
7

Implementation

In this chapter we describe the Decentralized Reasoning Service (DRS),

a prototype service implementation that performs the cooperative reasoning

process presented before. We present also the Context Model Service (CMS),

another prototype service that had to be to implemented to support the DRS

providing access to up-to-date context information. Finally, to show how the

use of the DRS simplifies the design of ubiquitous applications, we discuss

the use of context and inference services in the implementation of a prototype

application.

7.1
Architecture Overview

We implemented the Decentralized Reasoning Service (DRS) as a pro-

totype service that implements our approach proposed for decentralized rea-

soning, performing the cooperative reasoning process described in Chapter 5.

This rule-based inference service was designed to be executed on top of a

middleware architecture aiming to provide a complete infrastructure to create

context-aware applications integrating mobile devices and multiple context

providers in AmI environments.

To be able to test and evaluate the DRS, it was absolutely necessary to

have the functionalities provided by a service responsible for managing context

information, i.e., collecting, storing and providing access to context data. As

such, we implemented also the Context Model Service (CMS), a prototype

service responsible for collecting context data from context providers available

in a specific domain, keeping an updated representation of the assembled data

according to a valid context model (an ontology), and providing access to

up-to-date context information.

CMS is described in more detail in Section 7.3, while the characteristics of

the DRS implementation are discussed in Section 7.4. As both CMS and DRS

rely on KAON2 [103] — an OWL and reasoning API — to access ontology data

and perform reasoning operations, this API is further described in the next

section. In our scenario we assumed that all entities share the same context

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 72

model (ontology) and every DRS and CMS server has a well-known address

(IP and port).

7.2
Ontology Management and Reasoning

Various reasoning engines have been developed for reasoning and que-

rying OWL-DL ontologies, implementing different reasoning algorithms and

optimization techniques, hence differing in a number of ways [104]. Systems

such as RACER [71], Pellet [99] and KAON2 [103] provide automated rea-

soning support for checking concepts for satisfiability and subsumption in a

TBox, and also for answering rule-based queries, retrieving the individuals in

an ABox that satisfy a given rule [105].

KAON2 has been compared with RACER and Pellet [103, 106, 107] and

it was found that it provides better performance for ontologies with rather

simple TBoxes, but large ABoxes [108], i.e., ontologies with a large number of

individuals and facts and a small number of classes and properties. In contrast,

for ontologies with large and complex TBoxes, the other reasoners provide

superior performance. Furthermore, among these three reasoners, KAON2 has

as distinguished features its simplicity and compactness, as it includes an

API for managing OWL ontologies, while Pellet and RACER require the

use of specific tools as the OWL API [109]. As ontologies for ubiquitous

computing scenarios tend to have large ABoxes while TBoxes are not so large

nor complex [110], and considering the simplicity of KAON2, we assumed it to

be more appropriate for use in ubiquitous scenarios such as the one described

in Section 2.1. Hence, we selected KAON2 to implement ontology management

and reasoning for our CMS and DRS.

KAON2 is an OWL-DL reasoner implemented in Java 1.5 and free for

non-commercial use. Differently from RACER and Pellet, KAON2 does not

implement the tableau calculus, but rather transforms OWL-DL ontologies

into disjunctive datalog, and applies established algorithms for dealing with

this formalism, enabling a faster processing of large ABoxes. The system can

decide concept satisfiability, compute the subsumption hierarchy, and answer

conjunctive queries in which all variables are distinguished [111].

It can be used as a stand-alone server or as a dynamic library, providing

an Ontology API and a Reasoning API. The Ontology API — which is used by

CMS — provides ontology manipulation services, such as adding and retrieving

ontology axioms. The API fully supports OWL and the Semantic Web Rule

Language (SWRL) at the syntactic level. It allows ontologies to be saved in

files using either OWL-RDF or OWL-XML syntax. The Reasoning API —

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 73

which is used by DRS — allows to invoke various reasoning functionalities and

to retrieve their results. We used the latest stable release of KAON2, published

on 29th of June 2008.

7.3
Context Model Service (CMS)

In our middleware architecture for ubiquitous environments, the Context

Model Service (CMS) was implemented as the basic service responsible for

collecting all context data from the context providers available in a given

domain and keeping an updated representation of the assembled data coherent

with the adopted context model. These context provider may be any sensor,

service or applications that sends data to CMS, which are interpreted and

stores as facts according with the ontology. Besides that, the CMS provides

access to up-to-date context data for DRS and applications that need plain

context information, i.e., that does not involve reasoning.

Figure 7.1: Class diagram showing the implementation of the CMS server.

