
IV
Comparing SCALC with other ALC De-
duction Systems

The structural subsumption algorithm is restricted to a quite inexpressive

language. Simple Tableaux based algorithms generally fails to provide short

proofs. On the other hand, the later has an useful property, it returns a counter-

model from an unsuccessful proof. A counter-model, that is, an interpretation

that falsifies the premise, is a quite useful object to a knowledge-base engineer.

In Section IV.1 we compare SCALC with the structual subsumption

algorithm. In Section IV.2 we show how to extend SCALC in order to be able

to construct a counter-model from unsuccessful proofs. In this way, SCALC can

be compared with Tableaux algorithms, indeed. In fact the system that will be

presented in the section, SC[]
ALC, is a structural-free sequent calculus designed

to provide sequent proofs without considering backtracking during the proof-

construction from conclusion to axioms. Nevertheless, two secondary results

are obtained from Section IV.2:

1. In Section III.3 a relative completeness of SCALC regarding the axiomatic

presentation of ALC is shown. In Section IV.2 we present an alternative

proof of SCALC completeness. The method used in this section is a basis

for constructing a proof of SCALCQI completeness.

2. Since the results of Section IV.2 are obtained from a SCALC without

cut-rule, we are actually proving the completeness of SCALC without the

cut-rule. Given that, the results can also be considered an alternative

method of cut-elimination for the SCALC presented in Section III.4, where

we followed Gentzen’s original proof for cut elimination.

IV.1 Comparing SALC with the Structural
Subsumption algorithm

The structural subsumption algorithms (SSA) presented in [1] compare

the syntactic structure of two normalized concept descriptions in order to verify

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 43

if the first one is subsumed by the second one. In order to compare deductions

in SCALC with deductions in SSA, we have just to observe that each step

taken by a bottom-up construction of a SCALC proof corresponds to a step

of the SSA algorithm towards the concepts matching. Moreover, SSA can

deal with concepts expressed in ALN language (AL augmented with number

restrictions). In other hands, SCALC can deal with concepts expressed in ALC

and will be extended in Chapter VI to deal with ALCQI.

For a concrete example, let us consider the SCALC proof below where A

and B stands for atomic concepts and C and D for normalized concepts.

A1 ⇒ B1

∀R1.C1, A1 ⇒ B1

A1, ∀R1.C1 ⇒ B1

R1C1 ⇒
S1D1

R1C1 ⇒ ∀S1.D1

∀R1.C1 ⇒ ∀S1.D1

A1, ∀R1.C1 ⇒ ∀S1.D1

A1, ∀R1.C1 ⇒ B1 � ∀S1.D1

A1 � ∀R1.C1 ⇒ B1 � ∀S1.D1

The deduction above deals with two normalized concepts, A1 � ∀R1.C1

and B1 � ∀S1.D1. It would conclude the subsumption (sequent) whenever the

top-sequents ensure also their respective subsumptions. This is just what the

recursive procedure of SSA does.

IV.2 Obtaining counter-models from unsuc-
cessful proof trees

The SCALC system rules are not deterministic. That is, if rules are applied

in the wrong order, we can fail to obtain a proof of an ALC theorem. For

instance, consider the fully expanded proof tree presented in the Example 2.

The initial sequent denotes a subsumption proved valid by the Example 1

(page 23). Despite that, reading bottom-up, from the sequent

∃child
�, ∀child¬(∃child.¬Doctor) ⇒ ∃child,∀childDoctor

the rule weak-l was applied to allow the application of rule prom-∃. But the

weak-l rule removed the wrong concept from the sequent, which turned the

proof impossible to be finished, that is, the top sequent is not an axiom. Given

that, in order to obtain a counter-model from unsuccessful proofs, we must

consider not only one of the possibles fully expanded proof trees but all of

them. In other words, one possible fully expanded proof tree of a given sequent

is not a sufficient evidence that this sequent is not a theorem.

