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Cooperative Reasoning

This chapter presents our proposal of a process to perform decentralized

reasoning. In the first section we explain the system model on which we base our

proposal, which is formalized and explained in the following sections. Finally,

we discuss design strategies to implement the service.

4.1

System Model

As we discussed in Section 2.5, in ubiquitous systems, actions or adapta-

tions are triggered when specific situations take place, for example, a projector

may be set up to show a specific set of slides when a speaker enters a confe-

rence room to give a presentation [100], or a device may be disconnected from

a collaborative presentation session if the user leaves a room [101]. These si-

tuations can be described by derivation rules — represented in some type of

logic — and hence may be identified by reasoning operations [31].

Most middleware systems for ubiquitous applications support rule-based

inference [33], traditionally adopting a centralized approach for their reasoning

mechanisms, as we argued in Chapter 3. This is the case of CoBrA [19],

CHIL [22] and Semantic Space [32], for example. However, these reasoning

operations may need to evaluate context data collected from distributed

sources and stored in different devices, as usually not all context data is readily

available to all elements of a ubiquitous environment.

In our system model, we consider that there are two main interacting

parties in the reasoning process: the user side and the ambient side, both

comprised by the services, applications and data that are available at each

side. In fact, not all context information is available both at the users’ mobile

devices and at the ambient infrastructure. For several reasons, ranging from

privacy to performance issues, some information may be available only on the

user side, while some other information may be available only on the ambient

side. For instance, considering our scenario (c.f. Section 2.1), at the user side

Silva’s notebook stores information about his affiliation, subjects of interest,

sessions, besides his devices’ resources and location. At the ambient side the
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infrastructure stores information about the event and the environment, such

as the assignment of rooms and status of each session, the status of devices

(e.g. projectors that are turned on), volume of sound in the rooms, etc.

Figure 4.1: Example of context information that might be available at the user
and the ambient sides of our scenario example.

Figure 4.1 shows an example of some context information that might

be available on each side at a given moment. Both sides share a common

context model, described Section 2.4, but have different context information,

as will be formalized in Section 4.4. In the figure, we can observe that the

context data related with a specific predicate, i.e., the ontology facts, are

available either on the user side, such as “wantsToAttend”, or on the user side,

such as “takesPlace”, but never on both sides. This non-overlapping condition

is necessary in our two-tier model, to allow the partitioning of rules in the

cooperative inference process.

We consider that applications executing on the ambient infrastructure or

on the user’s device rely on a rule-based reasoning service — provided by the

middleware — to identify context-dependent relevant situations. A situation

is described using a DL-safe rule R, in which the free variables correspond to

individuals that may be available at either side. These applications may query

or subscribe at the reasoning service, providing the rule R to be inferred.

The result of the reasoning operation is a set of tuples S with individuals that
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satisfy the rule. We assume that there is no message loss in the communication

among the entities in the system.

4.2

Patterns of Interaction

Hence, for a reasoning service — running on either side — to infer relevant

situations based on rules provided by applications, we devise three possible

patterns of interaction: (a) user side reasoning, if the reasoning is performed

based only on context information available at the user side, (b) ambient side

reasoning, if the reasoning is performed based only on context information

available at the ambient side, or (c) cooperative reasoning, when the reasoning

is performed based on context information stored at both sides.

4.2.1

User Side Reasoning

Applications executing on mobile devices may be interested in situations

expressed by rules in which all involved free variables represent context

information available at the device. For example, in our scenario, assuming that

the ConfComp was configured to warn Silva to recharge notebook when he is

waiting between sessions in the lobby of the conference center. The application

needs to identify the situation described by Rule 4.1, which involves device’s

capabilities and the user’s location, the desired situation could be inferred

solely based on context data available at the device. The rule states that “if

Silva is located in the lobby and his mobile device’s battery has less than 40%

energy, then he should recharge it”. In this case a reasoning service executing

on the device would be able to check when the rule can be triggered.

Rule 4.1:

hasEnergyLevel(“Notebook-Silva”,?c) ∧ lessThan(?c,“40%”) ∧

isLocatedIn(“Silva”,“Lobby”) −→ shouldRecharge(“Notebook-Silva”)

4.2.2

Ambient Side Reasoning

If all context data necessary to find the result for a rule is available to the

ambient infrastructure’s services, the reasoning operation can be performed

entirely at the ambient side. Revisiting our scenario, let us assume that an

application at the ambient side is interested in the situation described by Rule

4.2, which states that “if a conference session takes place in a given room and
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the session has already started, then the room is busy”. In this case a reasoning

service running on the ambient infrastructure would be able to infer the rule.

Rule 4.2:

takesPlace(?s,?r) ∧ hasStarted(?s) −→ isBusy(?r)

4.2.3

Cooperative Reasoning

As a third possibility, a situation may be described by a rule containing

context variables that refer to context information available both at the devices

and at the ambient infrastructure. For instance, consider Rule 4.3 that states

that “if Silva is located in a room where a conference session is supposed to

take place and this session has already started, then Silva is busy”. As shown

in Table 4.1, the user’s location data is available only at the user side, while

the information about the sessions is available only at the ambient side.

Rule 4.3:

isLocatedIn(“Silva”,?r) ∧ takesPlace(?s,?r) ∧ hasStarted(?s) −→ isBusy(“Silva”)

In this case, for a reasoning service executing in the ambient infrastruc-

ture to be able to infer the rule, it would have to collect and store all context

data produced in that environment — both by the ambient infrastructure it-

self and by all the users’ devices — in a centralized way. Although there are

usually no computational limitations for the ambient infrastructure related to

storing or processing the large amounts of context data necessary for such rea-

soning, privacy issues may prevent the user from accepting the disclosure of

his personal information — such as his location or personal preferences — to

the ambient infrastructure.

As an option, the device at the user side could collect and store all

context information available at the ambient side that would be necessary for

reasoning about the proposed rules. To follow this approach, however, would

entail another problem: the reasoning computation may be too heavy to be

performed by the resource-limited mobile device. In fact, we can only expect

that inference operations be efficiently executed on a mobile device when the

corresponding rules refer exclusively to context information available at the

device, rather than provided by the ambient.
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We conclude that, for such types of rules, reasoning should neither be

performed solely by the device, nor by the ambient infrastructure. It should

rather be executed involving reasoning services on both sides, performing what

we define as “cooperative reasoning”. In the cooperative reasoning each side

should be in charge of analyzing the context information available locally, then

the outcomes of each side would have to be combined to produce an appropriate

result. For this purpose, however, a strategy for cooperating in the reasoning

operation needs to be defined.

4.3

Design Strategies for a Reasoning Service

In Chapter 3 we discussed the main characteristics of several reasoning

approaches for distributed scenarios. We noticed that these approaches either

are not completely distributed, or are not capable of inferring complex rules

with variables, indicating that there must be a balance between these features.

As such, in Section 4.1 we proposed our system model, which is not completely

distributed, characterizing AmI systems as a two-tier model. In the previous

section we discussed all possible patterns of interaction for reasoning based on

this model. Considering the main functionalities of the related work and the

characteristics of our model, we now discuss the functional and non-functional

attributes that compose the design strategies for implementing a service to

perform decentralized reasoning.

4.3.1

Functional Attributes

D1 - Support to Rule-Based Reasoning: As a first design strategy we

identify the need for the service to perform inference based on rules. Rules

provide not only a formal model to describe situations of interest, but also a

general-purpose representation of particular combinations of context data that

are relevant for ubiquitous applications or services.

D2 - Use of Variables: Free variables in rules give more flexibility to the

description of situations, as the developer can refer generically to the elements

of a domain, rather than mention each specifically. The result of the reasoning

operation for such a rule is a set of tuples representing individuals in the

ABox that bind to the variables mentioned in the consequent of the rule,

like in database queries. This, however, imposes a greater complexity on the

implementation of the service.
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D3 - Support to Decentralized Reasoning: The reasoning service must be

able to infer situations described by rules that depend on decentralized context

data, i.e., context information that is distributed at the different parties of our

model: the user side and the ambient side. For reasons ranging from privacy

to inference performance, it may be the case that neither side has access to

full context information.

D3.1 - Support to Local Reasoning: As discussed in Subsections 4.2.1

and 4.2.2, when all necessary context data is available at the reasoning side,

the reasoning may be performed locally, i.e., inferred in local reasoning.

D3.2 - Support to Cooperative Reasoning: On the other hand,

as discussed in Subsection 4.2.3, there should be support for cooperative

reasoning, i.e., where services both at the user side and the ambient side are in

charge of analyzing the context information available locally, and having the

outcomes of each entities’ local reasoning combined to determine the global

inference result.

D4 - Support to Synchronous Queries: The reasoning service must be able

to evaluate a rule and respond immediately to a query submitted by a client

application. In case of cooperative reasoning, the peer reasoners have to be able

to interact to produce an immediate response to the client application, as will

be explained in Subsection 5.1.1. This is necessary for applications that need

to check if a given situation is satisfied, e.g., “is there some event scheduled

for this room I am entering?”

D5 - Support to Asynchronous Communication: This functionality is

important because, due to the intrinsic limitation imposed by query-only

reasoning, a client requiring up-to-date information about a situation would

have to continuously poll the reasoner, causing higher load to the service and

network, and draining the already scarce resources of mobile devices [102].

On the other hand, in the publish/subscribe approach the client is notified

as soon as the rule is triggered, allowing a timely response of the system

for the situation of interest. In the case of cooperative reasoning, the peer

reasoners have to be able to interact to determine the result for the reasoning

operation for a rule submitted by a client application each time its result

changes, until this application removes the rule. This strategy will be discussed

in Subsection 5.1.2.
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4.3.2

Non-functional Attributes

D6 - Scalability: The decentralized reasoning service must be able to work

efficiently in scenarios where a great number of users — through their mobile

devices — interact with the ambient services. In such environments, many

interests of client applications request the reasoning services, which have to be

able to manage a great mumber of subscriptions with different rules.

D7 - Response Time: The reasoning service must be able to detect/infer

situations shortly after they take place, i.e., after the context variables assume

values that satisfy a rule. In particular, the latency between a context data

change and its corresponding notification to the client applications must be

sufficiently small for triggering the adaptations specific of that scenario.

D8 - Communication Traffic: The communication traffic involving the

decentralized reasoners must not deteriorate the overall communication quality

of the system.

D9 - Memory Consumption: The memory footprint of the reasoning service

must be such that it can be executed on any device used in the ubiquitous

system.

D10 - Robustness and Resilience: The reasoning service must be able to

work correctly despite some failures of the underlying infrastructure. For that

sake, the service must be able to deal with failures in the communication

between the client application and the reasoner or between the different parts

of the reasoner, such as message loss or content error.

D11 - Portability: As a part of the decentralized service has to be executed

on the ambient infrastricture, and the other part on the users’ mobile devices,

the service implementation should be easily portable to different mobile or

fixed devices.

In this work, we focus on two main non-functional attributes, response

time (D7) and communication traffic (D8). The other attributes will be further

tackled in future work. Before presenting our proposal of a reasoning process

that meets the design strategies discussed above, in the following section we
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formalize the cooperative reasoning operation to be able to draw an adequate

strategy that solves this problem.

4.4

Cooperative Reasoning Formalization

Initially, let us assume that our domain D is described in a knowledge

base comprised by a TBox T , which defines all the unary and binary predicates

P ∈ P , i.e., classes and properties that are used to describe that domain, and

an ABox A, containing all the named individuals I ∈ I and all the asserted

facts F ∈ F that represent the context data of that domain.

A rule R, decidable in D, is composed by an antecedent Rant and a

consequent Rcon, and represented as R : Rant → Rcon. The antecedent Rant

consists of a conjunction of atoms, each in the form P (x), representing an

unary assertion, or in the form P (x, y), representing a binary assertion, such

that P ∈ P , i.e., P is a predicate valid in that domain, and x and y are either

individuals I ∈ I or free variables that represent such individuals.

The consequent Rcon corresponds to an atom either in the form Pc(xc),

representing an unary assertion, or in the form Pc(xc, yc), representing a binary

assertion, where Pc is a new predicate to be inferred, and xc and yc are either

individuals defined in A or free variables that represent such individuals. All

free variables in Rcon must appear also in Rant. This rule is represented in the

Equation 4.1:

Equation 4.1:

R :
∧

P (x[, y]) −→ Pc(xc[, yc])

The result of the reasoning operation — or inference — for the rule R

is a set S of tuples that represent bindings for the free variables appearing

in Rcon. The first step of the inference consists in finding a set T containing

all tuples t that represent valid bindings for the free variables in Rant, i.e.,

tuples of individuals I ∈ I that replacing each variable in Rant, make it a true

proposition, with each atom corresponding to a fact F ∈ F . In the second

step, as each free variable in Rcon corresponds to a free variable in Rant, each

tuple t ∈ T yields a tuple s ∈ S.

As an example, let us consider a TBox that defines the unary predicates

Pa and Pb and the binary predicates Pc and Pd, and an ABox that contains

the individuals I1, I2, I3, I4, I5 and I6, and the facts Pa(I1), Pa(I2), Pa(I3),

Pb(I4), Pb(I5), Pb(I6), Pc(I1, I3), Pc(I1, I4), Pc(I2, I5), Pd(I1, I5), Pd(I2, I6), and

the rule R1 as follows:
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Equation 4.2:

R1 : Pa(x)
∧

Pc(x, y)
∧

Pd(x, z) −→ Pcon(y, z)

The result S for this reasoning operation is determined by finding the

set T of all tuples t with possible values for the variables x, y and z, selected

in {I1, I2, I3, I4, I5, I6}, such that when we replace the variables in Rant by the

values in a tuple t, each atom will correspond to a fact F ∈ F . For example,

if we pick the tuple t = (I1, I4, I5) and replace x, y and z in R, we have:

Equation 4.3:

Pa(I1)
∧

Pc(I1, I4)
∧

Pd(I1, I5) −→ Pf(I4, I5).

In this case, each atom in Rant corresponds to a fact in the ABox, as

such t ∈ T represents a valid tuple, yielding the tuple s = (I4, I5) ∈ S as one

of the solutions for the rule, i.e., we can infer the fact Pf (I4, I5)fromR1. The

complete set T is T = {(I1, I3, I5), (I1, I4, I5), (I2, I5, I6)}, and the result S for

the inference of R1 is S = {(I3, I5), (I4, I5), (I5, I6)}.

Let us now consider our two-tier scenario, where the context data is

distributed over two different sides, one representing the user side and the other

representing the ambient side. As such, our domain D′ needs to be described as

the integration of the two knowledge bases (ontologies) [73]: a local knowledge

base DL = {TL,AL}, representing the local context information, i.e., on the

side where we start the inference of a rule, and a remote knowledge base

DR = {TR,AR}, representing the remote context information. The overall

TBox T ′ consists in the integration of TL and TR, which define the set of

local predicates PL and the set of remote predicates PR, respectively. The

overall ABox A′ consists in the integration of AL, containing the set of named

individuals IL and the set of asserted facts FL that represent the local context

information, and AR, containing the set of named individuals IR and the set

of asserted facts FR that represent the context information on the remote side.

In our model, where predicates and facts are associated with context providers

and the respective provided information, the local and remote side do not share

these elements, such that PL

⋂
PR = ∅ and FL

⋂
FR = ∅. On the other hand,

some individuals may be present on both sides, such that IL

⋂
IR 6= ∅.

Given a rule R′ : Rant −→ Rcon, decidable in D′, the antecedent Rant

consists in the conjunction of atoms in the form P (x) or P (x, y), such that

P ∈ PL or P ∈ PR, and x and y may be individuals I ∈ IL

⋃
IL or
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free variables that represent these individuals. We can rewrite Rant as the

conjunction of two parts, a local part RL, containing all the atoms of Rant

where P ∈ PL, and a remote part RR, containing all the atoms of Rant where

P ∈ PR, such that R′ may be represented as in the Equation 4.4:

Equation 4.4:

R′ : RL

∧
RR −→ Pc(xc[, yc]), where RL =

∧
PL(x[, y]) and RR =

∧
PR(x[, y])

In the cooperative reasoning, we want to reason about R′ without

performing an integration of the local and remote knowledge bases. As such,

RL and RR have to be evaluated separately, in different — but complementary

— operations. First, in the local reasoning we find a set TL of tuples tL that

represent valid bindings for the free variables in RL, i.e., individuals I ∈ IL

that replacing the variables in RL will make each atom correspond to a fact

F ∈ FL. As RL may have some variables in common with RR, which we will

define as the set V , this partial result bounds the next reasoning operation. In

the remote reasoning we will have to find a set TR of tuples tR representing

valid bindings for the variables in RR, such that each tuple tR has the same

values for all variables v ∈ V that appear in at least one tuple tL ∈ TL. Each

pair tL and tR in which the variables v ∈ V have the same value is a correlated

pair, and the final set T of bindings for the all free variables in Rant corresponds

to the combination (merge) of each correlated pair. Finally, each tuple t ∈ T

yields a tuple s ∈ S.

For example, let us consider a local side where a TBox defines the unary

predicate Pa and binary predicates Pc, and an ABox contains the individuals

I1, I2, I3, I4, I5, I6 and I7, and the facts Pa(I1), Pa(I3), Pc(I1, I4), Pc(I1, I5),

Pc(I2, I6) and Pc(I3, I7), and a remote side where a TBox defines the unary

predicate Pb and the binary predicate Pd, and an ABox contains the individuals

I1, I2, I3, I8, I9 , I10 and I11, and the facts Pb(I8), Pb(I9), Pb(I10), Pd(I1, I8),

Pd(I1, I9), Pd(I1, I11), Pd(I2, I8) and Pd(I3, I10), and the rule R2 as follows:

Equation 4.5:

R2 : Pa(x)
∧

Pb(z)
∧

Pc(x, y)
∧

Pd(x, z) −→ Pf(y, z)

The local part of this rule is RL = Pa(x)
∧

Pc(x, y). First, in the local

reasoning, we had to find the set TL of all tuples tL with values for (x, y)

that satisfied RL, which corresponds to TL = {(I1, I4), (I1, I5), (I3, I7)}. The

remote part of the rule is RR = Pb(z)
∧

Pd(x, z). As x is a variable common

in RL and RR, in the remote reasoning we had to find the set TR of all

tuples tR with values for (x, z) that satisfied RL and had x = I1 or x = I3,
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which corresponds to TR = {(I1, I8), (I1, I9), (I3, I10)}. Combining the partial

results we found T = {(I1, I4, I8), (I1, I5, I8), (I1, I4, I9), (I1, I5, I9), (I3, I7, I10)},

yielding the result S = {(I4, I8), (I5, I8), (I4, I9), (I5, I9), (I7, I10)}. Below, we

selected the tuple (I1, I4, I9) ∈ T to rewrite R2, replacing the variables x, y

and z, and show that the tuple (I4, I9) ∈ S is a possible result, i.e., is one of

the facts inferred by R2, as all atoms of Rant are facts F ∈ FL

⋃
FR.

Equation 4.6:

Pa(I1)
∧

Pb(I9)
∧

Pc(I1, I4)
∧

Pd(I1, I9) −→ Pf(I4, I9)

Summarizing, the cooperative reasoning it consists in;

1. splitting the antecedent of the rule in a local part and a remote part ;

2. performing the reasoning about the local part of the rule in the local

knowledge base to find a preliminary result T ;

3. performing the reasoning about the remote part of the rule in the remote

knowledge base, bounded by the preliminary result; and

4. combine the partial results to obtain the final result S.

In the next section we propose a strategy to perform this operation as

distributed algorithm in which two reasoners cooperate exchanging messages

that contain the information needed.

4.5

Discussion

In this chapter, we described the possible patterns of interaction in a

system where not all context information is available for the entity in charge

of performing the reasoning operation. We also discussed the functional and

non-functional attributes that compose the design strategies for implementing

a rule-based reasoner to be executed in such scenario. After that we formalized

the cooperative reasoning operation. In the next chapter we propose a strategy

to execute this reasoning operation and describe the distributed algorithm

and communication protocol necessary to perform the complete cooperative

reasoning process.
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