
III
The Sequent Calculus for ALC

III.1 A Sequent Calculus for logicALC

The Sequent Calculus for ALC that it is shown in Figures III.1 and

III.2 considers the extension of the language ALC presented in Section II.1

for labeled concepts. The labels are a list of existencial or universal quantified

roles names. Its syntax is as following:

L → ∀R,L | ∃R,L | ∅

φlc →
Lφc

where R stands for atomic role names, L for list of labels and φc for ALC

concept descriptions defined in Section II.1.

Each labeled ALC concept has a straightforward ALC concept equi-

valent. For example, the ALC concept ∃R2.∀Q2.∃R1.∀Q1.α has the same se-

mantics of the labeled concept ∃R2,∀Q2,∃R1,∀Q1α.

In other words, the list of labels are just the roles prefix of a concept.

Labels are syntactic artifacts of our system, which means that labeled concepts

and its equivalent ALC have the same semantics. The system was designed to

be extended to description logics with role constructors and subsumptions of

roles. This is one of the main reasons to use roles-as-labels in its formulation.

Besides that, whenever roles are promoted to labels the rules of the calculus

can compose or decompose concept description preserving role prefix stored as

labels. In that way, labels are a kind of “context” where concept manipulation

occurs.

Given that any labeled concept has an equivalent ALC concept, the

semantics of a labeled concept can be given with the support of a formal

transformation of labeled concepts into ALC concepts. We defined the function

σ : φlc → φc that takes a labeled ALC concept an returns a ALC concept.

Considering α anALC concept description, the function σ is recursively defined

as:
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σ
�∅α

�
= α

σ
�∀R,Lα

�
= ∀R.σ

�
Lα

�

σ
�∃R,Lα

�
= ∃R.σ

�
Lα

�

Given σ, the semantics of a labeled concept γ is given by σ (γ)I .

We define ∆ ⇒ Γ as a sequent where ∆ and Γ are finite sequences of

labeled concepts. The natural interpretation of the sequent ∆ ⇒ Γ is the ALC

formula: �

δ∈∆
σ (δ) �

�

γ∈Γ
σ (γ)

The SCALC system is presented in Figures III.1 and III.2. In all rules

of the figures, the greek letters α and β stands for ALC concepts (formulas

without labels), γi and δi stands for labeled concepts, Γi and ∆i for lists

of labeled concepts. For a clean presentation, the lists of labels are omitted

whenever they are not used in the rule, this is the case of all structural rules

in Figure III.1. The notation LΓ has to be taken as a list of labeled formulas

of the form Lγ1, . . . , Lγk for all γ ∈ Γ. The notation +∀Rγ (resp. +∃Rγ) which

can also be used with list of labeled concepts, +∀RΓ (resp. +∃RΓ), means the

addition of a label, ∀R or ∃R of a given role R, in front of the list of labels

of γ, respectively in all γ ∈ Γ. Finally, we write ∃Lα to denote that all labels

of L are existential quantificated and ∀Lα whenever all labels are universal

quantificated (value restricted).

Considering the labeled formula Lα, the notation ¬Lβ denotes exchanging

the universal roles occurring in L for existential roles and vice-versa in a

consistent way. Thus, if β ≡ ¬α them the formulas will be a negation each

other. For example, ¬∀R,∃Qβ is ∃R,∀Q¬α.

The system ought to be used by applying propositional rules, then the

introduction of labels and then the quantification rules. This procedure will

derive a normal derivation. Example 1 was taken from [7] and is useful to give

an idea of how the rules of the SCALC system can be used.

Example 1 Given the ALC subsumption axiom:

∃child.� � ∀child.¬(∃child.¬Doctor) � ∃child.∀child.Doctor (1)

In SCALC, we can prove that it is a theorem with the proof:
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α ⇒ α ⊥ ⇒ α

∆ ⇒ Γ weak-l∆, δ ⇒ Γ
∆ ⇒ Γ weak-r∆ ⇒ Γ, γ

∆, δ, δ ⇒ Γ
contraction-l∆, δ ⇒ Γ

∆ ⇒ Γ, γ, γ
contraction-r

∆ ⇒ Γ, γ

∆1, δ1, δ2,∆2 ⇒ Γ
perm-l

∆1, δ2, δ1,∆2 ⇒ Γ
∆ ⇒ Γ1, γ1, γ2,Γ2 perm-r
∆ ⇒ Γ1, γ2, γ1,Γ2

∆1 ⇒ Γ1, Lα Lα,∆2 ⇒ Γ2
cut

∆1,∆2 ⇒ Γ1,Γ2

Figure III.1: The System SCALC: structural rules

∆, L,∀Rα ⇒ Γ
∀-l

∆, L(∀R.α)L2 ⇒ Γ

∆ ⇒ Γ, L,∀Rα
∀-r

∆ ⇒ Γ, L(∀R.α)

∆, L,∃Rα ⇒ Γ
∃-l

∆, L(∃R.α) ⇒ Γ

∆ ⇒ Γ, L,∃Rα
∃-r

∆ ⇒ Γ, L(∃R.α)

∆, ∀Lα, ∀Lβ ⇒ Γ
�-l

∆, ∀L(α � β) ⇒ Γ

∆ ⇒ Γ, ∀Lα ∆ ⇒ Γ, ∀Lβ
�-r

∆ ⇒ Γ, ∀L(α � β)

∆, ∃Lα ⇒ Γ ∆, ∃Lβ ⇒ Γ
�-l

∆, ∃L(α � β) ⇒ Γ

∆ ⇒ Γ, ∃Lα, ∃Lβ
�-r

∆ ⇒ Γ, ∃L(α � β)

∆ ⇒ Γ, ¬Lα
¬-l

∆, L¬α ⇒ Γ

∆, ¬Lα ⇒ Γ
¬-r

∆ ⇒ Γ, L¬α

δ ⇒ Γ prom-∃
+∃Rδ ⇒ +∃RΓ

∆ ⇒ γ
prom-∀

+∀R∆ ⇒ +∀Rγ

Figure III.2: The System SCALC: logical rules
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Doctor ⇒ Doctor prom-∀∀childDoctor ⇒
∀childDoctor

weak-l
�, ∀childDoctor ⇒

∀childDoctor
¬-r

� ⇒
∃child

¬Doctor,∀childDoctor ∃-r
� ⇒ ∃child.¬Doctor, ∀childDoctor

prom-∃
∃child

� ⇒
∃child(∃child.¬Doctor), ∃child,∀childDoctor

¬-l∃child
�, ∀child¬(∃child.¬Doctor) ⇒ ∃child,∀childDoctor

∀-l∃child
�, ∀child¬(∃child.¬Doctor) ⇒ ∃child

∀child.Doctor
∃-r∃child

�, ∀child¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor
∀-l∃child

�, ∀child.¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor
∃-l

∃child.�, ∀child.¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor
�-l

∃child.� � ∀child.¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor

III.2 SCALC Soundness

The soundness of SCALC is proved by taking into account the intuitive

meaning of each sequent and establishing that the truth preservation holds.

From Section III.1, a sequent ∆ ⇒ Γ is equivalent in meaning to the ALC

formula: �

δ∈∆
σ (δ) �

�

γ∈Γ
σ (γ)

A sequent is defined to be valid or a tautology if and only if its corresponding

ALC formula is.

When using the calculus, the usual axioms of a particular DL theory

(TBox or an ontology) of the form C � D should be taken as sequents C ⇒ D.

Labeled formulas occur only during the proof procedure, since they are in

practical terms taken as intermediate data.

Theorem 11 (SCALC is sound) Considering Ω a set of sequents, a theory

or a TBox, let a Ω-proof be any SCALC proof in which sequents from Ω are

permitted as initial sequents (in addition to the logical axioms). The soundness

of SCALC states that if a sequent ∆ ⇒ Γ has a Ω-proof, then ∆ ⇒ Γ is satisfied

by every interpretation which satisfies Ω. That is,

if Ω �SCALC ∆ ⇒ Γ then Ω |=
�

δ∈∆
σ (δ) �

�

γ∈Γ
σ (γ)

In the proof of Theorem 11 we will write ∆I as an abbreviation for the

set interpretation of the conjunction of concepts in ∆, that is,
�

δ∈∆ σ(δ)I ,

and ΓI as an abbreviation for the set interpretation of the disjunction of the

concepts in Γ,
�

γ∈Γ σ(γ)
I .
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During the proof below, we will use many times the axioms and facts

from Section II.6.

Proof : We proof Theorem 11 by induction on the length of the Ω-proofs. The

length of a Ω-proof is the number of applications for any derivation rule of the

calculus in a top-down approach.

base case Proofs with length zero are proofs Ω � ∆ ⇒ Γ where ∆ ⇒ Γ

occurs in Ω. In that case, it is easy to see that the theorem holds.

For the initial sequents, logical axioms like C ⇒ C, it is easy to see that

σ(C)I ⊆ σ(C)I for every interpretation I since every set is a subset of itself.

Induction hypothesis As inductive hypothesis, we will consider that for

proofs of length n the theorem holds. It is now sufficient to show that each

of the derivation rules preserves the truth. That is, if the premises holds, the

conclusion must also hold.

Cut rule Given the sequents ∆1 ⇒ Γ1,
LC and LC,∆2 ⇒ Γ2 then, by

hypothesis, we know that they are valid and so

�

δ∈∆1

σ(δ)I ⊆

�

γ∈Γ1

σ(γ)I ∪ σ(LC)I

and

σ(LC)I ∩
�

δ∈∆2

σ(δ)I ⊆

�

γ∈Γ2

σ(γ)I

Let ∆I
1 =

�
δ∈∆1

σ(δ)I , ΓI
1 =

�
γ∈Γ1

σ(γ)I , ∆I
2 =

�
δ∈∆2

σ(δ)I , ΓI
2 =

�
γ∈Γ2

σ(γ)I and X = σ(LC)I . Now me must show that the application of the

cut rule preserves the set inclusion. In other words, given ∆I
1 ⊆ (ΓI

1 ∪X) and

(X ∩∆I
2 ) ⊆ ΓI

2 , we must have (∆I
1 ∩ ΓI

2 ) ⊆ (ΓI
1 ∪ ΓI

2 ). What is easy to show

using the standard set theory.

Rules weak-l and weak-r Given the sequent ∆ ⇒ Γ, by the inductive

hypothesis we know that

∆I
⊆ ΓI

By set theory, ∆I ∩X ⊆ ΓI and ∆I ⊆ ΓI ∪X for any set X interpretation of

a labeled concept α. In the first case, we have the interpretation of ∆,α ⇒ Γ.

In the second case, we have the interpretation of ∆ ⇒ Γ,α. This is sufficient

to show the soundness of both rules.
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Rules perm-l and perm-r By the definition of the meaning of a sequent

and its semantics, it is easy to see that both rules are sound. Note that the

order of the formulas in both sides of a sequent do not change the sequent

semantics.

Rules prom-∀ and prom-∃ The soundness of rule prom-∃ if easily proved

using the Fact 1 and Axiom 3. The soundness of rule prom-∀ is proved using

Fact 2 and the Axiom 1.

Rules ∀-r, ∀-l, ∃-r and ∃-l From the definition of σ function, we know

that in all those four rules, both the premises and the conclusions have, given

a interpretation function, the same semantics.

Rules �-l and �-r In order to prove the soundness of those rules we need

the ALC Axiom 1 that states the distributivity of the universal quantified

constructor over the conjunction. Moreover, we must observe that both rules

have an important proviso. That is, they are restricted to details only with

labeled concepts were all labels are universal quantified. This restriction permit

us to apply the Axiom 1 inductively.

Taking the sequent ∆, Lα, Lβ ⇒ Γ valid as hypothesis, we have:

�
∆I

∩ σ(Lα)I ∩ σ(Lβ)I
�
⊆ ΓI

To show that the rule (�-l) is sound, We must prove that ∆, L(α � β) ⇒ Γ is

also valid. In other words, that ∆I ∩σ(L(α � β))I ⊆ ΓI holds. What is true by

the definition of σ, the Axiom 1 and the rule proviso which allows us to apply

the Axiom 1 over the list of labels L.

Now consider the rule (�-r). By induction hypothesis, the sequents

∆ ⇒ Γ, Lα and ∆ ⇒ Γ, Lβ are valid, and so,

∆I
⊆ ΓI

∪ σ(Lα)I and ∆I
⊆ ΓI

∪ σ(Lβ)I

holds for all interpretations �I . Now, suppose the application of the rule (�-r)

over the two sequent above. We must show that ∆ ⇒ Γ, L(α � β) is also valid,

that is,

∆I
⊆ ΓI

∪ σ(L(α � β))I

holds. But by basic set theory we have

∆I
⊆ ((ΓI

∪ σ(Lα)I) ∩ (ΓI
∪ σ(Lβ)I))
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And by distributive law

∆I
⊆ ΓI

∪ (σ(Lα)I ∩ σ(Lβ)I)

Finally, by the definition of σ, the Axiom (1) and the rule proviso, we can

conclude that the rule conclusion if valid.

Rules �-l and �-r In both rules the proviso is that the labels list L must

contain only existential quantified roles. The soundness of both rules are proved

with the support of this proviso and the Axiom 3, applied inductively over the

labels lists.

As inductive hypothesis the sequents ∆, Lα ⇒ Γ and ∆, Lβ ⇒ Γ are

valid. That is, given ∆I =
�

δ∈∆ σ(δ)I and ΓI =
�

γ∈Γ σ(γ)
I , we know that

∆I
∩ σ(Lα)I ⊆ ΓI and ∆I

∩ σ(Lβ)I ⊆ ΓI

holds. Now considering the application of the rule (�-l) over the two sequents

above we must prove that the resulting sequent ∆, L(α � β) ⇒ Γ is also valid:

∆I
∩ σ(∅(α � β)L)I ⊆ ΓI

Following from the hypothesis and basic set theory we know that if

∆I ∩ X1 ⊆ ΓI an ∆I ∩ X2 ⊆ ΓI than (∆I ∩ X1) ∪ (∆I ∩ X2) ⊆ ΓI what

gives us

∆I
∩ (σ(Lα)I ∪ σ(Lβ)I) ⊆ ΓI

and by the Axiom 3 applied inductively over the list L we have the desired

semantics of the resulting sequent:

∆I
∩ (σ(L(α � β))I) ⊆ ΓI

For rule (�r) the inductive hypothesis is that ∆ ⇒ Γ, Lα, Lβ is valid.

And so, the following statement must holds:

∆I
⊆ ΓI

∪ σ(Lα)I ∪ σ(Lβ)I

Now by the Axiom 3 we can rewrite to

∆I
⊆ ΓI

∪ σ(L(α � β))I

What is the semantics of the rule conclusion.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter III. The Sequent Calculus for ALC 29

Rules ¬-l and ¬-r Given a concept Lα and a interpretation �I we define

the set X = σ(Lα)I and the interpretation of its negation, σ(¬L¬α)I , will be

the set X = ∆I \X.

For rule (¬-l), the inductive hypothesis is that the premise ∆ ⇒ Γ, Lα

is valid. Which means that ∆I ⊆ (ΓI ∪ X). From the basic set theory this

implies that (∆I ∩X) ⊆ ΓI , witch is the interpretation of the conclusion.

For rule (¬-r), the inductive hypothesis is that the premise ∆, Lα ⇒ Γ

is valid. Which means that (∆I ∩ X) ⊆ ΓI . From the basic set theory this

implies that ∆I ⊆ (ΓI ∪X), the interpretation of the conclusion as desired. �

III.3 The Completeness of SCALC

We show the relative completeness of SCALC regarding the axiomatic

presentation of ALC from Section II.6. Since ALC formulas are not labeled, the

completeness must take into account only formulas with empty list of labels.

Proceeding in this way, the ALC sequent calculus deduction rules without

labels behave exactly as the sequent calculus rules for classical propositional

logic. Thus, in order to prove that SCALC is complete, we have only to derive

the axioms above.

The derivation of the rule of necessitation is accomplished by

⇒ α prom-∀
⇒ ∀Rα ∀-r
⇒ ∀R.α

The derivation of the Axiom 1 is obtained from the following derivations.

First we consider the case:

∀R.(α � β) � ∀R.α � ∀R.β

∀Rα ⇒ ∀Rα
weak-l∀Rα, ∀Rβ ⇒ ∀Rα
∀-r∀Rα, ∀Rβ ⇒ ∀R.α

∀Rβ ⇒
∀Rβ

weak-l∀Rα, ∀Rβ ⇒
∀Rβ

∀-r∀Rα, ∀Rβ ⇒ ∀R.β
�-r

∀Rα, ∀Rβ ⇒ ∀R.α � ∀R.β
�-l∀R(α � β) ⇒ ∀R.α � ∀R.β
∀-l

∀R.(α � β) ⇒ ∀R.α � ∀R.β

Finally, we prove the subsumption from right to left:

∀R.α � ∀R.β � ∀R.(α � β)

by
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∀Rα ⇒ ∀Rα
weak-l

∀R.β, ∀Rα ⇒ ∀Rα
∀-l

∀R.β, ∀R.α ⇒ ∀Rα

∀Rβ ⇒
∀Rβ

weak-l
∀R.α, ∀Rβ ⇒

∀Rβ
∀-l

∀R.α, ∀R.β ⇒
∀Rβ

�-r
∀R.α, ∀R.β ⇒

∀R(α � β)
�-l

∀R.α � ∀R.β ⇒
∀R(α � β)

∀-r
∀R.α � ∀R.β ⇒ ∀R.(α � β)

III.4 The cut-elimination theorem

In this section we adopt the usual terminology of proof theory for sequent

calculus presented in [13, 66]. We follow Gentzen’s original proof for cut

elimination with the introduction of the mix rule.

Let δ be a labeled formula. An inference of the following form is called

mix with respect to ψ, a labeled concept:

∆1 ⇒ Γ1 ∆2 ⇒ Γ2

∆1,∆∗
2 ⇒ Γ∗

1,Γ2
(ψ)

where both Γ1 and ∆2 contain the formula δ, and Γ∗
1 and ∆∗

2 are obtained from

Γ1 and ∆2 respectively by deleting all the occurrences of δ in them.

But in order to obtain an easier presentation of our cut elimination we

introduce four additional rules of inference called quasi-mix rules.

Lδ ⇒ Γ1 ∆2 ⇒ Γ2
∃R,Lδ,∆∗

2 ⇒
+∃RΓ∗

1,Γ2

(Lα, ∃R,Lα)
∆1 ⇒ Γ1

Lα ⇒ Γ2

∆1 ⇒ Γ∗
1,

+∃RΓ2

(∃R,Lα,Lα)

∆1 ⇒
Lα ∆2 ⇒ Γ2

+∀R∆1,∆∗
2 ⇒ Γ2

(Lα, ∀R,Lα) ∆1 ⇒ Γ1 ∆2 ⇒
Lγ

∆1,
+∀R∆∗

2 ⇒ Γ∗
1,

∀R,Lγ
(∀R,Lα, Lα)

where in each rule, the tuple of concepts on the right indicates the two mix

formulas of this inference rule. Γ1, the list of formulas on the right from the left-

side premisse, contains the first projection of the tuple, ∆2, the list of formulas

on the left from the right-side premisse, contains the second projection. Γ∗
1 and

∆∗
2 are obtained from Γ1 and ∆2 by deleting all occurrences of the first and

second tuple’s projection, respectively. The notation +∃R∆ (resp. +∀R∆) means

the addition of ∃R (resp. ∀R) on the list of labels of all δ ∈ ∆.

By the definitions of mix and quasi-mix rules, the mix rule is a special

case of quasi-mix rules in which both mix formulas in the tuple are equal.

Therefore, we can also consider a quasi-mix the mix rule.
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Definition 12 (The SC∗
ALC system) We call SC∗

ALC the new system ob-

tained from SCALC by replacing the cut rule by the quasi-mix (and mix) rules.

Lemma 13 The systems SCALC and SC∗
ALC are equivalent, that is, a sequent

is SCALC-provable if and only if that sequent is also SC∗
ALC-provable.

Proof : The four quasi-mix rules are derived from inferences where the

promotional rules (prom-∀ and prom-∃) are applied just before a mix rule.

In that way, one can transformed all the applications of quasi-mix rule into

a sequence of prom-∀ or prom-∃ followed by mix rules applications. All

applications of mix rule can than be replaced by applications of cut rule

provide that all the repetitions of the cut formula in the upper sequents being

first transformed into just one occurrence on each sequent. This is easily done

by one or more application of the contraction and permutation rules.

To illustrate the process, let us consider an application of a quasi-mix

rule in the SC∗
ALC-proof fragment bellow where Πn are proof fragments.

The double-line labeled with “perm*; contract*” means the application of

rule permutation one or more times followed by one or more applications of

contraction rule.

Π1

∆1 ⇒ Γ1

Π2
Lα ⇒ Γ2

(∃R,Lα,Lα)
∆1 ⇒ Γ∗

1,
+∃RΓ2

Π3

And its corresponding SCALC-proof:

Π1

∆1 ⇒ Γ1
perm*; contract*

∆1 ⇒ Γ∗
1,

∃R,Lα

Π2
Lα ⇒ Γ2 prom-∃

∃R,Lα ⇒
+∃RΓ2

cut
∆1 ⇒ Γ∗

1,
+∃RΓ2

Π3

�
By the proof of Lemma 13, a derivation Π of ∆ ⇒ Γ in SCALC with cuts

can be transformed in a derivation Π� of ∆ ⇒ Γ in SC∗
ALC with quasi-mixes

(and mixes). So that, it is sufficient to show that the quasi-mix (and mix ) rules

are redundant in SC∗
ALC, since a proof in SC∗

ALC without quasi-mix (and mix )

is at the same time a proof in SCALC without cut.

Definition 14 (SCT
ALC system) SCALC was defined with initial sequents of

the form α ⇒ α with α a ALC concept definition (logical axiom). However,

it is often convenient to allow for other initial sequents. So if T is a set of
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sequents of the form ∆ ⇒ Γ, where ∆ and Γ are sequences of ALC concept

descriptions (non-logical axioms), we define SCT
ALC to be the proof system

defined like SCALC but allowing initial sequents to be from T too.

The Definition 14 can be extend to the system SC∗
ALC in the same way,

obtaining the systems SC∗T
ALC.

Definition 15 (Free-quasi-mix free proof) Let P be an SC∗T
ALC-proof. A

formula occurring in P is anchored (by an T -sequent) if it is a direct descendent

of a formula from T occurring in an initial sequent. A quasi-mix inference in

P is anchored if either:

(i) the mix formulas are not atomic and at least one of the occurrences of

the mix formulas in the upper sequents is anchored, or

(ii) the mix formulas are atomic and both of the occurrences of the mix

formulas in the upper sequents are anchored.

A quasi-mix inference which is not anchored is said to be free. A proof

P is free-quasi-mix free if it contains no free quasi-mixes.

Given that a mix is a special quase of quasi-mix, the Definition 15 can

also be used to define free mixes. If a proof P is free-quasi-mix free it is also

free-mix free.

Theorem 16 (Free-quasi-mix Elimination) Let T be a set of sequents. If

SC∗T
ALC � ∆ ⇒ Γ then there is a free-quasi-mix free SC∗T

ALC-proof of ∆ ⇒ Γ.

Theorem 16 is a consequence of the following lemma.

Lemma 17 If P is a proof of S (in SC∗T
ALC) which contains only one free-

quasi-mix, occurring as the last inference, then S is provable without any free-

quasi-mix.

Theorem 16 is obtained from Lemma 17 by simple induction over the

number of quasi-free-mix occurring in a proof P .

We can now concentrate our attention on Lemma 17. First we define three

scalars as a measure of the complexity of the proof. The grade of a formula
Lα is defined as the number of logical symbols of α (denoted by g(Lα)). The

label-degree of a formula Lα is defined as ld(Lα) = |L| where |L| means the

length of the list L.

Let P be a proof containing only one quasi-mix as its last inference:
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∆1 ⇒ Γ1 ∆2 ⇒ Γ2J (γ, γ�)
∆1,∆∗

2 ⇒ Γ∗
1,Γ2

The grade of a quasi-mix is

g(γ, γ�) = g(γ) + g(γ�)

Given that, the grade of a mix (a special quase of quasi-mix ) is the double of

the grade of the mix formula.

In a similar way, the label-degree of a quasi-mix is

ld(γ, γ�) = ld(γ) + ld(γ�)

and the label-degree of a mix is again the double of the lable-degree of the mix

formula.

We say that the grade of P (denote by g(P )) and the label-degree of P

(denoted by ld(P )) is the grade and label-degree of that quasi-mix.

We refer to the left and right sequents as S1 and S2 respectively, and

to the lower sequent as S. We call a thread in P a left (or right) thread if

it contains the left (or right) upper sequent of the quasi-mix J . The rank of

the thread F in P is defined as the number of consecutive sequents, counting

upward from the left (right) upper sequent of J , that contains γ (γ�) in its

succedent (antecedent). Since the left (right) upper sequent always contains

the mix formulas, the rank of a thread in P is at least 1. The rank of a thread

F in P is denoted by rank(F ;P ) and is defined as follows:

rankl(P ) = max
F

(rank(F ;P )),

where F ranges over all the left threads in P , and

rankr(P ) = max
F

(rank(F ;P )),

where F ranges over all the right threads in P . The rank of P is defined as

rank(P ) = rankl(P ) + rankr(P ),

where rank(P ) ≥ 2.

Proof : We prove Lemma 17 by lexicographically induction on the ordered

triple (grade,label-degree,rank) of the proof P . We divide the proof into two

main cases, namely rank = 2 and rank > 2 (regardless of the grade and

label-degree).
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Case 1: rank = 2 We shall consider several cases according to the form of

the proofs of the upper sequents of the quasi-mix.

1.1) The left upper sequent S1 is an logical initial sequent. There are several

cases to be examined.

a) P has the form:

α ⇒ α
P1

∆2 ⇒ Γ2J (α, ∃Rα)∃Rα,∆∗
2 ⇒ Γ2

We can easily obtain the same end-sequent without using the quasi-

mix as follows: 1

P1

∆2 ⇒ Γ2
perm*

∃Rα, . . . , ∃Rα,∆∗
2 ⇒ Γ2

contract*∃Rα,∆∗
2 ⇒ Γ2

All other cases, that it, other quasi-mix occurrences in a similar proof

format, are treated in a similar way. Note also that a logical initial sequent

can only have ALC formulas on both sides of the sequent.

1.2) The right upper sequent S2 is an logical initial sequent. Similar as Case 1

above.

1.3) S1 or S2 (or both) are non-logical initial sequents. In this case, it is obvious

that the quasi-mix is not a free and it will be not eliminated.

1.4) Neither S1 nor S2 are initial sequents, and S1 is the lower sequent of a

structural inference J1. Since rankl(P ) = 1, the mix formula ψ cannot

appear in the succedent of the premisse of J1, that is, J1 must be the

weak-r that introduced ψ. Again there are several cases to be examined

for each possible quasi-mix rule used.

a) Let us consider the quasi-mix case (Lα, ∃R,Lα):

P1

δ ⇒ Γ1
J1

δ ⇒ Γ1, Lα
P2

∆2 ⇒ Γ2
J (Lα, ∃R,Lα)

+∃Rδ,∆∗
2 ⇒

+∃RΓ1,Γ2

where Γ1 does not contain Lα. We can eliminate the quasi-mix as

follows:
1The notation contract∗ (perm∗) means zero or more applications of contraction (per-

mutation) rule.
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P1

δ ⇒ Γ1 prom-1
+∃Rδ ⇒ +∃RΓ1

weak*

∆∗
2,

+∃Rδ ⇒ +∃RΓ1,Γ2
perm*

+∃Rδ,∆∗
2 ⇒

+∃RΓ1,Γ2

All other cases are treated in a similar way.

1.5) The same conditions that hold for Case 4 but with S2 as the lower sequent

of structural inference instead of S1. As in Case 4.

1.6) Neither S1 nor S2 are an initial sequents and S1 is the lower sequent of a

prom-∃ rule application and J is a mix rule application.

P1

δ ⇒ Γ1 prom-∃
+∃Rδ ⇒ +∃RΓ1

P2

∆2 ⇒ Γ2J (+∃Rγ)
+∃Rδ,∆∗

2 ⇒
+∃RΓ∗

1,Γ2

where by assumption none of the proofs Pn for n ∈ {1, 2} contain a mix or

quasi-mix. Moreover, Γ1 does not contain +∃Rγ since rankl(P ) = 1. That

is, the prom-∃ rule introduced the mix formula of J . We can replace the

application of the mix rule by an application of quasi-mix rule as follows:

P1

δ ⇒ Γ1

P2

∆2 ⇒ Γ2
(γ,+∃Rγ)

+∃Rδ,∆∗
2 ⇒

+∃RΓ∗
1,Γ2

The new quasi-mix rule has label-degree less than the label-degree of the

original mix rule, ld(+∃Rγ, +∃Rγ). So by the induction hypothesis, we can

obtain a proof which contains no mixes.

1.7) Similar case as above with S1 being lower sequent of a prom-∀ or S2 being

lower sequent of prom-∃ or prom-∀. We apply similar transformation of

mix application into quasi-mix rules applications. Always “moving” the

mix upward into the direction of the prom-∀ or prom-∃ inference.

1.8) Both S1 and S2 are lower sequents of logical inferences and rankl(P ) =

rankr(P ) = 1, J being amix with the mix formula γ of each side being the

principal formula of the logical inference. We use induction on the grade,

distinguishing several cases according to the outermost logical symbol of

γ:

i) The outermost logical symbol is �. P has the form:
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P1

∆1 ⇒ Γ1, Lα

P2

∆1 ⇒ Γ1,
Lβ

�-r
∆1 ⇒ Γ1,

L(α � β)

P3

∆2, Lα,
Lβ ⇒ Γ2 �-l

∆2,
L(α � β) ⇒ Γ2

(L(α � β))
∆1,∆2 ⇒ Γ1,Γ2

where by assumption none of the proofs Pn for n ∈ {1, 2, 3} contain

a quasi-mix. We transform P into:

P2

∆1 ⇒ Γ1,
Lβ

P1

∆1 ⇒ Γ1, Lα

P3

∆2, Lα,
Lβ ⇒ Γ2

(Lα)
∆1,∆2,

Lβ ⇒ Γ1,Γ2
(Lβ)

∆1,∆1,∆2 ⇒ Γ1,Γ1,Γ2
perm*; contract*

∆1,∆2 ⇒ Γ1,Γ2

which contains two mix but both with grade less than g(L(α � β)).

So by induction hypothesis, we can obtain a proof which contains

no mixes. Note that the mix (Lα) is now the last inference rule of

a proof which contains no mix. Given that, this mix can be omitted

using the transformations defined above.

ii) The outermost logical symbol is �. In this case S1 and S2 must be

lower sequents of �-r and �-l rule, respectively:

P1

∆1 ⇒ Γ1, Lα,
Lβ

�-r
∆1 ⇒ Γ1,

L(α � β)

P2

∆2, Lα ⇒ Γ2

P3

∆2,
Lβ ⇒ Γ2 �-l

∆2,
L(α � β) ⇒ Γ2

(L(α � β))
∆1,∆2 ⇒ Γ1,Γ2

where, by hypothesis, none of the proofs Pn for n ∈ {1, 2, 3} contain

a quasi-mix. This proof can be transformed into:

P1

∆1 ⇒ Γ1, Lα,
Lβ

P2

∆2, Lα ⇒ Γ2
(Lα)

∆1,∆2 ⇒ Γ1,Γ2,
Lβ

P3

∆2,
Lβ ⇒ Γ2

(Lβ)
∆1,∆2,∆2 ⇒ Γ1,Γ2,Γ2

perm*; contract*
∆1,∆2 ⇒ Γ1,Γ2

This proof contains two mix, but both with grade less than

g(L(α � β)). So by the induction hypothesis, we can obtain a proof

which contains no mixes. As mentioned above, the new created mixes

are now the last inference rule of proofs which contains no mix.

iii) The outermost logical symbol is ∀. In this case S1 and S2 must be

lower sequents of ∀-r and ∀-l rule, respectively. P is:

P1

∆1 ⇒ Γ1, L,Rα ∀-r
∆1 ⇒ Γ1,

L
∀R.α

P2

∆2, L,Rα ⇒ Γ2 ∀-l
∆2,

L
∀R.α ⇒ Γ2

(L∀R.α)
∆1,∆2 ⇒ Γ1,Γ2
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which again by hypothesis, none of the proofs Pn for n ∈ {1, 2}

contain a mix. These proof can be transformed into:

P1

∆1 ⇒ Γ1, L,Rα

P2

∆2, L,Rα ⇒ Γ2
(L,Rα)

∆1,∆2 ⇒ Γ1,Γ2

which contains one mix with grade less than g(L∀R.α). So by

induction hypothesis, we can obtain a proof which contains no mixes.

iv) The outermost logical symbol is ∃. The treatment is similar to the

case above.

v) The outermost logical symbol is ¬ and P is:

P1

∆1, Lα ⇒ Γ1 neg-r

∆1 ⇒ Γ1, ¬L¬α

P2

∆2 ⇒ Γ2, Lα
neg-l

∆2, ¬L¬α ⇒ Γ2
(¬L¬α)

∆1,∆2 ⇒ Γ1,Γ2

This proof can be transformed into:

P2

∆2 ⇒ Γ2, Lα

P1

∆1, Lα ⇒ Γ1
(Lα)

∆2,∆1 ⇒ Γ2,Γ1
perm*

∆1,∆2 ⇒ Γ1,Γ2

which contains one mix with grade less than g(¬L¬α). So by the

induction hypothesis, we can obtain a proof which contains no mixes.

1.9) Both S1 and S2 are lower sequents of logical inferences, rankl(P ) =

rankr(P ) = 1 and J being a quasi-mix (γ, +∃Rγ) where the mix formulas

on each side is the principal formula of the logical inferences. Let us here

present just the case �. In this case S1 and S2 must be lower sequents of

�-r and �-l rule, respectively:

P1

δ ⇒ Γ1, Lα,
Lβ

�-r
δ ⇒ Γ1,

L(α � β)

P2

∆2, ∃R,Lα ⇒ Γ2

P3

∆2,
∃R,Lβ ⇒ Γ2 �-l

∆2,
∃R,L(α � β) ⇒ Γ2

(L(α � β), ∃R,L(α � β))
+∃Rδ,∆2 ⇒

+∃RΓ1,Γ2

This proof can be transformed into:

P1

δ ⇒ Γ1, Lα,
Lβ

P2

∆2, ∃R,Lα ⇒ Γ2
(Lα, ∃R,Lα)

+∃Rδ,∆2 ⇒
+∃RΓ1,

∃R,Lβ,Γ2

P3

∆2,
∃R,Lβ ⇒ Γ2

(∃R,Lβ)
+∃Rδ,∆2,∆2 ⇒

+∃RΓ1,Γ2,Γ2
perm*; contract*

+∃Rδ,∆2 ⇒
+∃RΓ1,Γ2
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which again contains one mix and one quasi-mix, but both with grade

less than the grade of quasi-mix on P . So by the induction hypothesis, we

can obtain a proof which contains no quasi-mixes at all. All other cases

of outermost logical symbol in quasi-mix inferences can be obtained in a

similar way.

Case 2: rank > 2, i.e., rankl(P ) > 1 and/or rankr(P ) > 1 The

induction hypothesis is that from every proof Q which contains a quasi-

mix only as the last inference, and which satisfies either g(Q) < g(P ), or

g(Q) = g(P ) and rank(Q) < rank(P ), we can eliminate the application of the

quasi-mix.

2.1) rankr(P ) > 1

2.1.1) Let us consider a quasi-mix of the form
�
Lα, ∃R,Lα

�
in which Γ2

contains ∃R,Lα or Lδ is Lα. In this case, we construct a new proof

as follows.

Lδ ⇒ Γ1 prom-∃∃R,Lδ ⇒ +∃RΓ1
perm*; contract*

∃R,Lδ ⇒ +∃RΓ∗
1,

∃R,Lα
weak*; perm*

∃R,Lδ,∆∗
2 ⇒

+∃RΓ∗
1,Γ2

where the assumption Γ2 contains ∃R,Lα were used in the last

inference to construct Γ2. When ∆1 is Lα, we construct a new

proof as follows:

∆2 ⇒ Γ2
perm*; weak*∃R,Lα,∆∗

2 ⇒ Γ2
perm*; weak*

∃R,Lα,∆∗
2 ⇒

+∃RΓ∗
1,Γ2

2.1.2) S2 is the lower sequent of a inference J2, where J2 is not a logical

inference whose principal formula is δ. We will consider just the

case where the quasi-mix is of the form (δ, +∃Rδ), the other cases

of quasi-mix can be treated in a similar way. P has the form:

P1

∆1 ⇒ Γ1

P2

Φ ⇒ Ψ
J2

∆2 ⇒ Γ2
(δ,+∃Rδ)

∆1,∆∗
2 ⇒ Γ∗

1,Γ2

where P1 and P2 contain no quasi-mixes and Φ contains at least

one occurrence of +∃Rδ. We first consider the proof P �:

P1

∆1 ⇒ Γ1

P2

Φ ⇒ Ψ
(δ,+∃Rδ)

∆1,Φ∗ ⇒ Γ∗
1,Ψ
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g(P ) = g(P �), rankl(P �) = rankl(P ) and rankr(P �) = rankr(P )−

1. Thus, by the induction hypothesis, the final sequent in P � is

provable without quasi-mix. Given that, we can now construct a

proof:

P �

∆1,Φ∗ ⇒ Γ∗
1,Ψ

perm*
Φ∗,∆1 ⇒ Γ∗

1,Ψ
J2

∆∗
2,∆1 ⇒ Γ∗

1,Γ2

In the case that the auxiliary formula in J2 in P is a mix in Φ, we

need an additional weakening before J2 in the last proof.

2.1.3) ∆1 contains no δ’s, S2 is the lower sequent of a logical inference

whose principal formula is δ and J is a mix rule inference. We have

to consider several cases according to the outermost logical symbol

of δ:

i) The outermost logical symbol of δ is �. The last part of P is

of the form:

P1

∆1 ⇒ Γ1

P2

∆2, Lα,
Lβ ⇒ Γ2

J2
∆2,

L(α � β) ⇒ Γ2
J

�
L(α � β)

�

∆1,∆∗
2 ⇒ Γ∗

1,Γ2

Now let us consider the proof Q:

P1

∆1 ⇒ Γ1

P2

∆2, Lα,
Lβ ⇒ Γ2

J
�
L(α � β)

�

∆1,∆∗
2,

Lα, Lβ ⇒ Γ∗
1,Γ2

assuming that L(α � β) is in ∆2. Note that g(Q) = g(P ),

rankl(Q) = rankl(P ) and rankr(Q) = rankr(P ) − 1. Hence

by the induction hypothesis, the end-sequent of Q is provable

without a mix. Let us call such proof Q� and consider the

following proof P �:

P1

∆1 ⇒ Γ1

Q�

∆1,∆∗
2,

Lα, Lβ ⇒ Γ∗
1,Γ2

J2
∆1,∆∗

2,
L(α � β) ⇒ Γ∗

1,Γ2
J

�
L(α � β)

�

∆1,∆1,∆∗
2 ⇒ Γ∗

1,Γ
∗
1,Γ2

Given that, g(P �) = g(P ), rankl(P �) = rankl(P ) and

rankr(P �) = 1 (for ∆1 contains no occurences of L(α � β))

by the induction hypothesis the end-sequent of P � is provable

without a mix, and so is the end-sequent of P .

ii) The outermost logical symbol of δ is �. Let us consider a proof

P whose last part is of the form:
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P1

∆1 ⇒ Γ1

P2

∆2, Lα ⇒ Γ2

P3

∆2,
Lβ ⇒ Γ2

∆2,
L(α � β) ⇒ Γ2

(L(α � β))∆1,∆∗
2 ⇒ Γ∗

1,Γ2

Assuming that L(α � β) is in P1 and P2, consider the proof

Q1:

P1

∆1 ⇒ Γ1

P2

∆2, Lα ⇒ Γ2
(L(α � β))

∆1,∆∗
2,

Lα ⇒ Γ∗
1,Γ2

and Q2:

P1

∆1 ⇒ Γ1

P3

∆2,
Lβ ⇒ Γ2

(L(α � β))
∆1,∆∗

2,
Lβ ⇒ Γ∗

1,Γ2

We note that g(Q1) = g(Q2) = g(P ), rankl(Q1) =

rankl(Q2) = rankl(P ) and rankr(Q1) = rankr(Q2) <

rankr(P ). Hence, by the induction hypothesis, the end-

sequents of P1 and P2 are provable without a mix. Let us

consider new proofs without mix Q�
1 and Q�

2 in the construc-

tion of P �:

P1

∆1 ⇒ Γ1

Q�
1

∆1,∆∗
2,

Lα ⇒ Γ∗
1,Γ2

Q�
2

∆1,∆∗
2,

Lβ ⇒ Γ∗
1,Γ2

�-l
∆1,∆∗

2,
L(α � β) ⇒ Γ∗

1,Γ2
(L(α � β))

∆1,∆1,∆∗
2 ⇒ Γ∗

1,Γ
∗
1,Γ2

Then, g(P �) = g(P ), rankl(P �) = rankl(P ) and rankr(P �) =

1, since ∆1 and ∆∗
2 do not contain L(α � β). By the induction

hypothesis the end-sequent of P � is provable without a mix.

iii) The outermost logical symbol of δ is ∀. That is, the mix

formula is of the form L(∀R.α). Let us consider the proof P :

P1

∆1 ⇒ Γ1

P2

∆2, L,Rα ⇒ Γ2 ∀-l
∆2,

L(∀R.α) ⇒ Γ2 �
L∀R.α

�

∆1,∆∗
2 ⇒ Γ∗

1,Γ2

where L
∀R.α occurs on∆2 since rankr(P ) > 1. Let us consider

a proof Q as follows:

P1

∆1 ⇒ Γ1

P2

∆2, L,Rα ⇒ Γ2 �
L∀R.α

�

∆1,∆∗
2,

L,Rα ⇒ Γ∗
1,Γ2

Note that grade(Q) = grade(P ), rankl(Q) = rankl(P ) and

rankr(Q) = rankr(P )− 1. So, by the induction hypothesis on
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can obtain a proof Q� with the same end-sequent as Q without

quasi-mix inferences. Now consider the new proof P �:

P1

∆1 ⇒ Γ1

Q�

∆1,∆∗
2,

L,Rα ⇒ Γ∗
1,Γ2

∀-l
∆1,∆∗

2,
L
∀R.α ⇒ Γ∗

1,Γ2 �
L∀R.α)

�

∆1,∆1,∆∗
2 ⇒ Γ∗

1,Γ
∗
1,Γ2

contract*
∆1,∆∗

2 ⇒ Γ∗
1,Γ2

Now we have

g(P �) = g(P ) and rankl(P
�) = rankl(P )

and rankr(P �) = 1 (for ∆1 and ∆∗
2 do not contain L

∀R.α).

Thus the end-sequent of P � (the same of P ) is provable without

quasi-mix by the induction hypothesis.

The remaining cases where δ is of the form L
∃R.α and L¬α are

treated in a similar way.

2.1.4) The same conditions that hold for 2.1.3 but J is a quasi-mix

rule inference. We have to consider several cases according to the

outermost logical symbol of δ. All the cases are treated in a similar

way of cases 2.1.3.

2.2) rankr(P ) = 1 and rankl(P ) > 1. This case is proved as in case 2.1 above.

�
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