
6

Case Study

This chapter shows how the strategy proposed in the previous chapter

works for a realistic scenario, such as the one described in Section 2.1. We

present two different examples, a client query (synchronous interaction) and a

client subscription (asynchronous interaction). For both cases we assume that

the context data distribution corresponds to what was shown in Figure 4.1.

6.1

Synchronous Interaction

At first, let us consider that Rule 6.1 was submitted (Step S1) by a client

application as a synchronous query . This rule says that “if Silva is located in

a room, where some activity is taking place, and if this activity has already

started, then Silva is busy.” The inference of this rule consists in finding values

for the pair of variables “?s” and “?r”, i.e., a set of tuples (si, ri), that make

true the atoms of the antecedent of the rule.

Rule 6.1:

isLocatedIn(“Silva”,?r) ∧ takesPlace(?s,?r) ∧ hasStarted(?s) −→

isBusyInActivity(“Silva”,?s)

Looking at Figure 4.1, we can notice that the context information

necessary for detecting the situation described by this rule comprises data

related to the user’s preferences and data collected from the device (Silva’s

location) and information about the event (room where a session “takes place”

and the fact that it “has started”). In our scenario, while the first piece of

information is originated and managed at the mobile device, the latter two

pieces are managed by the ambient infrastructure.

In the next step, the rule has to be partitioned (Step S2) to identify which

part of R may be dealt at each side of the system. This rule would be split in

the local part RL, described as Rule 6.2, and the remote part RR, described as

Rule 6.3. Variable “?r” is an example of a variable that has to be pre-evaluated

by the local reasoner , because the information about the predicate “isLocated”

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 68

is available only at the user side, but the variable is present both in RL and

RR. In this case, the set of variables that are common in both parts of the rule

consists in the unitary set V = {?r}.

Rule 6.2:

isLocatedIn(“Silva”,?r)

Rule 6.3:

takesPlace(?s,?r) ∧ hasStarted(?s)

After the pre-evaluation of the variable “?r” by the local reasoner (Step

S3), we find the set of values for “?r” as the unitary set T = {“Room B ′′}.

In the next step, RR, T and V , are forwarded to the remote reasoner (Step

S4). The evaluation of the forwarded rule by the remote reasoner (Step S5)

under the restrictions imposed by the set of values T for the variables in V is

equivalent, in this case, to the evaluation of the Rule 6.4 in which “?r” assumes

the value “Room B”.

Rule 6.4:

takesPlace(?s,“Room B”) ∧ hasStarted(?s) −→ isBusyInActivity(“Silva”,?s)

The result for the evaluation of this rule, considering the data available

on the ambient side (Figure 4.1), would be the unitary set S = {“Session 2′′}.

This result would be sent by the remote reasoner (Step S7) to the local reasoner

(Step S6), that would send the result to the client application (Step S6),

meaning that at that time, “Silva is busy participating in Session 2.”

6.2

Asynchronous Interaction

Let us now consider that Rule 6.5 has been submitted by an application

(Step S1) as a subscription. This rule says that “if an activity that Silva wants

to attend is about to start and he is located in a room different from the one

where the activity takes place, then he should go to that room.” In this case,

the inference of this rule consists in finding values for the tuples of variables

“?s”, “?x” and “?y” that make true the antecedent of the rule.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 69

Rule 6.5:

wantsToAttend(“Silva”,?s) ∧ isLocatedIn(“Silva”,?y) ∧ takesPlace(?s,?x) ∧

differentFrom(?y,?x) ∧ isAboutToStart(?s) −→ shouldGoTo(“Silva”,?x)

As in the first example, the atoms in this rule comprise data available

both at the user side, such as information about the user’s preferences (sessions

that Silva “wants to attend” and his location), and the ambient side, such as

information about the activities (room where a session “takes place” and the

fact that it “is about to start”).

In the next step (Step S2), R would be partitioned in the local part RL

and the remote part RR, as described by Rules 4.9 and 4.10., respectively.

Rule 6.6:

wantsToAttend(“Silva”,?s) ∧ isLocatedIn(“Silva”,?y)

Rule 6.7:

takesPlace(?s,?x) ∧ differentFrom(?y,?x) ∧ isAboutToStart(?s)

We can identify that the set of variables that are common in RL and

RR is V = {?y, ?s}. In the pre-evaluation of RL (Step S3) we determine

that there is a single value for the variable “?y”, which is “Room B”, while

there are four different values that satisfy the variable “?s”, which are “Ses-

sion 1”, “Session 2”, “Session 3” and “Session 4”. In practice, we have a

set of four tuples that represent values for the variables in V that make

RL true, such that T ={(“Room B”,“Session 1”), (“Room B”,“Session 2”),

(“Room B”,“Session 3”), (“Room B”,“Session 4”)}.

The next step is then the forwarding of RR (Step S4) to the remote

reasoner with the correspondent sets V and T . In this case, the remote reasoner

receives the forwarded rule as a subscription, and the execution of a first

evaluation of the rule (Step S5) produces a void result, i.e., there is no such a

tuple of values for “?y”, “?s” and “?x” that make Rule 6.7 true. The remote

reasoner adds the forwarded rule to a list of subscriptions and starts to monitor

the context variables present in that rule (Step S8). Therefore, if there is any

change in facts involving the predicates takesPlace or isAboutToStart , the rule

is reevaluated (Step S9). For instance, if the fact isAboutToStart(“Session 4”)

is added to the ABox on the ambient side, the rule RR is reevaluated and the

result would be the unitary set S = {“Room A′′}. This result would be notified

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 70

to the local reasoner (Step S11), which would send it to the client application,

meaning that “Silva should go to Room A”.

At the local reasoner , the local part of the rule RL is put in a list

of subscriptions and the respective context variables are monitored by local

reasoner (Step S8). If any change involving the predicates wantsToAttend or

isLocatedIn occurs, the rule is reevaluated (Step S9). For instance, if there is a

change so that the fact wantsToAttend(“Silva”,“Session 2”) is removed from

the ABox on the user side, RL would be reevaluated and the result would be a

new set T , different from the previously found (Step S10). The local reasoner

would update this information sending the new set T with an update number to

the remote reasoner (Step S12). As we discussed in Subsection 5.1.3, whenever

a context change happens and T changes, there will be a new update associated

with an exclusive update number. When a result is received from the remote

reasoner , it carries the number that was provided with the last update, so as

to enable the local reasoner to check if the result is valid and may be sent to

the client application.

6.3

Discussion

In this chapter we exemplified how the cooperative reasoning strategy

works for client queries and client subscriptions. We discussed each step of

the proposed strategy, explaining the obtained results. Through this example,

we could demonstrate the adequability of this approach for a common AmI

scenario, as discussed in Section 5.1.3.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA




