
8

Evaluation

In this chapter we describe how our implementation of the Decentralized

Reasoning Service (DRS) was tested in respect to its functional behavior and

its performance and discuss the results that were found.

8.1

Testbed

In order to test the correct functioning and evaluate the performance

of our implementation of DRS, we ran different batches of tests. To run

the Ambient Decentralized Reasoning Service (DRS/A) — representing the

ambient infrastructure — we used a desktop PC with a Core 2 Duo 2.40

GHz processor and Windows Vista operating system. To run the Device

Decentralized Reasoning Service (DRS/D) — representing the mobile device

— we used a notebook with an Atom 1.60 GHz processor Windows XP SP2

operating system. These computers were interconnected through an IEEE

802.11 wireless network with 54 Mbps data transfer rate. Depending on the

purpose of each test, we used specific context data files — i.e., ontologies

— created with specific features, as will be described later. In the next

section we describe the functional tests performed to check if the service was

operating as expected, i.e., meeting the previously identified design strategies.

In Section 8.3, we discuss the tests we executed to measure the performance

of the service.

8.2

Functional Test

A set of tests was performed to check if our implementation met the

functional attributes of the design strategies identified in the specification of

the decentralized reasoning service, as enumerated in Section 4.3.1. As this

operation involved the simulation of the client applications subscribing the

service and context changes happening in different sequences of events, we

implemented a Test Management Application (TMA), with a graphical user

interface to easily trigger the events and interpret the results. To be able to

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 84

Figure 8.1: Architecture used for the functional test.

check any possible sequence of events, our simulation involved the execution

of a reasoner service representing the ambient infrastructure (DRS/A), two

reasoner services representing two users and their devices (DRS/D1 and

DRS/D2), with the respective CMS servers, and four client applications,

representing applications running on the users’ devices (Client 1 and 2 running

on device 1 and Client 3 running on device 2) and on the ambient infrastructure

(Client 4). Figure 8.1 shows the architecture for this test.

Figure 8.2: GUI of the Test Management Application.

The interface, shown in Figure 8.2, contains buttons that allowed to

control the actions of the TMA — responsible for simulating context changes

for the reasoning services DRS/A, DRS/D1 and DRS/D2 — and the four

client applications, and windows to show the output of each application.

For each entity, there is a start button. At left, a window shows messages

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 85

describing the actions taken by TMA, which is responsible for sending context

update messages to each CMS, triggering the inference of some rules provided

by the clients. Each time the button “Continue” is pressed, TMA sends a

message to a specific CMS, in a pre-defined sequence of steps. At right, four

windows show the behavior of each client, i.e., the queries, subscriptions and

notifications. There are also the buttons “Check”, for sending a query, and

“Subscribe/Unsubscribe”, for posting or removing a subscription. Using this

interface we could verify if the queries were answered correctly and if the

notifications were triggered at the right moment and with the correct result.

We tested these responses varying the order of events (subscriptions and

notifications), the number the simultaneous subscriptions and the form of the

interaction, testing all possible patterns (see Section 4.2). In each case the

response was correct.

8.3

Performance Test

A second set of tests was conducted in order to verify the response

time, communication traffic and memory consumption of our implementation,

three of the non-functional attributes of the design strategies identified in the

specification of service (Section 4.3.2). Usually AmI systems are represented by

ontology context models where the ABox is very much larger than the TBox.

In such cases, the use of KAON2, which was developed to efficiently reason over

large ABoxes rather than large TBoxes [103], is more appropriate. Accordingly,

to represent our system in the evaluation process, we created ontologies with

this same feature, but with some other specific characteristics, only for purpose

of performance testing.

For our performance test we tried to create an ontology representing a

realistic scenario — based on our conference example — to observe the behavior

of the DRS server under heavy use conditions that we tried to simulate. As

described in Figure 8.3, this ontology contains the four classes Person, Activity ,

Subject and Environment interrelated by the five binary properties isLocatedIn,

wantsToAttend , isInterestedIn, isRelatedWith and takesPlace, and the unary

property (subclass) isAboutToStart .

We generated a huge number of individuals and facts to create a large

ABox, trying to mimic numbers that could possibly occur in a real scenario,

e.g., a large conference. For example, in conference ACM SAC 2008, there

were about 60 different sessions and the proceedings include approximately

1400 keywords. Based on these data, the ontology we generated has 500 indi-

viduals belonging to class Person (Attendee0 to Attendee499), 60 individuals

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 86

Figure 8.3: Classes and properties of the conference ontology.

belonging to class Activity (Session0 to Session59), 1400 individuals belonging

to class Subject (Keyword0 to Keyword1399) and 10 individuals belonging to

class Environment (Room0 to Room9). We then connected randomly each Per-

son individual with one Environment individual (with isLocatedIn property),

10 Activity individuals (with wantsToAttend property) and 20 Subject indi-

viduals (with isInterestedIn property), each Activity individual with 30 Sub-

ject individual (with isRelatedWith property) and one Environment individual

(with takesPlace property). No individual was defined as belonging to subclass

isAboutToStart , for this was used to trigger the notification.

8.3.1

Response Time

In a first experiment, we measured the response time, i.e., the overall time

since a context data change message is sent to the ambient side DRS, until

an application client is notified by the user side DRS about the inference. We

simulated the load of the server creating a variable number of subscriptions

— 100, 200, 300, 400 or 500 — defined by a rule correlating the properties

wantsToAttend , takesPlace and isAboutToStart , as in Rule 8.1.

Rule 8.1:

wantsToAttend(“Attendee5”,?s) ∧ takesPlace(?s,?r) ∧ isAboutToStart(?s) ⇒

shouldGoToRoom(“Attendee5”,?r)

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 87

The purpose of this simulation was to observe the overhead caused by

the monitoring process. Since our server is optimized to check (i.e. evaluate the

rules) only the subscriptions that involve properties that are changed, we tested

the server under two different conditions: under no context change and with

a context change message (changing the takesPlace property of a individual

from class Activity selected randomly) being sent to the remote reasoner at

each 50 milliseconds.

Centralized Reasoning

To be able to evaluate the decentralized reasoning strategy, we first mea-

sured the response time for a centralized configuration, i.e., with a central

server collecting all context information and reasoning over a complete onto-

logy, measuring the response time for the different number of subscriptions

and load conditions. We created a test client that would subscribe the DRS

with Rule 6.1 and then send a context change message that would trigger

the context event. Hence, the total time observed goes from the sending of

the context message until the receiving of the notification, encompassing the

reasoning process.

Figure 8.4: Response time measured for DRS working in a centralized configu-
ration.

Figure 8.4 shows the different values measured. We can easily notice

the influence of a greater number of subscribers — with the time measured

going approximately from 0.5s to 2.25s under no load —, due to time spent

on notifying each subscriber when a rule holds. We can conclude also that the

influence of the message load becomes bigger when the number of subscribers

gets greater, observing that for 500 subscriptions the difference between the

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 88

two experiments goes to about 1.5s. That is due to the combination of the

time spent monitoring and evaluating rules each time a message arrives with

the time spent on notifying each subscriber.

Decentralized Reasoning Triggered at the Remote Reasoner

The decentralized reasoning was evaluated considering a local reasoner

(DRS/D) that would have the part of the ontology concerning a user and its

device, having information about the binary properties isLocatedIn, wants-

ToAttend and isInterestedIn while the remote reasoner (DRS/A) would have

the part of the ontology having data about the properties isRelatedWith and

takesPlace, and the unary property (subclass) isAboutToStart . As the reaso-

ner running on the user’s device is not expected to operate under heavy load

conditions, all the load was simulated at the DRS/A.

Figure 8.5: Response time measured for DRS working in a decentralized
configuration and the reasoning being triggered at the remote reasoner.

We first measured the response time with the notification event being

triggered by a message received by the remote reasoner. For that purpose, we

used a test client that would subscribe the local DRS with Rule 6.1 — that

would have part delegated to the remote reasoner — and then send a context

change message to the remote reasoner that would trigger the context event.

In this case, the total time observed goes from the sending of the context

message to the remote reasoner until the receiving of the notification by the

test client, encompassing also the reasoning process on the remote reasoner,

the notification sent from the remote reasoner to the local reasoner and the

validity verification of this notification by the local reasoner.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 89

Figure 8.5 shows the two graphs. The influence of the number of subscri-

bers is in even more perceptible in this configuration, making the measured

time vary from approximately 0.8s to 6.4s under no load. This can be attribu-

ted to time spent by the remote reasoner to notify the simulated subscribers

combined with the extra communication time. As observed in the centralized

configuration, we notice that the influence of the message load becomes clearly

bigger when the number of subscribers gets greater, observing that while for

100 subscriptions the difference between the two experiments is insignificant,

for 500 subscriptions the value goes to approximately 3.7s. Again we believe

that this is due to the combination of the time spent monitoring and eva-

luating rules each time a message arrives with the time spent on notifying

each subscriber, added with the time spent in communication between the two

reasoners.

Decentralized Reasoning Triggered at the Local Reasoner

Figure 8.6: Response time measured for DRS working in a decentralized
configuration and the reasoning being triggered at the local reasoner.

Finally, we measured the response time with the notification event being

triggered by a message received by the local reasoner (DRS/D). As in the

previous configuration, only the remote reasoner (DRS/A) was subject to the

load simulation. The test client used in this case would subscribe to the local

DRS submitting Rule 6.1, which would be split and have part delegated to

the remote reasoner. Then the test client would send to the local reasoner a

context change message that would cause the sending of an update message

to the remote reasoner, what would finally trigger the notification event. The

total time measured for this configuration comprises everything observed in the

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 90

previous configuration, plus the time needed for the reasoning process executed

on the local reasoner and the time for the update message going from the local

to the remote reasoner.

In Figure 8.6, the two curves show the results for the experiments with

and without load. In this graph we notice a peculiar behavior when comparing

this configuration with the previously presented configuration. We can observe

that the number of subscribers does have little impact until it becomes greater

than 300. This is possibly due to the fact that most of the time of the reasoning

operation is spent in communication among the reasoners.

Figure 8.7: Comparison of the three configurations (a) with no load and (b)
with context change load.

Result Analysis

Figure 8.7 shows the response time measured for DRS with different load

conditions in two different graphs, allowing the comparison of the performance

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 91

of the three different configurations in each case. In Figure 8.7 (a) we see results

found under no load and, in Figure 8.7 (b) the results with the simulation of

the arrival of context change messages.

A behavior that becomes clear from both graphs is the fact that for

a small number of subscriptions the response time tends to be greater for

the decentralized reasoning triggered at the local reasoner. This fact can

be explained by the greater overhead imposed by the extra communication

starting at the local reasoner, compared with the relatively small amount of

time necessary to process less subscriptions. On the other hand, we can observe

that increasing the number of subscriptions influences the response time of

the system more drastically for the decentralized reasoning triggered at the

remote reasoner under a simulated load condition. In this configuration we

find the worst case, which is about 10.5s for 500 subscriptions. As, in this case,

the remote reasoner is responsible for the ambient side reasoning, a context

change will probably trigger several simultaneous notifications (to simulated

subscribers), causing a high communication overhead.

8.3.2

Communication Traffic and Memory Footprint

In a second experiment, we compared DRS’s decentralized reasoning

approach both with a centralized and a simple peer-to-peer approach, all of

them targeted at the evaluation of inference Rule 8.2, presented below, for the

same ontology and test bed used in the first experiment.

Rule 8.2:

isLocatedIn(“Silva”,?r) ∧ takesPlace(?s,?r) ∧ hasStarted(?s) −→ isBusy(“Silva”)

We measured the communication traffic between the mobile device and

the network simulating different configurations. Distributed context providers

were simulated by programs running in background and generating context

change messages at each 5 seconds. To represent the mobile users, we imple-

mented location providers, variating the isLocatedIn property. To represent

the ambient context changes, we implemented activity status providers, indi-

cating if a conference session isAboutToStart, hasStarted or hasFinished. While

one location provider instance was executed on the netbook, all other context

providers were deployed on the stationary machine.

For the decentralized reasoning approach, we set one location provider

instance to send context change messages regarding the user’s location to the

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 92

user side DRS on the netbook, and the other location provider instances, to-

gether with the activity status provider instance, to send context change mes-

sages to the ambient side DRS. For simulating and evaluating the centralized

reasoning approach, a DRS server executing on the ambient side was set to be

the sole reasoner, receiving all context change messages described previously.

Since we could not find performance results of any related system implemen-

ting peer-to-peer reasoning approach, we decided to simulate a simple P2P

system, where each user side DRS is responsible for performing all inferences

locally using context updates received from all other peers (as in P2P-DR, dis-

cussed in Section 3.5). Thus, for setting up the P2P configuration, we executed

the location provider representing the user on the netbook, and the additio-

nal 499 instances of location providers and the activity status provider were

executed on the stationary machine, all configured to periodically broadcast

context change messages to the user side DRS.

Centralized Decentralized Peer-to-peer

Communication traffic 790 Bytes/s 81.7 Bytes/s 303.5 KBytes/s

Memory footprint — 20.2 KBytes 23.5 KBytes

Table 8.1: Communication overhead and memory footprint measured for
different reasoning configurations simulated.

For these three approaches we measured the communication traffic at

the netbook — considering both received and sent context change messages

and the messages exchanged between the DRS services — during a simulation

period of 5 minutes. We verified also the memory footprint of the reasoner

executing on that device. From the measured values presented in Table 8.1, we

observe that our decentralized approach minimizes the communication with

the mobile device and, due to a smaller ontology, requires less memory at the

user side.

8.4

Discussion

The response times observed in the first set of performance tests (Sec-

tion 8.3.1) show that a some communication overhead is caused by the messages

exchanged between the reasoners to perform the cooperative reasoning. In our

simulation, the centralized reasoning showed a better performance in all cases,

with a drastic difference for more than 300 subscribers. It is important to high-

light, though, that in this configuration, the ambient’s DRS and CMS would

collect the context data of all sensors and mobile devices in the environment.

In this experiment we did not take into account the huge communication ove-

rhead caused by periodic context data tranfer between the context providers

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA



Decentralized Reasoning in Ambient Intelligence 93

and the ambient service in the centralized approach, as we were interested only

in measuring the response time.

Thus, the results do not invalidate the use of the cooperative reasoning

process in real scenarios. On the contrary, it proves its applicability, as in

the worst case the response time was 10.5s, which is acceptable for our target

scenario with up to 500 devices. It means that a user could be notified about the

imminent start of a conference session 10.5s after it is signalled by the ambient

infrastructure. Moreover, as discussed in Section 5.1.3, if the context change

periodicity is not lesser than about 30s — which is an acceptable value for our

scenario, as we do not expect a user to change his location more frequently

than that — the inference process would converge to a stable result.

Nevertheless, the increase in the slope of the graphs for more than 300

subscribes indicates that the present implementation is not scalable, i.e., it

is not ready for use in scenarios where a huge number of clients request the

reasoning service. We observe that the response time was greatly affected by the

communication overhead when the number of subscriptions grew. On the other

hand, the results observed in the second experiment (Section 8.3.2) showed that

the communication traffic was much higher in the centralized configuration

than in the cooperative reasoning. Besides that, the reasoning service in the

cooperative approach presented a smaller memory footprint.

In the next section, we discuss the contributions and limitations of the

proposed approach, presenting also some topics of future work.

DBD
PUC-Rio - Certificação Digital Nº 0510970/CA