Example 2 An unsuccessful proof of a valid sequent in SCALC:

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 44

� ⇒
∀childDoctor prom-∃∃child

� ⇒
∃child,∀childDoctor

weak-l∃child
�, ∀child¬(∃child.¬Doctor) ⇒ ∃child,∀childDoctor

∀-r∃child
�child, ∀child¬(∃child.¬Doctor) ⇒ ∃child

∀child.Doctor
∃-r∃child

�, ∀child¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor
∀-l∃child

�, ∀child.¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor
∃-l

∃child.�, ∀child.¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor
�-l

∃child.� � ∀child.¬(∃child.¬Doctor) ⇒ ∃child.∀child.Doctor

To better illustrate the problem with obtaining a counter-model from a

fully expanded proof trees, consider Example 3 (page 44) which does not hold

for concepts A and B in general.

Example 3 Two possibly fully expanded proof trees for the invalid subsump-

tion:

∃R.A � ∃R.B � ∃R.(A �B)

B ⇒ A B ⇒ B �-r
B ⇒ A � B prom-∃∃RB ⇒

∃RA � B
weak-l∃RA, ∃RB ⇒

∃RA � B
∃-r∃RA, ∃RB ⇒ ∃R.A �B
∃-l∃RA, ∃R.B ⇒ ∃R.A �B
∃-l

∃R.A, ∃R.B ⇒ ∃R.A �B
�-l

∃R.A � ∃R.B ⇒ ∃R.A �B

A ⇒ A A ⇒ B �-r
A ⇒ A � B prom-∃∃RA ⇒

∃RA � B
weak-l∃RA, ∃RB ⇒

∃RA � B
∃-r∃RA, ∃RB ⇒ ∃R.A � B
∃-l∃RA, ∃R.B ⇒ ∃R.A � B
∃-l

∃R.A, ∃R.B ⇒ ∃R.A � B
�-l

∃R.A � ∃R.B ⇒ ∃R.A � B

Given a fully expanded proof tree, in the attempt to construct a counter-

model for the bottom sequent, the process should have to start from the

most top sequents, not axioms, going into the direction of the bottom sequent

adjusting the model at each rule application in order to guarantee that in each

step, if the model being constructed does not satisfy the premiss, it should not

satisfy the conclusion. In this way we would have an algorithm to construct a

counter-model for any fully expanded proof tree.

In Example 3, let us first consider the fully expanded proof tree on the

left, if we start from the logical axiom B � B it would be not possible to

construct any counter-model for it. But starting from B ⇒ A we can easly

construct an interpretation I where BI �� AI . But this is not sufficient

to negate the bottom sequent. Basically, from top-down, when we get into

the point to consider the application of rule weak-l, we must note that the

formula introduced on the left force us to include one more restriction in the

counter-model I being constructed. I not only has to guarantee BI �� AI

but also AI �� BI . The derivation on the right would let us conclude this

same restrictions in the inverse order. The two derivations are basically the

two possibles choices of formulas in the application of weak-l rule.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 45

One important property of weak and promotional rules is that they are

not double-sound. A rule is said double-sound if it is not only truth-preserving

from the premiss to conclusion but also from the conclusion to its premiss.

Regarding the top-bottom construction of counter-model, this means that in

the adjustment of the counter-model I being constructed, the fact that I does

not satisfy the premiss of a weak rule application does not guarantee that it

does not satisfy its conclusion. Moreover, the introduced formula by the weak

rule can be arbitrary complex making the adjustment of the counter-model

not trivial nor modular.

Let us consider the system SC[]
ALC, a conservative extension of SCALC

presented in Figure IV.1. SC[]
ALC sequents are expressions of the form ∆ ⇒ Γ

where ∆ and Γ are sets of labeled concepts (possibly frozen). A frozen concept

α is represented as [α]n where n is the index (context identifier) of the frozen

concept. The notation [∆]n means that each δ ∈ ∆ is frozen with the same

index (i.e. {[δ]n | δ ∈ ∆}). Given a SC[]
ALC sequent with the general form 1,

we call each pair (∆k,Γk) a context in the sequent.

∆1, [∆2]
1, . . . , [∆n]

n−1
⇒ Γ1, [Γ2]

1, . . . , [Γn]
n−1 (1)

SC[]
ALC does not have permutation, contraction or the cut rule from

SCALC. Reading bottom-up, the weak rules of SC[]
ALC save the context of the

proof before removing a concept from the lefthand (antecedent) or righthand

side (succedent) of the sequent and the frozen-exchange changes the contexts

during a proof construction. Considering that in SC[]
ALC the sequents are

constructed by two sets (not lists) of concepts, weak rules are still necessary

only to allow the application of promotional rules.

