
II
Background

II.1 A Basic Description Logic

Description Logics is a family of knowledge representation formalisms

used to represent knowledge of a domain, usually called “world”. For that,

it first defines the relevant concepts of the domain – “terminology” – and

then, using these concepts, specify properties of objects and individuals of

that domain. Comparing to its predecessors formalisms, Description Logics

are equipped with a formal, logic-based semantics. Description Logics differ

each other from the constructors they provide. Concept constructors are used

to build more complex descriptions of concepts from atomic concepts and role

constructor to build complex role descriptions from atomic roles.

ALC is a basic Description Logics [1] and its syntax of concept descrip-

tions is as following:

φc → � | ⊥ | A | ¬φc | φc � φc | φc � φc | ∃R.φc | ∀R.φc

where A stands for atomic concepts and R for atomic roles. The concepts ⊥

and � could be omitted since they are just abbreviations for α�¬α and α�¬α

for any given concept description α.

The semantics of concept descriptions is defined in terms of an interpret-

ation I = (∆I , �I). The domain ∆I of �I is a non-empty set of individuals and

the interpretation function �I maps each atomic concept A to a set AI ⊆ ∆I

and for each atomic role a binary relation RI ⊆ ∆I ×∆I . The function �I is

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter II. Background 16

extended to concept descriptions inductive as follows:

�I = ∆I

⊥I = ∅

(¬C)I = ∆I \ CI

(C �D)I = CI ∩DI

(C �D)I = CI ∪DI

(∃R.C)I = {a ∈ ∆I | ∃b.(a, b) ∈ RI ∧ b ∈ CI}

(∀R.C)I = {a ∈ ∆I | ∀b.(a, b) ∈ RI → b ∈ CI}

Knowledge representation systems based on description logics provide

various inference capabilities that deduce implicit knowledge from the expli-

citly represented knowledge. One of the most important inference services of

DL systems is computing the subsumption hierarchy of a given finite set of

concept descriptions.

Definition 1 The concept description D subsumes the concept description C,

written C � D, if and only if CI ⊆ DI for all interpretations I.

Definition 2 C is satisfiable if and only if there exists an interpretation I

such that CI �= ∅.

Definition 3 C is valid or a tautology if and only if, for all interpretation I,

CI ≡ ∆I.

Definition 4 C and D are equivalent, written C ≡ D, if and only if C � D

and D � C.

We used to call C � D and C ≡ D terminological axioms. Axioms of

the first kind are called inclusions, while axioms of the second kind are called

equalities. If an interpretation satisfies an axiom (or a set of axioms), then we

say that is a model of this axiom (or set of axioms).

An equality axiom whose left-hand side is an atomic concept is a

definition. Definitions are used to introduce names for complex descriptions.

For instance, the axiom

Mother ≡ Woman � ∃hasChild.Person

associates to the description on the right-hand side the name Mother.

A finite set of definitions T where no symbolic name is defined more than

once is called a terminology or TBox. In other words, for every atomic concept

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter II. Background 17

A there is at most one axiom in T whose left-hand side is A. Given a T , we

divide the atomic concepts occurring in it into two sets, the name symbols

NT that occur on the left-hand side of some axiom and the base symbols BT

that occur only on the right-hand side of axioms. Name symbols are also called

defined concepts and base symbols primitive concepts. The terminology should

defines the name symbols in terms of the base symbols.

With the definitions of the previous paragraphs, we must also extend the

definitions of interpretations to deal with TBox. A base interpretation �I for T

is an interpretation just for the base symbols. An interpretation that interprets

also the name symbols is called an extension of �I . There are much more to

say about such extensions. For instance, whenever we have cyclic definitions

in a TBox the descriptive semantics given so far is not sufficient. In that case,

we usually work with fixpoint semantics, we cite [1] for a complete reference.

II.2 Individuals

Besides the TBox component, in a knowledge base we usually have to

describe individuals and assertions about them. We call the set of assertions

about individual in a knowledge base a world description or ABox. In a ABOX

we introduce individuals and describe their properties using the roles and

concepts introduced or defined in the TBox. We have two kind of formulas

to express assertions about individuals:

C(a) R(b, c)

The formula on the left is called concept assertion. It states that the individual

a belongs to the interpretation of the concept C. The formula on the right is

called role assertion that states that the individual c is a filler of the role R

for b. Following the typical example from [1], if Father is a concept name

and hasChild a role name, then we can have the following assertions about

individual named Peter, Paul, Mary:

Father(Peter) hasChild(Mary, Paul)

The meaning of the left assertion is that Peter is a father and the assertion

on the right says that Paul is a child of Mary.

Once more we have to extend the notion of interpretation in order to

provide semantics to ABoxes. Essentially, the interpretation I = (∆, �I) besides
mapping concepts to sets and roles to binary relations, also maps individual

names a to an element aI ∈ ∆I . We usually assume that distinct names denote

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter II. Background 18

distinct objects, this is called the unique name assumption (UNA). Formally,

if a and b are distinct names, then aI �= bI .

An interpretation I satisfy the assertion C(a), if aI ∈ CI and the role

assertion R(a, b), if (aI , bI) ∈ RI . In that cases, we write:

I |= C(a) I |= R(a, b)

An interpretation satisfies an ABox if it satisfies each assertions on it,

that is, it is a model for the ABox. An interpretation that satisfies an ABox

with respect to a TBox whenever it is a model for both.

II.3 Description Logics Family

If we add to ALC more constructors, more expressivity power to describe

concepts and roles we obtain. Description logics are a huge family of logics, it is

not our goal to present and discuss all of them. We will describe in this section

only the extensions of ALC that we will deal in this thesis. For a complete

reference we indicate [1]. 1

Two of the most usefull extensions of ALC is ALCN and ALCQ. ALCN

includes number restrictions written as≤ nR or≥ nR where n ranges over non-

negative integers. ALCQ allows constructors for qualified number restrictions

of the form ≤ nR.C and ≥ nR.C. The semantics of those constructors are

given by the definitions below.

(≤ nR)I = {a ∈ ∆I
| |{b | (a, b) ∈ RI

}| ≤ n}

(≥ nR)I = {a ∈ ∆I
| |{b | (a, b) ∈ RI

}| ≥ n}

(≤ nR.C)I = {a ∈ ∆I
| |{b | (a, b) ∈ RI

∧ b ∈ CI
}| ≤ n}

(≥ nR.C)I = {a ∈ ∆I
| |{b | (a, b) ∈ RI

∧ b ∈ CI
}| ≥ n}

We name AL-languages using letters to indicate the allowed constructor:

AL[U][E][N][Q][C]

The AL language is a restriction of ALC without union of concept

(�), negation is only allowed to atomic concepts and limited existential

quantification, that is, existential quantification only over � concept (∃R.�).

The U stands for union of concepts, E for full existencial quantification, N for

number restrictions, Q for qualified number restrictions and C for full negation

of concepts (not only atomics ones).

1We also point to the Description logics website at http://dl.kr.org/.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter II. Background 19

Taking into account the semantics, some of these languages are equi-

valent. For example, the semantics forces the equivalent between C � D ≡

¬(¬C � ¬D) and ∃R.C ≡ ¬∀R.¬C. That is, union and full existential quan-

tification can be expressed using negation and vice versa. That is why we use

ALC instead of ALUE and ALCN instead of ALUEN . One can also observe

that ALCN is superseded by ALCQ. That is, if we limit the qualified number

restrictions of ALCQ to the � concept allowing only ≤ nR.� and ≥ nR.�,

we obtain ALCN .

As said before, description logics are a huge family of formalisms.

Much more constructors were introduced in the basic ALC to express: role

constructors; concrete domains; modal, epistemic and temporal operators;

fuzzy and probabilities to express uncertain or vague knowledge to cite just

some of them [1]. Nevertheless, the languages presented so far will be sufficient

for this thesis.

II.4 Reasoning in DLs

A knowledge base – TBox and ABox – equipped with its semantics

is equivalent to a set of axioms in first-order predicate logic. Thus, as said

before, like any other set of axioms, it contains implicit knowledge that logical

inferences can make explicit.

When we are constructing a TBox T , by defining new concepts, possibly

in terms of others that have been defined before, it is important to enforce

the consistence of the TBox. That is, it is important that new concepts make

sense and do not be contradictory with old ones. Formally, a concept makes

sense if there is some interpretation that satisfies the axioms of T such that

the concept denotes a nonempty set in that interpretation.

Definition 5 (Satisfiability) A concept C is satisfiable with respect to T if

there exist a model �I of T such that CI is nonempty. In this case, �I is a

model of C.

While modeling a domain of knowledge into a TBox other important

inference service is necessary. For instance, it is usually interesting to organize

the concepts of a TBox into a taxonomy. That is, it is important to know

whether some concept is more general than another one: the subsumption

problem. Furthermore, other interesting relationships between concepts is the

equivalence.

Definition 6 (Subsumption) A concept C is subsumed by a concept D with

respect to T if CI ⊆ DI for every model �I of T . In this case we write C �T D

or T |= C � D.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter II. Background 20

Definition 7 (Equivalence) Two concepts C and D are equivalent with

respect to T if CI = DI for every model �I of T . In this case we write C ≡T D

or T |= C ≡ D.

If the TBox is clear from the context or empty we can drop the

qualification and simply write |= C � D if C is subsumed by D, and |= C ≡ D

if they are equivalent.

Since it is not our main concern in this thesis, we will not go into more

details about the equivalence and reductions between reasoning problems in

Description Logics. Basically, the different kinds of reasoning can be all reduced

to a main inference problem named the consistency check for ABox [1].

II.5 Inference algorithms

There exist two main algorithms to reasoning in Description Logics:

structural subsumption algorithms and tableaux-based algorithms [1]. We post-

pone the presentation of these two algorithms for Chapter IV, here we will just

present briefly comments about them. One of the differences between them re-

lies on the logical languages that each one can handle.

For the description logic ALN and its subsets, that is, the Description

Logic not allowing full negation (¬C), disjunction (C �D) nor full existential

(∃R.C), the subsumption of concepts can be computed by structural subsump-

tion algorithms. The idea of these algorithms is compare the syntactic structure

of concept descriptions. These algorithms are usually very efficient, polynomial

time complexity [39] indeed.

For ALC and its extensions, the satisfiability of concepts and the sub-

sumption of concept usually can be computed by tableau-based algorithms

which are sound and complete for these problems [1]. The first tableau-based

algorithm for satisfiability of ALC-concepts was presented by [60]. As we said

before, some reasoning problems in Description Logics can be reduced to oth-

ers, in special, the problem to test the subsumption of concepts is reduced

to the problem of test the (un)satisfiability of a concept description. These

algorithms use the fact that C � D if and only if C � ¬D is unsatisfiable [1].

Regarding the complexity, the tableau-based satisfiability algorithm for ALC

is a PSpace-hard problem [60].

II.6 ALC axiomatization

From [59] we known that ALC is sound and complete for any Classical

Propositional Logic axiomatization containing the axioms:

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter II. Background 21

Definition 8 (An Axiomatization of ALC)

∀R.(α � β) ≡ ∀R.α � ∀R.β (1)

∀R.� ≡ � (2)

As usual, ∃R.α can be taken as a shorthand for ¬∀R.¬α, as well as ∀R.α

as a shorthand for ¬∃R.¬α. Taking ∃R.α as a definable concept, the axioms

change to

∃R.(α � β) ≡ ∃R.α � ∃R.β (3)

∃R.⊥ ≡ ⊥ (4)

The following rule, also known as necessitation rule:

� α
� ∀R.α Nec

is sound and complete for ALC semantics. In fact, by Lemmas 9 and 10, the

Axiom 1 and this necessitation rule are an alternative axiomatization for ALC.

Lemma 9 The necessitation rule is a derived rule in the above Axiomatiza-

tion.

Proof : Let α be an tautology, so that, from ALC semantics, α ≡ � and

hence, ∀R.α ≡ ∀R.�. Now, from the Axiom ∀R.� ≡ � and we can conclude

that ∀R.α ≡ �, that is, ∀R.α is also a tautology, and so it is provable by

completeness. �

Lemma 10 The Axiom ∀R.� ≡ � is derived from the necessitation rule.

Proof : If the necessitation rule is valid then whenever its premisse is valid,

its conclusion is valid. � is provable, so we can conclude that ∀R.� is also

a provable by the necessitation rule, so the equivalence ∀R.� ≡ � is also

provable. �
Finally, we can state two useful facts following directly from the ALC

semantics. Those facts will be used during this thesis to prove the soundness

of the presented deduction systems.

Fact 1 If C � D then ∃R.C � ∃R.D.

Fact 2 If C � D then ∀R.C � ∀R.D

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

