
I
Introduction

I.1 Description Logics

Description Logics (DLs) are quite well-established as underlying logics

for Knowledge Representation (KR). Part of this success come from the fact

that it can be seem as one (logical) successor of Semantics Networks [52],

Frames [48] and Conceptual Graphs [65] and as well as, an elegant and

powerful restriction of FOL by guarded prefixes, that also leads to a straight

interpretation into the K propositional modal logic.

The core of the DLs is the ALC description logic. In a broader sense, a

Knowledge Base (KB) specified in any description logic having ALC as core is

called an Ontology. In this thesis we will not take any ontological1 discussion on

the choice for this terminology by the computer science community. Moverover,

we are not interested in the technological concerns around Ontologies, theWeb

or the fact that there is a XML dialect for writing Ontologies, just named

OWL [32]. For us, a DL theory presentation, that is, a set of axioms in the

DL logical language, and, an OWL file containing the same set of axioms is

the same KB.

Description Logics is a family of formalisms used to represent knowledge

of a domain. In contrast with others knowledge representation systems, De-

scription Logics are equipped with a formal, logic-based semantics. This logic-

based semantics provides to systems based on it various inference capabilities

to deduce implicit knowledge from the explicitly represented knowledge.

I.2 Motivation

Research in DL, since the beginning, was oriented to the development of

systems and to their use in applications. In the first half of the 1980’s several

systems were developed including KL-ONE [11] and KRYPTON [10], only to

mention two. They were called first generation DL systems. Later, in the second

1In the philosophical sense.
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half of 1980’s, the second generation of DL systems appear, the BACK [37],

CLASSIC [9] and LOOM [41] systems.

In the last years several DL systems have been developed incorporating

different DL fragments but similar with respect to the underlying reasoning

algorithm. Nowadays, DL has good reasoners from the point of view of provid-

ing yes/no answers or various inference tasks like subsumption of concepts (see

Chapter II) or classification 2. We mention the open-source Pellet [63], Racer

Pro [33] and Fact [67]. 3

The first DL systems implement structural subsumption algorithms [61].

The basic idea underlying structural subsumption is to transform terms into

canonical normal forms, which are then structurally compared. Structural

subsumption algorithms are therefore also referred to as normalize-compare

algorithms. There is one important drawback of normalize-compare algorithms.

That is, in general it is straightforward to prove the correctness of such

algorithms but there is no method for proving their completeness [51].

As far as we know, the most well-known existing DL reasoners implement

variations of Tableaux proof procedure for DL [60, 24, 23]. As pointed in

[51], Tableaux procedures for computing subsumption of concepts had the

advantage of providing good basis for theoretical investigations. Not only was

their correctness and completeness easy to prove, they also allowed a systematic

study of the decidability and the tractability of different DL dialects. On the

other hand, the main disadvantage of tableaux-based algorithms is that they

are not constructive but rather employ refutation techniques. That is, in order

to prove α � β, it is proved that the concept α � ¬β is not satisfiable (see

Chapter II).

As claimed by [43], the use of Description Logics by regular users, that

is, non-technical users, would be wider if the computed inferences could be

presented as a natural language text – or any other presentation format at the

domain’s specification level of abstraction – without requiring any knowledge

on logic to be understandable.

Despite the higher efficiency of the recent available DL systems they do

not provide to ontology engineers a good support for explanations on their

two main uses, namely, answering whether a subsumption holds or not, and,

a classification result.

Some works ([43, 44, 40]) describe methods to extract explanations from

DL-Tableaux proofs. Particularly, [21] describes the explanation extraction

2The classification checks subsumption between the terms defined in the terminology and
computes the subsumption hierarchy of them.

3A possible outdated list is maintained in the Description Logics website http://dl.kr.
org/.
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in quite few details, making impossible a feasible comparison with [44, 40].

In [7], for example, it is described a Sequent Calculus (SC) obtained by a

standard transformation from Tableaux into SC systems applied to the DL-

tableaux described in [60]. [38] presents also a Resolution procedure for DL

but does not address explanation extraction. It is worth noticing that the DL-

tableaux do not implement non-analytic cuts, and hence proof resulted from

this transformation is a cut-free proof. Moreover, even when dealing with the

TBOX (see Chapter II) the SC just discussed strongly deals with individuals,

the ABOX aspect of an Ontology.