The notation +∀RΓ or +∃RΓ denotes the addition of the Role R existen-

tialy or universaly quantified in the front of each list of labels of all formulas of

Γ. In rules �-{l,r}, �-{l,r}, ∀-{l,r}, ∃-{l,r} and in the axiom, ∆ and Γ stand for

labeled concepts frozen or not. In the promotional, frozen-exchange and weak

rules we have to distinguish the frozen concepts from the non-frozen ones. We

use the notation [∆] (resp. [Γ]) to denote the set of all frozen concepts in the

sequent regardless their index. The index k must be in all rules a fresh one.

In rule frozen-exchange, all formulas in ∆2 and Γ2 cannot be the con-

clusion of any rule application except the frozen-exchange. This proviso is

not actually necessary to guarantee the soundness of the system, it is more

a strategy for proof constructions. The idea is to postpone the exchange of

contexts until no other rule can reduce the current active context, avoiding

unnecessary swapping of contexts.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 46

∆, δ ⇒ δ,Γ

[∆, δ]k,∆ ⇒ Γ, [Γ]k
weak-l∆, δ ⇒ Γ

[∆]k,∆ ⇒ Γ, [Γ, γ]k
weak-r∆ ⇒ Γ, γ

∆, L,∀Rα ⇒ Γ
∀-l

∆, L(∀R.α)L2 ⇒ Γ

∆ ⇒ Γ, L,∀Rα
∀-r

∆ ⇒ Γ, L(∀R.α)

∆, L,∃Rα ⇒ Γ
∃-l

∆, L(∃R.α) ⇒ Γ

∆ ⇒ Γ, L,∃Rα
∃-r

∆ ⇒ Γ, L(∃R.α)

∆, ∀Lα, ∀Lβ ⇒ Γ
�-l

∆, ∀L(α � β) ⇒ Γ

∆ ⇒ Γ, ∀Lα ∆ ⇒ Γ, ∀Lβ
�-r

∆ ⇒ Γ, ∀L(α � β)

∆, ∃Lα ⇒ Γ ∆, ∃Lβ ⇒ Γ
�-l

∆, ∃L(α � β) ⇒ Γ

∆ ⇒ Γ, ∃Lα, ∃Lβ
�-r

∆ ⇒ Γ, ∃L(α � β)

∆ ⇒ Γ, ¬Lα
¬-l

∆, L¬α ⇒ Γ

∆, ¬Lα ⇒ Γ
¬-r

∆ ⇒ Γ, L¬α

[∆], Lδ ⇒ Γ, [Γ1]
prom-∃

[∆], ∃R,Lδ ⇒ +∃RΓ, [Γ1]

[∆1],∆ ⇒ Lγ, [Γ]
prom-∀

[∆1],
+∀R∆ ⇒ ∀R,Lγ, [Γ]

[∆], [∆2]k,∆1 ⇒ Γ1, [Γ2]k, [Γ]
frozen-exchange

[∆],∆2, [∆1]n ⇒ [Γ1]n,Γ2, [Γ]

Figure IV.1: The System SC[]
ALC

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 47

In Section III.1, we presented the natural interpretation of a sequent

∆ ⇒ Γ in SCALC as the ALC formula

�

δ∈∆
σ (δ) �

�

γ∈Γ
σ (γ)

Given an interpretation function �I we write I |= ∆ ⇒ Γ, if and only if,

�

δ∈∆
σ (δ)I ⊆

�

γ∈Γ
σ (γ)I

Now we have to extend that definition to give the semantics of the sequents

with (indexed) frozen concepts.

Definition 18 (Satisfability of frozen-labeled sequents) Let ∆ ⇒ Γ be

a sequent with its succedent and antecedent having formulas that range over

labeled concepts and frozen labeled concepts. This sequent has the general form

of 1. Let (I1, . . . , In) be a tuple of interpretations. We say that this tuple

satisfies ∆ ⇒ Γ if and only if, one of the following clauses holds:

I1 |= ∆1 ⇒ Γ1 I2 |= ∆2 ⇒ Γ2 . . . In |= ∆n ⇒ Γn (2)

That is, the first projection should satisfy the set of non-frozen formulas. The

second projection should satisfy the set of frozen formulas with the minimum

index and so on. The sequent ∆ ⇒ Γ is not satisfiable by a tuple of interpret-

ations, if and only if, no interpretation in the tuple satisfy its corresponding

context.

Before proceeding to present the procedure to obtain counter-models

from SC[]
ALC-proofs, we must introduce Lemma 19 showing that SC[]

ALC is a

conservative extension of SCALC.

Lemma 19 Consider ∆ ⇒ Γ a SCALC sequent. If P is a proof of ∆ ⇒ Γ in

SC[]
ALC then it is possible to construct a proof P � of ∆ ⇒ Γ in SCALC.

Proof :

Each application of a frozen-exchange rule correspond to a shift of

contexts during the bottom-up proof construction process. To proof Lemma 19

we need a two-steps procedure to: (1) remove all frozen-exchange applications

of a given proof (a proof in SC[]
ALC without any frozen-exchange application is

naturally translated to a proof in SCALC); (2) replace the weak rules of SC[]
ALC

by their counterparts in SCALC.

We show that a proof P in SC[]
ALC can always be transformed into a proof

P � in SC[]
ALC without any frozen-exchange rule applications by induction over

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 48

the number of applications of frozen-exchange occurring in a proof P . Let us

consider a topmost application of rule frozen-exchange in P , where reading

bottom-up, the frozen-exchange rule recover a context that was frozen by the

γ rule that can be a weak-l or weak-r rule.

∆, α ⇒ α,Γ
Π1

[∆], [∆��
1]

j,∆1 ⇒ Γ1, [Γ��
1]

j, [Γ]
frozen-exchange

[∆], [∆1]k∆��
1 ⇒ Γ��

1, [Γ1, ]k, [Γ]

Π2

[∆], [∆1]k∆�
1 ⇒ Γ�

1, [Γ1, ]k, [Γ]
γ

[∆],∆1 ⇒ Γ1, [Γ]

We can obtain P � bellow by simple discarding the proof fragment Π2.

∆, α ⇒ α,Γ
Π1

[∆],∆1 ⇒ Γ1, [Γ]

Applying recursively the transformations above from top to bottom we

obtain a proof in SC[]
ALC without any frozen-exchange rule application. Note

also that this procedure will remove any branch created between the rule that

introduced the frozen-formulas and the removed frozen-exchange application.

Given a frozen-exchange free SC[]
ALC-proof, to obtain a SCALC-proof,

we have only to drop out the frozen concepts and substitute weak-{l,r} rules

application of SC[]
ALC for their counter-parts in SCALC.

Let us consider the weak-l case, rule weak-r can be dealt similarly. Given

the SC[]
ALC-proof fragment below containing the top most application of rule

weak-r:

Π
[∆], [∆1]k ⇒ Γ2, [γ,Γ2]k, [Γ]

weak-r
[∆],∆1 ⇒ γ,Γ2, [Γ]

From the fragment above, we construct:

Π
∆1 ⇒ Γ2

weak-r
∆1 ⇒ γ,Γ2

Applying recursively the transformations above from top to bottom we

obtain a proof in SCALC from a proof in SC[]
ALC. �

Let us give a precise definition of fully expanded proof tree. A fully

expanded proof tree of ∆ ⇒ Γ is a tree having ∆ ⇒ Γ as root, each internal

node being a sequent premise of a valid SC[]
ALC rule application, and each leaf

being either a SC[]
ALC axiom (initial sequent) or a top-sequent (not axiom) with

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 49

not necessarily only atomic concepts. A sequent is a top-sequent if and only if

it does not contain reducible contexts. A reducible contexts is a context that if

active could be further reduced. In the following lemmas we are interested in

fully expanded proof trees that are not SC[]
ALC proofs.

If we consider a particular strategy of rule applications, any fully expan-

ded proof tree will have a special form called normal form. The following are

the main properties of this strategy:

1. It is a fair strategy of rules applications that avoid infinite loops of, for

instance, frozen-exchange applications swapping contexts or unnecessary

repetition of proof fragments;

2. Promotional rules will be applied whenever possible, that is, they have

high priority over the other rules;

3. The strategy will discard contexts created by the successive application

of weak rules and avoid further applications of weak rules once it is

possible to detected that they will not be useful to obtain an initial

sequent. For instance, from a sequent ∆ ⇒ Γ, where ∆ and Γ only contain

atomic concept names without any common concept name, we know that

using weak rules we would not obtain an initial sequent. Moreover, weak

rules will be used with the unique purpose of enabling promotion rules

applications.

A more insightful definition of the last item above would be possible if

we replace the weak rules in SC[]
ALC by the weak∗ rule below.

[∆�], [∆,∆1]k,∆ ⇒ Γ, [Γ1,Γ]k, [Γ�]
weak∗

[∆�],∆,∆1 ⇒ Γ1,Γ, [Γ�]

Lemma 20 The weak∗ rule is a derived rule in SC[]
ALC.

Proof : To prove Lemma 20, given a derivation fragment Π with a weak∗

rule application, we show how to replace it by successive weak-l and weak-

r applications. Without lost of generality, let us consider one special case of

weak∗ freezing two concepts of both sides of a sequent.

Π�

[∆, δ1, δ2]k,∆ ⇒ Γ, [γ1, γ2,Γ]k
weak∗

∆, δ1, δ2 ⇒ γ1, γ2,Γ

The corresponding fragment Π1 is presented below. The context k is now

followed by the contexts k + 1, k + 2, k + 3.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 50

Π�

[∆, δ1, δ2]k, [∆, δ2]k+1, [∆]k+2, [∆]k+3,∆ ⇒ Γ, [γ1, γ2,Γ]k, [γ1, γ2,Γ]k+1, [γ1, γ2,Γ]k+2, [γ2,Γ]k+3

weak-r
[∆, δ1, δ2]k, [∆, δ2]k+1, [∆]k+2,∆ ⇒ γ2,Γ, [γ1, γ2,Γ]k, [γ1, γ2,Γ]k+1, [γ1, γ2,Γ]k+2

weak-r
[∆, δ1, δ2]k, [∆, δ2]k+1,∆ ⇒ γ1, γ2,Γ, [γ1, γ2,Γ]k, [γ1, γ2,Γ]k+1

weak-l
[∆, δ1, δ2]k,∆, δ2 ⇒ γ1, γ2,Γ, [γ1, γ2,Γ]k

weak-l
∆, δ1, δ2 ⇒ γ1, γ2,Γ

Applying recursively the transformations above from top to bottom we

obtain a weak∗-free proof in SC[]
ALC. �

We introduced the weak∗ rule to avoid dispensable contexts during the

bottom-up proof search procedure. Using the strategy suggested above, we

only apply the weak rules in order to allow further application of promotional

rules. The idea is that we don’t need to save unnecessary contexts that are

variants of already saved contexts.

Example 4 Consider the fully expanded proof tree Π having sequent 3 as root.

∃R.A � ∃R.B ⇒ ∃R.(A � B) (3)

[A]2, [. . .]3, B ⇒ A, [. . .]3, [B]2 [A]2, [. . .]3, B ⇒ B, [. . .]3, [B]2
�-r

[A]2, [∃RA, ∃RB]3, B ⇒ A �B, [∃R(A �B)]3, [B]2
prom-∃

[A]2, [∃RA, ∃RB]3, ∃RB ⇒
∃R(A �B), [∃R(A �B)]3, [B]2

weak∗

[A]2, ∃RA, ∃RB ⇒
∃R(A �B), [B]2

f-exch

[∃RA, ∃RB]1, A ⇒ B, [∃R(A �B)]1 [. . .]1, A ⇒ A, [. . .]1
�-r

[. . .]1, A ⇒ A �B, [. . .]1
prom-∃

[∃RA, ∃RB]1, ∃RA ⇒
∃R(A �B), [∃R(A �B)]1

weak∗∃RA, ∃RB ⇒
∃R(A �B)

∃-r∃RA, ∃RB ⇒ ∃R.(A �B)
∃-l∃RA, ∃R.B ⇒ ∃R.(A �B)
∃-l

∃R.A, ∃R.B ⇒ ∃R.(A �B)
�-l

∃R.A � ∃R.B ⇒ ∃R.(A �B)

We can split Π in three fragments named Π1, Π2 and Π3. The fragments

are separated by weak∗ and frozen-exchanges. Fragments Π2 and Π3 correspond

to the two different ways to apply the weak∗ in the top-sequent of the fragment

Π1.