CMS was implemented in Java (version 1.6.0) as a multi-threaded server

that supports synchronous communication using both TCP and UDP trans-

port layer protocols. Since it does not implement context monitoring (which is

implemented only by the DRS), CMS does not provide asynchronous (event-

based) communication. CMS uses KAON2 API — discussed in the last section

— to manipulate the context ontology database and MoCA communication

APIs [35] to implement synchronous communication. Figure 7.1 shows a sim-

plified class diagram of the CMS service implementation, in which the main

dependencies on KAON2 classes are represented. The main class of the service

is the CMSContextManager, which implements the communication and the ser-

ver loop to receive message from client applications. This class relies on class

CMSOntology to access and manage a specific ontology. Class CMSOntology

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 74

uses KAON2 classes Ontology, DefaultOntologyManager and OntologyManager

to manage an OWL ontology file.

In practice, CMS is a server that when started loads up a configuration

file (“cms.properties”) that defines the IP address, port and protocol (UDP

or TCP) for running the server, and an ontology file to be loaded. The server

will load the context model and data stored in the ontology file and wait for

messages from client applications consulting or updating this context data.

To facilitate the work of developers that implement context provider

or context consumer applications we created a client API for CMS. The

CMSClient API implements the methods enumerated below, providing a

greater abstraction level than the KAON2 API for describing the providing

or consulting context information.

– ArrayList getAllClasses() - Used by a client application to retrieve,

as an array list of RDF tuples, the names of all classes.

– ArrayList getAllIndividuals() - Used by a client application to

retrieve, as an array list of strings, the names of all individuals.

– ArrayList getAllProperties() - Used by a client application to re-

trieve, as an array list of RDF tuples, the names of all properties.

– ArrayList getIndividualsOfClass(String C) - Used by a client ap-

plication to retrieve, as an array list of strings, the names of all individuals

belonging to a class C , whose name is passed as parameter.

– ArrayList getIndividualsOfProperty(String P) - Used by a client

application to retrieve, as an array list of strings, the names of all

individuals having a property P , whose name is passed as parameter.

– ArrayList getPropertiesOfIndividuals(String I) - Used by a

client application to retrieve, as an array list of RDF tuples, all the

properties of an individuals I , whose name is passed as parameter.

– void register(String pred, String subj, String obj) - Used by

a context provider to register at CMS and provide some context data

regularly, in the form of a RDF tuple.

– void include(ArrayList L) - Used by a context provider to send a list

of context data, as an array list of RDF tuples, to be included in CMS

database.

– void remove(ArrayList L) - Used by a context provider to send a list

of context data, as an array list of RDF tuples, to be removed from CMS

database.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 75

– void update(String pred, String subj, String obj) - Used by a

context provider to update a specific context data piece, in the form of

an RDF tuple.

7.4
The Decentralized Reasoning Service (DRS)

The Decentralized Reasoning Service (DRS) was implemented to provide

reasoning services for application clients, not only in synchronous mode

(queries) but also in asynchronous mode (publish/subscribe interactions),

according to the design strategies enumerated in Section 4.3. It relies on the

CMS server to access context data and monitor context data changes, and is

capable of reasoning about rules provided by client applications.

Figure 7.2: Class diagram showing the implementation of the DRS server.

DRS was implemented in Java (version 1.6.0) as a multi-threaded server

supporting both synchronous and asynchronous (event-based) communication,

using either TCP or UDP protocols. DRS uses CMS API to access the corres-

ponding ontology and KAON2 API to implement the reasoning operations over

the context ontology database. Besides that, it uses MoCA’s communication

API [35] to implement event-based communication. Figure 7.2 depicts the class

dependency showing a simplified class diagram of the DRS service implemen-

tation. The main class of the service is the DRSReasoner, which implements

the communication and the server loop to cope with messages received from

client applications. This class relies on class CMSOntology to access data from

specific ontology, class ECIServer to provide an event-based interface to client

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 76

applications and the peer reasoner, class ECIClient to subscribe at the peer

reasoner and class Reasoner to perform reasoning operations. While synchro-

nous queries are immediately managed by DRS, subscriptions require the use

of specific data structures for keeping the information associated with each ac-

tive subscription. Class DRSRuleTable is used to keep all information related

with a received subscription, such as the associated rule and the latest result

found. Class DRSCooperativeReasoner is responsible for managing operations

related with rules that are not local, such as pre-evaluation, forwarding and

update (discussed in Subsection 5.1.2). Finally, class DRSContextChangeLis-

tener is used to trigger the reevaluation of any rule associated with context

data that was subject of changes. It is implemented extending the Ontology-

ChangeListener interface, part of the KAON2 API.

When executing the DRS server, after start up it loads up a configuration

file (“drs.properties”), which defines the IP address and protocol (UDP or

TCP) for running the server, assigning different ports for receiving synchronous

queries and for receiving subscriptions.

The DRS Client API is provided to facilitate the work of developers

who want to implement client applications that use the inference services

implemented by DRS. Using this API, a client application may interact with a

DRS server to check a rule (synchronously), or to post or remove a subscription.

The DRSClient class implements the methods describe ahead.

– ArrayList checkRule(DRSRule R) - Checks the result of a query for the

rule R, passed as parameter, in a synchronous interaction. The result

is an array list of RDF triples corresponding to binary or unary facts

correlating individuals that satisfy the rule.

– subscribe(DRSRule R, EventListener e) - Subscribes at DRS, with a

request to be notified about the result of the rule R passed as parameter,

together with a listener that represents a callback routine.

– unsubscribe(DRSRule R, EventListener e) - Removes the subscrip-

tion related to rule R.

In the next section we exemplify how these methods can be used to build

a prototype application.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 77

7.5
Prototype Application

To show how DRS may be used to support the implementation and

execution of a ubiquitous application, we present the main steps of the design

of a prototype application. We chose to implement a simplified version of the

application proposed in our scenario, the Conference Companion (ConfComp),

which was discussed in Section 2.1. This application aims to help the user with

his agenda during a conference event and to stimulate the collaboration and

social interaction with other researchers attending the event, by helping the

user to locate people with similar interests.

Figure 7.3: Conference Companion icon at the Windows toolbar and the pop-
up menu.

ConfComp is a simple application that — after started and configured —

runs in background, occasionally providing notifications for the user. Figure 7.3

shows the icon of the application at the Windows toolbar and the menu

that pops up when the user clicks the right button of the mouse with it

over this icon. In the menu we see the options “Exit”, “About”, “Configure”

and “Pause”. If the “Exit” option is selected, the program is terminated. The

selection of the “About” option causes a window showing information about

the program to pop up. The option “Configure” shows a window that allows

the user to select the sessions of the conference in which he is interested. After

that, each time a session in which the user is interested is about to start, the

application shows a pop up window warning the user about the event.

In order to demonstrate how the use of the DRS service and APIs simplify

the design of ubiquitous applications, we will discuss some aspects of the

implementation of the prototype related to the use of context and the inference

services. As such, the implementation of the user interface will not be in the

scope of this text. Figure 7.5 shows a block diagram of the prototype system,

where applications interact directly with the middleware services in the same

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 78

Figure 7.4: Code snippet showing the query to get all “activities” from CMS.

side. In our example, ConfComp sends context queries (about activities) and

updates (about the user’s preferences) to the local CMS and subscribes at

the local DRS for having a rule inferred. The local services are in charge of

interacting with the remote services.

Figure 7.5: Block diagram representing the interaction among the applications
and the middleware services DRS and CMS on the user side and the ambient
side.

The first step performed by this application is to query the CMS running

at the user side to get a list of activities, i.e., scheduled conference sessions.

Figure 7.4 shows the piece of Java code that corresponds to this operation.

At Line 2 an object client, instance of the class CMSClient, is created, having

as parameters the IP and port of the CMS server and the application, and

the communication protocol. At Line 3 we can see a call to the method

getIndividualOfClass in which the parameter “activity” is used to recover

all individuals of such class (e.g., Session 1, Session 2, etc). At Line 12 we

see the statement for catching the CMSException, that may be thrown if the

communication with CMS fails.

When the user wants to set the list of sessions that he wishes to attend,

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 79

Figure 7.6: GUI for the user to set the list of sessions he wants to attend.

he has to select the “Configure” option of the pop-up menu and the window

depicted in Figure 7.6 will be shown. In this window, the user must select

the names of the sessions that are of his interest and press the “Ok” button.

The application will send this information to local CMS. Figure 7.7 shows

the Java code that performs this operation. From Lines 1 to 6 an array list

is created containing the new facts to be added to the ontology in the local

CMS. These facts are of class CMSAtom, that describe ontology facts as RDF

tuples, with a predicate, a subject and an object. At Line 8 we can see the

invocation of the method include in the CMSClient object, which had been

previously instantiated (Fig. 7.4, Line 2). The parameter for this method

is the variable pref, an array list of CMSAtom objects representing facts

wantsT oAttend(Silva, Sessioni), where Sessioni is each session indicated by

the user. CMSException may be thrown if the communication with CMS fails.

Figure 7.7: Code snippet showing an update of data in the CMS.

After the user has set the list of sessions, the next step for the application

is to subscribe at the DRS running at the user side, providing a rule to be

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 80

monitored by the reasoner. For our application, Rule 7.1 below describes the

situation in which “a session that the user wants to attend is about to start

and he is outside the respective room”.

Rule 7.1:

isInterestedIn(“Silva”,?s) ∧ takesPlace(?s,?r) ∧ isAboutToStart(?s) ∧

isLocatedIn(“Silva”,?t) ∧ isDifferentFrom(?t,?r) ⇒ isStartingIn(?s,?r)

Figure 7.8 shows the Java code used to create a rule object corresponding

to Rule 7.1. At Line 1 a new DRSRule object is instantiated. From Lines 2 to

6 new atoms are added to the antecedent of the rule, each corresponding to

one of the five atoms presented in Rule 7.1. At Line 7 the consequent of the

rule is defined.

Figure 7.8: Code snippet showing the description of a rule.

Figure 7.9 shows the Java code used to subscribe at a DRS, having the

rule R to be monitored as a parameter. At Line 2 an object reasoner, instance

of the class DRSClient, is created, having as parameters the IP and port of

the DRS server and the application, and the communication protocol to be

used. At Line 3 we can see an invocation of the method subscribe of the

object reasoner, in which the parameters are the DRSRule object R and a

EventListener object MyEventListener. As a result, this rule is sent to DRS

as a subscription and any notification will trigger the event listener listener,

which will cope with the received result. At Line 4 a DRSException exception

is caught if the communication with DRS fails.

Figure 7.9: Code snippet showing the subscription.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 81

As a mean of notifying the user, the application shall pop up a window

with a message warning the user about the session that is going to start,

so that he can go to the respective room where the activity will take place.

Figure 7.10 shows the Java code that describes the class MyEventListener,

which implements the interface EventListener defining the action to be taken

when an notification arrives from the DRS.

Figure 7.10: Code snippet showing the implementation of the event listener.

Figure 7.11: Window that pops up to warn the user that a session he wants to
attend is going to begin.

The notification triggers the listener, having an Event object as pa-

rameter. At Line 3 of Figure 7.10, the method getData is used to get the

content brought in the Event object. This content is a DRSReply object, which

contains an arraylist of atoms, each corresponding to a fact in the ontology

database that satisfies Rule 7.1, i.e., assertions in the form isStartingIn(?s,?r).

At Line 6, an atom from the list is selected and, at Line 7, the subject and

object of each atom representing a binary property assertion — e.g. isStar-

tingIn(MiddlewareSession, Room A — are used to compose the message to be

displayed to the user. At Line 8, we show the window described in Figure 7.11.

This warning message will pop up each time a new notification about an acti-

vity arrives at the client application.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 82

7.6
Discussion

In this chapter, we described our prototype implementations of the

Context Model Service (CMS) and the Decentralized Reasoning Service (DRS).

The CMS is the service responsible for collecting context data from context

providers available in a specific domain, keeping an updated representation

of the assembled data according to a valid context model (an ontology), and

providing access to up-to-date context information. The DRS is the service that

implements the cooperative reasoning process, providing reasoning services for

application clients in synchronous mode (queries) and in asynchronous mode

(publish/subscribe interactions).

To be used in real world AmI scenarios, dealing with the dynamic

and heterogeneous characteristics of such environments, these services should

be executed on top of a more complex middleware architecture, capable of

providing complementary functionalities such as service discovery [112], or

support to semantic interoperability [113, 114]. In the absence of such services,

we greatly simplified the model of our system, assuming that all entities

shared a same context model and the DRS and CMS servers had well-known

communication addresses.

CMS and DRS were implemented using the KAON2 reasoning API to

access ontology data and perform reasoning operations. Although our imple-

mentation of the services has a small memory footprint — 20.2 KBytes —,

as KAON2 was available only for J2SE environment, it was not possible to

implement our services targeting mobile devices, which execute only J2ME

based applications. We believe, however, that in the future these implemen-

tations may be ported to the mobile environment. In this case, the interfaces

provided by our CMS and DRS APIs will not be modified, and the implemen-

tation applications for mobile devices will follow the same model discussed in

Section 7.5.

A programmer who wants to design ubiquitous applications will have

his work facilitated by the CMS and DRS services and APIs, as he will be

able to use rules as an abstraction to describe the situations of interest for

his application. On the other hand, in a system where the context model is

not as simple as the one presented in our scenario, formulating the necessary

rules may be a hard task for the programmer, demanding a great knowledge

about the context model of the target system and some acquaintance with

description logics. In this case, tools or interfaces that help the programmer to

formulate and validate these rules would be an important complement to be

developed and added to DRS.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA




