
3

Related Work

In this chapter, we present several different approaches for distributed

reasoning in AmI environments and discuss the advantages and disadvantages

of these systems.

3.1

Distributed Reasoning

Middleware systems that give support to ubiquitous computing envi-

ronments traditionally adopt a centralized approach for their reasoning me-

chanisms [28], in which a central entity is responsible for collecting the avai-

lable context data from all sensors and ambient software entities operating in

the same environment, and for all the required reasoning tasks, which may

include transforming the imported context data in a common format, dedu-

cing higher-level context information form the raw context data, and taking

context-oriented decisions for the behavior of the system [92]. This is the case

of CoBrA [19], CHIL [22] and Semantic Space [32], for example.

However, in AmI environments, applications, services, rules and context

information may be partially or fully distributed among the different elements

involved. Thus in some circumstances a centralized approach may be inefficient

and even infeasible — e.g. if not all context information is available at the

node in charge of reasoning. In such environments, distributed reasoning is

necessary to address the complexity that arises from the coexistence of different

elements that collect, store, process, exchange and reason about context

data [33]. Hence, there are some approaches for distributed reasoning that

try to overcome this limitation, such as Gaia [18], OWL-SF [34], DRAGO [93],

P2P-DR [28] and P2PIS [94]. In the following sections we discuss the main

features of each of these aforementioned solutions.

3.2

Gaia

Gaia framework aims at providing a generic computational environment

to integrate physical spaces and their ubiquitous computing devices into a

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 33

programmable computing and communication system [5] [18]. It provides core

services, including events, entity presence (devices, users and services), disco-

very and naming. By specifying well-defined interfaces to services, applications

may be built in a generic way so that they are able to run in arbitrary active

spaces.

Gaia’s context infrastructure allows applications to obtain a variety of

contextual information. Various components, called Context Providers, obtain

context from either sensors or other data sources. These include sensors

that track people’s locations, room conditions (for example, temperature and

sound) and weather conditions. Context Providers allow applications to query

them for context information. Some Context Providers also have an event

channel to asynchronously send context events. Thus, applications can either

query a Context Providers or listen on the event channel to get context

information.

All the ontologies in Gaia are maintained by an Ontology Server. Entities

contact this server to get descriptions of other entities in the environment,

information about context or definitions of various terms used in Gaia. The

server also supports semantic queries to get, for example, the classification of

individuals or subsumption of concepts. The Ontology Server also provides an

interface for adding new concepts to existing ontologies.

Reasoning Approach. Context Synthesizers are Gaia components that col-

lect context data from various Context Providers, derive higher level or abstract

context from these lower-level context data and provide these inferred contexts

to applications. Whenever a Context Synthesizer deduces a change in the infer-

red context, it publishes the new information. Gaia adopts two basic inference

approaches [95]. Rule-based Synthesizers use pre-defined rules written in first

order logic to infer different contexts. Each of the rules also has an associated

priority, which is used to choose one rule when multiple rules are valid at the

same time. However, if all the valid rules have the same priority, one of them

is picked at random. Alternatively, some Synthesizers may use machine lear-

ning techniques, such as Bayesian learning and reinforcement learning, to infer

high-level contexts. Past context information is used to train the learner.

3.3

OWL-SF

The distributed semantic service framework, OWL-SF [34], supports the

design of ubiquitous context-aware systems considering both the distributed

nature of context information and the heterogeneity of devices that provide

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 34

services and deliver context. It uses OWL to represent high-level context

information in a semantically well-founded form, and its functional architecture

integrates two basic building blocks: OWL Super Distributed Objects (OWL-

SDOs) and Deduction Servers (DSs). OWL-SDOs are OWL enabled extensions

of Super Distributed Objects (SDOs) [96], which encapsulate devices, sensors,

user’s interfaces (GUIs), services and other environmental entities and connect

them to the upper context ontology, communicating using the Representational

State Transfer Protocol [97]. Deduction Servers (DSs) are specific OWL-

SDOs with an RDF inference mechanism and an OWL-DL reasoner. A

system may be composed of multiple components of both types, which can

be added and removed dynamically at runtime. DSs use the SDO discovery

and announcement implementation to become aware of new SDOs in the

environment. Whenever a new SDO is discovered, its semantic representation

is added to the internal database.

Each SDO that encapsulates context providers and service-providing

devices allows accessing the current state of an object as an OWL description.

Each functional entity implemented as OWL-SDO has to be described using its

own ontology containing terminological knowledge that enables the automatic

classification of the object into appropriate service categories. The state of an

object stores context values and is represented by an individual of a class in

the ontology. Integrated reasoning facilities perform the automatic verification

of the consistency of the provided service specifications and the represented

context information, so that the system can detect and rule out faulty service

descriptions and can provide reliable situation interpretation.

Reasoning Approach. Deduction servers (DSs) are specific OWL-SDO with

an RDF inference mechanism and an OWL-DL reasoner. The rule-based rea-

soning process is provided by the RDF inference component and the deduced

facts are used to trigger events to other SDOs and to process service calls. A

subscription notification mechanism is used to monitor the SDO parameters to

generate notifications whenever an observed parameter changes, triggering the

deduction process to update the global ontology model accordingly. The RDF

inference component is connected to the OWL-DL reasoner, which is respon-

sible for classification and answering OWL-DL queries. The Racer system [71]

is used as an OWL-DL reasoner. Besides providing deductive support, DSs

are responsible for collecting the status of SDOs, published in the OWL for-

mat, and building an integrated OWL description accessible to the reasoning

process. The semantic representation of each SDO is added to the internal

database of the DS. This semantic representation consists of a set of instances

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 35

augmented with rules. Facts deduced from rules are only used to change para-

meters and to call services but never modify the knowledge base.

3.4

DRAGO

Distributed Reasoning Architecture for a Galaxy of Ontologies (DRAGO)

is a distributed reasoning system implemented as a peer-to-peer architecture,

in which every peer registers a set of ontologies and mappings [93]. In DRAGO,

the reasoning operations are implemented using local reasoning over each

registered ontology and by coordinating with other peers when local ontologies

are semantically connected with the ontologies registered in other peers.

DRAGO does not implement a context layer, i.e., it does not have any service

for context collection, storing or distribution.

DRAGO is implemented to operate over HTTP and access ontologies

and mappings published on the web. It aggregates a web of ontologies distri-

buted amongst a peer-to-peer network in which each participant is called a

DRAGO Reasoning Peer (DRP). A DRP is the basic element of the system

and may contain a set of different ontologies describing specific domains of

interest (for example, ontologies describing different activities of users in a uni-

versity). These ontologies may differ from a subjective perspective and level of

granularity. In a DRP there are also semantic mappings, each defining seman-

tic relations between entities belonging to two different ontologies, described

using C-OWL [98]. As these mappings establish a correlation between the local

ontology and ontologies assigned to other DRPs, a DRP may also request rea-

soning services for other DRPs as part of a distributed reasoning task. Among

the reasoning services DRAGO allows to check for ontology consistency, build

classifications, verify concepts satisfiability and check entailment.

A DRP has two interfaces that can be invoked by users or applications.

A Registration Service Interface is available for creating/modifying/deleting

registrations of ontologies and mappings assigned to them. A Reasoning Service

Interface enables requests of reasoning services for registered ontologies. To

register an ontology at a peer the user specifies a logical identifier for it, i.e., a

URI, and inform a physical location of the ontology in the web. Besides that, it

is possible to assign semantic mappings to the ontology, providing, in the same

manner, the location of the mappings on the web. New peers may be added

dynamically to the system, providing new ontologies and semantic mappings.

As each peer registers sets of heterogeneous ontologies and mappings, the

knowledge base is totally distributed. When users or applications want to

perform reasoning with a registered ontology they refer to the corresponding

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 36

peer and invoke its reasoning services giving the URI to which the ontology

was bound.

Reasoning Approach. The reasoning process in DRAGO may compare

concepts in different ontologies to check concept satisfiability, determining if

a concept subsumes the other (i.e., the latter is less general than the former),

based on the semantic mappings relating both ontologies. In a set of ontologies

interconnected with semantic mappings, the inference of concept subsumption

in one ontology (or between ontologies) may depend also on other ontologies

related to the previous ones through those mappings. Every peer registers a

set of ontologies and mappings, and provides reasoning services for ontologies

with registered mappings. Each peer may also request reasoning services from

other peers when their local ontologies are semantically connected (through a

mapping) with the ontologies registered at the other peer. The reasoning with

multiple ontologies is performed by a combination of local reasoning opera-

tions, internally executed in each peer for each distinct ontology. A distributed

tableau algorithm is adopted for checking concept satisfiability in a set of

interconnected ontologies by combining local (standard) tableaux procedures

that check satisfiability inside the single ontology. Due to the limitations of

the distributed tableau algorithm, DRAGO supports only three types of rules

connecting atomic concepts in two different ontologies: is equivalent , is subsu-

med and subsumes . A Distributed Reasoner was implemented as an extension

to the open source OWL reasoner Pellet [99].

3.5

P2P-DR

P2P-DR proposes a distributed solution for reasoning about context tai-

lored to the special characteristics of AmI environments. This approach models

the entities of an ubiquitous environment as nodes in a P2P system, in which

each different node independently collects and processes the available context

information. Specifically, it considers nodes that have exclusive knowledge, and

that interact with neighbor nodes to exchange context information [28]. The

knowledge of each node is expressed in terms of rules, and knowledge is im-

ported from other nodes through bridging rules. As each peer may not have

direct access to all sources of information, they share their knowledge through

messages with their neighbor nodes. Moreover, the P2P-DR reasoning algo-

rithm models and reasons with potential conflicts that may arise during the

integration of the distributed knowledge.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 37

Reasoning Approach. In a P2P-DR system, each peer has some computing

and reasoning capabilities that it may use to solve a query about a local literal,

based on its local and imported knowledge, which comprises context data and

rules. A peer may not be able to solve the query locally, but it is aware of

the knowledge that each of the other peers — that it can communicate with

— possesses, and has mappings that define how part of this knowledge relates

to its local knowledge. As each peer is willing to disclose and share its local

knowledge, peers communicate with a subset of the other available peers to

import the knowledge necessary to solve the query.

3.6

P2PIS

A peer-to-peer inference system (P2PIS [94]) is a network of peer theories.

Each peer has a finite set of propositional formulas and can be semantically

related by sharing variables with other peers. A shared variable between two

peers is in the intersection of the vocabularies of the two peers. Not all the

variables in common in the vocabularies of two peers have to be shared by

them. Besides, two peers may not be aware of all the variables that they have

in common but only of some of them. In a P2PIS, no peer has the knowledge

of the global P2PIS theory. Each peer only knows its own local theory and the

variables that it shares with some other peers of the P2PIS (its acquaintances).

It does not necessarily knows all the variables that it has in common with other

peers (including with its acquaintances). When a new peer joins a P2PIS it

simply declares its acquaintances in the P2PIS, i.e., the peers it knows to be

sharing variables with, and it declares the corresponding shared variables.

Reasoning Approach. In P2PIS the local theory of each peer is composed

of a set of propositional clauses defined upon a set of propositional variables,

called its local vocabulary. Each peer may share part of its vocabulary with

some other peers. The system is capable of the reasoning task of finding

consequences of a certain form (e.g., clauses involving only certain variables)

for a given input formula expressed using the local vocabulary of a peer. Other

reasoning tasks, e.g., finding implicants of a certain form for a given input

formula, can be equivalently reduced to the consequence finding task. P2PIS

distributed algorithm splits clauses if they share variables of several peers.

Each piece of a split clause is then transmitted to the corresponding theory to

find its consequences. The consequences that are found for each piece of split

clause must then be re-composed to get the consequences of the clause that

had been split.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 38

3.7

Discussion

In this chapter, we discussed the need for distributed reasoning as a direct

requirement that arises from the open, dynamic and heterogeneous nature of

AmI. We described five proposals for distributed reasoning frameworks that

support the deployment of AmI systems and try to overcome the limitation of

traditional centralized reasoning approaches: Gaia, OWL-SF, DRAGO, P2P-

DR and P2PIS. Among them, it may be said that Gaia and OWL-SF are

the ones that best deal with dynamic scenarios, allowing context providers to

be added or removed dynamically and ontologies to be dynamically modified

with regard to types of context and their properties. Gaia offers a flexible

and generic computational environment to fully implement and deploy AmI

systems, and OWL-SF may be used for implementing such systems, despite

not being tailored specifically for smart spaces, as its singular characteristic

is its support for distributed inference. Both frameworks perform rule-based

reasoning considering a distributed knowledge base. Moreover, they have two

main advantages: (i) they allow event-based communication, so that a rule can

be monitored and the result is sent for the subscriber when there is any change;

and (ii) they allow the rules to be described with variables, in a more flexible

way. In both frameworks, the aggregated context information in each reasoner

will depend on the available providers, avoiding communication bottlenecks

and allowing more efficient information processing and dissemination. However,

the disadvantage of these approaches is that each reasoner is capable of

reasoning only about the local context data, i.e., reasoners do not interact

to exchange context information. As such, a context consumer has to know

beforehand which context information will be available at each reasoner.

In contrast, DRAGO, P2P-DR and P2PIS propose distributed reasoning

solutions considering data distributed over different elements in a AmI system.

The main concern of DRAGO is to reason in distributed environments over-

coming the barrier of the heterogeneous knowledge representation that inde-

pendent entities in a AmI system are very likely to employ. As such, DRAGO is

only capable of performing ontological reasoning to check concept satisfiability

or subsumption. It relies on pre-defined mappings to align different ontologies.

In a similar way, P2P-DR and P2PIS are peer-to-peer frameworks in which

peers can communicate with a subset of the other available peers to import

the knowledge necessary to answer queries based on mappings that define how

its local knowledge relates to its peers knowledge. In such way, P2P-DR and

P2PIS are capable of performing inference to answer queries that check if a

rule is true or false, in which the knowledge, i.e., set of literals that represent

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 39

context information, is fully distributed in a peer-to-peer system. Neverthe-

less, P2P-DR and P2PIS are not capable of answering queries with variables.

Moreover, DRAGO, P2P-DR and P2PIS are also limited by the fact that in

practical implementations of AmI it is not feasible to build in advance map-

pings of all possible pairs of different ontologies that may be needed. Other

techniques capable of dynamically aligning knowledge representations are more

adequate in such conditions [74].

After discussing the positive and negative characteristics of the related

work, we enumerate in the next section the design strategies for implementing

a decentralized reasoning service and present our approach.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA




