp(
−|LI2(p) − LI1(p)|2

2σ2
L

),

(4)

where σL is the standard deviation of the luminance

differences, illustrated in figure 6 b.

The segmentation seed is defined as O =
{p | pB(p) < t}, where t is a small threshold.

The color histogram of these initial foreground

pixels are used to characterize the object as in [6].

In this work, only the components a and b of the Lab

color systems are considered to characterize the ob-

ject color distribution. For simplicity, the histogram

is defined over a uniform partition.

The object distribution function is modeled as

pO(p) =
nk

nO
(5)

where nk is the number of pixels assigned to the

bin k and nO is the number of pixels in the object

region O.

Observe that only one of the input images is used

to construct the histogram information, since mix-

ing different images may distort color information.
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In most cases, we use the image corresponding to

the lowest projected intensity.

The regional term of the energy function is:

R(xp) =

{
− log(pO(p)), if xp is 1

− log(pB(p)), if xp is 0
(6)

where 1 is foreground and 0 is background.

The likelihood function for neighboring bound-

ary pixels given by

B(p, q) = 1 − exp(
−(||Lab(p) − Lab(q)||)2

2σ2
C

),

(7)

where Lab(p) denotes the color at point p and σC is

the standard deviation of the L2-norm of the color

difference.

The boundary term for neighboring pixels p, q is

given by −|xp −xq| log B(p, q), where points q are

the neighbors of p.

The final objective function combines both the

regional and the boundary term and is given by:

E(X) =
∑

p ∈ I1

R(xp)−
∑

p,q ∈ I1

|xp−xq|·log B(p, q),

(8)

As shown in [11], the proposed energy function

is regular, which means that it can be minimized

by graph-cuts. This remains valid for the modified

energy function defined on quadtrees leaves. As

a consequence, Quad-Cuts can be applied to min-

imize the modified energy function.

6.2 Energy Function in GPU

The next sections describe how shaders can be used

to compute efficiently the regional and boundary

terms of the active illumination energy function ap-

plying GPGPU.

To pass the computed data efficiently across the

algorithm we create what we call a Stratified Tex-
ture, illustrated in Figure 6.

The Stratified Texture is generated by saving, in

its different channels, red, green, blue and alpha, all

the data needed for the following steps of our al-

gorithm. In this example application, the red and

green channels are used for storing the a and b
channels of the input image converted to Lab color

space, the blue channel for storing the initial seed

segmentation obtained by thresholding the lumi-

nance difference, and the alpha channel for storing

the background distribution.

(a) a and b channels
from Lab color space

(b) background proba-
bility

(c) RGBA are respectively a, b, segmentation
seed and background probability

Figure 6: Stratified Texture.

6.2.1 Color Space Conversion

The input images are converted from RGB to CIE

Lab color space, to exploit metrics in a perception-

based color space presenting orthogonality proper-

ties between luminance and chrominance informa-

tion.

Shaders for color space conversion have been

used intensively by GPGPU programs. However, in

order to efficiently compute the RGB to Lab conver-

sion with high precision we also take advantage of

the concept of rendering to texture with 32 bit float-

ing point internal format using frame buffer objects

(FBO) [19]. We save the Lab a and b computed

channels in the resulting texture r and g channels,

as illustrated in figure 6(a).

6.2.2 Background Probability

The background probability is computed in GPU

according to equation (4), measuring the distribu-

tion of the luminance difference of the lit and unlit

images. The result is illustrated in Figure 6(b).

For efficiently using the GPU parallelism, we

pre-compute the constants 1/
√

2πσL and 1/(2σ2
L)

of equation (4) for a fixed σL. Those values are

passed to the shader, avoiding repeatedly calculat-

ing it for every fragment.
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6.2.3 Computing the Color Distribution

In order to compute the object distribution function

using equation (5), we construct the histogram of

the a and b channels from Lab color space (saved

in stratified texture red and green channels), distin-

guishing object pixels using the object seed (from

the stratified texture blue channel).

Motivated by its performance in computing his-

tograms with a large set of bins, we choose to

adapt [12] to our application context. Originally,

that approach was proposed for monochromatic his-

tograms, computing the histogram bin selection in

a vertex shader, by loading the texture using ei-

ther vertex texture fetches or by rendering the input

image pixels into a vertex buffer, according to the

graphics hardware capability.

We propose to adapt [12] to a vertex shader that

computes bin selection in a 2D mapping, modifying

it to compute a histogram representing the frequen-

cies of occurrence in both input channels. Our ver-

tex shader computes the vertex position by reading

the a and b channels, multiplying their normalized

values by the number of bins in the corresponding

dimension, and then transforming the resulting val-

ues to frame coordinates.

Observe that a histogram of a trichromatic image

could also be computed in GPU using techniques

for representing 3D arrays such as those proposed

in [18].

6.3 Application pipeline

stratified
texture

luminance
difference
(Gaussian)

RGB to Lab
Conversion

object region seed

unlit image

lit image

image reconstruction image composition

construct Quad-Cut graph energy minimization

object distribution (histogram)construct quadtree

GPU

CPU

GPU

Figure 7: The proposed Quad-Cut method.

The main steps of the example application are il-

lustrated in Figure 7.

The lit and unlit input images are converted to

Lab color space. Then, another shader computes

the background distribution texture. The result of

those shaders are grouped in the stratified texture as

described in section 6.2 and illustrated in figure 6.

The object distribution function is obtained by

computing the object histogram of the a and b chan-

nels read from the stratified texture, using only pix-

els that failed the background threshold test (read

from its blue channel). This histogram is saved in a

texture to be used later in the energy function con-

struction.

Then, the quadtree is created using our reduction

operator through the stratified texture. Following

the method in section 5.3, the resulting pyramid

texture in cleaned, generating a texture that contains

only the leaf nodes. that contains all information

needed about each leaf: its level, from its relative

position in the texture; its a and b from LAB con-

version saved in the red and green channels; and the

luminance distribution, saved in the blue channel.

All the above steps are computed in GPU. After

them, the graph is constructed in CPU by reading

the data from the leaf texture (fig. 4) and from the

histogram textures.

In CPU we store the quadtree leaves in a pointer

less representation, as a linear quadtree. The leaves

are associated with location codes for fast neighbor

search as in [16].

The graph is constructed using the leaf data,

which stores the previously computed terms of the

objective function, according to the method ex-

plained in section 4, which is minimized by the

Graph-Cut minimization as in [1].

The solution of the minimization provides the

classification of the quadtree leaves as background

or foreground. So, using the position and size of

each leaf, we reconstruct the resulting image that

represents the alpha mask solution.

Back to the GPU, for the final composition, a

smooth shader is applied to the computed alpha

mask. Finally, a blending operator αF + (1−α)B
is applied to the segmented foreground and the new

background.

6.4 Results

Segmentation results using Quad-Cuts and the fi-

nal compositions are shown in figures 2 and 8. To

illustrate the considerable reduction in the number

of variables in the minimization problem, both fig-

ures 2 and 8 are originally 800×600 (480,000) pix-

els, while the computed quadtrees have 9,556 (2%)
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leaves and 30,036 (6%) leaves, respectively. No-

tice that the special characteristics of figure 8 (that

presents many holes and thin structures) are auto-

matically preserved through 15,992 leaves in the

lowest level (1×1 pixel) and 8,718 in the next level

(4 × 4 pixels).

(a) Segmentation seed (b) Output α-channel

(c) Composite

Figure 8: Composition Result 2 (using σL = 0.25,

σC = 0.05).

We also measured the execution time of an back-

ground/foreground segmentation using graph-cut

and active illumination with a Quad-Cut imple-

mentation with its preprocessing steps computed in

GPU. A NVIDIA GeForce 7900 graphic card was

used for the timings shown in Table 1.

7 Conclusions

We propose to accelerate the computation of energy

minimization using graph cuts by applying a pre-

processing step for reducing the number of graph

nodes and edges. In this pre-processing, pixels are

grouped by a similarity criteria according to the

problem context.

We argue in favor of using a quadtree structure

for managing such clustering regions, motivated by

the easily retrievable neighborhood system between

Table 1: Processing time

step in seconds
Energy function on GPU:

RGB to Lab < 0.001

Background prob < 0.001

Histogram < 0.015

Quad on GPU:
Pyramid Construction 0.047

Quad Leaves Isolation < 0.001

Quad on CPU:
Reading Texture to CPU 0.015

Leaf List 0.016

Neighborhood 0.014

Graph-cut Minimization 0.001

Answer Reconstruction 0.016

its leaves. In order to support our claim, we present

a general formulation of the energy function using

the leaves as its variables, and we also presented

a general graph-cut construction over the quadtree

leaves.

We also show how the quadtree structure can be

constructed using graphics hardware. Initially, we

use a reduction operator for constructing an image

pyramid that writes in each texel whether a simi-

larity clustering was applied or not. Such shader is

simpler than the one proposed in [15]. Then we pro-

pose a leaf isolation method that discards from the

pyramid texture all the texels that do not represent a

quadtree leaf, efficiently removing unneeded infor-

mation of non-leaf nodes. The proposed method re-

quires fewer texture readings than the method pro-

posed by [15], due to fact that the algorithm that it

employs for finding leaves does not compute tree

traversals for discovering each leaf in the tree.

Our graph construction method does not compute

a point list on GPU of the quadtree leaves, as [15]

does. Instead, as explained before, we use the leaf

texture data to save the weights of the computed en-

ergy function, and the leaf texture coordinates are

used to set the leaf level, size and corner position.

Saving all the data needed for the posterior steps

into such leaf texture allows an efficient interplay

between the result generated in GPU and the energy

minimization on CPU.

We also presented an application of our method

to the foreground/background segmentation prob-
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lem. It can be observed from the presented re-

sults (figures 2 and 8) that the proposed method for

grouping pixels into quad leaves conserved image

fine grain details of the original image (by creating

leaves as small as 1×1) while also featuring a good

grouping rate, by creating large leaves in regions of

similar pixels .

We also show that the efficient implementation of

all preprocessing steps on GPU leads to reasonably

fast processing rates. As a consequence, we be-

lieve that our method constitutes an important step

towards real time segmentation and matting using

active segmentation.
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