Simple Tableaux procedure are those not able to implement non-analytic

cuts. The Tableaux procedures used for ALC are simple. It is also known that

Simple Tableaux cannot produce always short proofs, 4 that is, polynomially

lengthy proofs, concerning the combined length5 of its conclusion and set of

(used) axioms from the Ontology. This is an easy corollary of the theorem that

asserts that Simple Tableaux as well Resolution cannot produce short proofs for

the Pigeonhole Principle (PHP) [36]. PHP is easily expressed in propositional

logic, and hence, is also easily expressed in ALC. On the other hand, Sequent

Calculus (SC) (with the cut rule) has short proofs for PHP. In [31, 27] it is

shown, distinct, SC proof procedures that incorporate mechanisms that are

somehow equivalent to the cut-rule. Anyway, both articles show how to obtain

short proof, in SC, for the PHP. We believe that super-polynomial proofs, like

the ones generated by simple Tableaux, cannot be considered as good sources

for text generation. The reader might want to consider that only the reading

of the proof itself is a super-polynomial task regarding time complexity.

The final consideration worth of mentioning regarding a motivation to

obtain a Natural Deduction system for ALC, despite providing a variation

of themes, is the possibility of getting ride on a weak form of the Curry-

Howard isomorphism in order to provide explanations with greater content.

This last affirmative takes into account that the reading (explanatory) content

of a proof is a direct consequence of its computational content. This is discussed

in Chapters V and VII.

A last observation lies on the fact that allowing this incremental proof-

theoretical design of systems to DL we obtain a uniform specialization of the

general proof procedure for NDALC.

4If we consider the assumption that NP �= CONP .
5Number of symbols.
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I.3 What this thesis is about

In this thesis, we present two deduction systems forALC 6 andALCQI 7,

a sequent calculus and a natural deduction system. The first motivation for

developing such systems is the extraction of computational content of ALC

and ALCQI proofs. More precisely, these systems were developed to allow

the use of natural language to render a Natural Deduction proof. The sequent

calculi were intermediate steps towards a Natural Deduction Systems [19].

Our main motivation to develop such systems are that natural language

rendering of a Natural Deduction proofs is worthwhile in a context like proof

of conformance in security standards [22]. The research reported on this thesis

started in the context of a joint project between PUC–Rio TecMF Lab and

Modulo Security S.A.

Our Sequent Calculus is also compared with other approaches like

Tableaux [60] and the Sequent Calculus for ALC [28, 45, 6] based on this very

Tableaux. In fact, our system does not use individual variables (first-order

ones) at all. The main mechanism in our system is based on labeled formulas.

The labeling of formulas is among one of the most successful artifacts for

keeping control of the context in the many existent quantification in logical

system and modalities. For a detailed reading on this approach, we point out

[56, 35, 57, 58, 29].

Our Sequent Calculi systems argue in favour of better explanation

schemata obtained from proofs, regarding those obtained from a ALC-

Tableaux. Both systems do not use individuals, producing a purely conceptual

reasoning for TBOX. Moreover, it is worth of mentioning that both systems

can also provide proofs with cuts, as opposed to the one presented in [43].

I.4 How this thesis is organized

Chapter II presents some background introducing DL languages and

semantics.

Chapter III presents the system SCALC, a sequent calculus for ALC and

proves that it is sound and complete. This chapter was originally published

in [53] and [55], where we proved that SCALC has the desirable property of

allowing the construction of cut-free proofs. That is, we prove that the cut

rule can be eliminated from the system SCALC without lost the completeness

and soundness.
6ALC means Attributive Language with Complements, a basic Description Logic.
7The Q in ALCQ means the introduction in the language of qualified number restriction

constructors.
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In Chapter IV, we compare SCALC with the Structural Subsumption

algorithm and the Tableaux for ALC. The comparison is made regarding: (1)

the proof construction procedure in Structural Subsumption algorithm and

SCALC; and (2) the ability of ALC-Tableaux to construct counter-models. The

results from this chapter were first published in [54].

In Chapter V we present the Natural Deduction for ALC named NDALC.

In this chapter, we also prove that NDALC is sound and complete. We also

proof the normalization theorem for NDALC. The results in this chapter were

published in [34].

In Chapter VI, we present the extensions of our Natural Deduction and

Sequent Calculus for ALC to ALCQI. We prove the soundness of both sys-

tems and some ongoing work regarding their completeness. In Chapter VII,

we present the motivation and some discussion about the extraction of explan-

ations from proofs. We compare proofs in Tableaux, Natural Deduction and

Sequent Calculi. Also in this chapter, we present our Natural Deduction for

ACLQI to reasoning over a UML diagram. The example helps us compare

how proofs in NDALCQI can be easier explain than proofs using Tableaux.

In Chapter VIII, we present a prototype theorem prover that implements

our Natural Deduction and Sequent Calculi systems. Finally, in Chapter IX,

we present some conclusions and further work.
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