Π1 ≡

Π2

∃RA, ∃RB ⇒
∃R(A �B)

∃-r∃RA, ∃RB ⇒ ∃R.(A � B)
∃-l∃RA, ∃R.B ⇒ ∃R.(A � B)
∃-l

∃R.A, ∃R.B ⇒ ∃R.(A � B)
�-l

∃R.A � ∃R.B ⇒ ∃R.(A � B)

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 51

Π2 ≡

Π3

[. . .]1, A ⇒ B, [. . .]1 [. . .]1, A ⇒ A, [. . .]1
�-r

[. . .]1, A ⇒ A � B, [. . .]1
prom-∃

[∃RA, ∃RB]1, ∃RA ⇒
∃R(A �B), [∃R(A � B)]1

Π3 ≡

[A]2, [. . .]3, B ⇒ A, [. . .]3, [B]2 [A]2, [. . .]3, B ⇒ B, [. . .]3, [B]2
�-r

[A]2, [. . .]3, B ⇒ A � B, [. . .]3, [B]2
prom-∃

[A]2, [∃RA, ∃RB]3, ∃RB ⇒
∃R(A �B), [∃R(A �B)]3, [B]2

Regarding the contexts created during the proof, contexts 1 and 3 were not

turned active yet, they are called auxiliary contexts, they were created during

the bottom-up proof construction to save a proof state to further activation

and transformation with the system rules, if necessary. Context 1 was used but

context 3 was not. Context 2 is the top-sequent of fragment Π2, saved after

been reduced. The idea is that from the fragments Π2 and Π3 we can construct

a counter-model for the root sequent of Π.

Lemma 21 If P is a fully expanded proof-tree in SC[]
ALC with sequent S as

root (conclusion) and if P is in the normal form, from any top-sequent not

initial (non-axiom), one can construct a counter-model for S.

Proof : To prove Lemma 21 we must first identify all possible top-sequents in

SC[]
ALC. If weak rules are not allowed during the derivation, all top-sequents

in SC[]
ALC would have the general form of 4.

A1, . . . , An� �� �
∆1

, ∀R1,L1B1, . . . ,
∀Rm,LmBm� �� �

∆2

⇒ C1, . . . , Cl� �� �
∆3

, ∃R1,L1D1, . . . ,
∃Rp,LpDp� �� �

∆4

(4)

where we group the concepts into four sets ∆1,∆2,∆3 and ∆4. A1,n and C1,l

are sets of atomic concepts. In ∆2, B1,m are atomic concepts or disjunctions

of concepts (not necessarily atomic). In ∆4, D1,p are atomic concepts or

conjunctions of concepts (not necessarily atomic).

To see that no other rule of SC[]
ALC, rather than weak, could be apply

in a sequent like 4, one has just to observe that: (1) the �-r and �-l rules

provisos are blocking the decomposition of the conjunctions and disjunctions;

and (2) the prom-∀ (prom-∃) rule cannot be applied due the lack of a universal

(existential) quantified concept on the right (left).

Nevertheless, with the presence of weak∗ rule and considering the

strategy for construct normal derivations, weak∗ can always be applied to

top-sequents like 4 reducing them to the simpler cases below. For each one, we

will see that it is possible to construct a counter-model.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 52

Case ∆1 ⇒ ∆3 That is, a sequent A1, . . . , An ⇒ C1, . . . , Cl without labeled

concept, it is easy to construct a counter-model I such that there exist an

element a ∈ (A1 � . . . � An)I and a �∈ (C1 � . . . � Cl)I .

Case ∆2 ⇒ We can construct a counter-model I such that there exist

an element a ∈ (∀R1,L1B1 � . . . � ∀Rm,LmBm)I . The right side of a sequent

is interpreted as a disjunction, so that, if empty, its semantics for any

interpretation function is the empty set. If we consider the simplified case

where all roles (labels) are equal, that is ∀R,L1B1, . . . ,
∀R,LmBm ⇒, we only

need to provide a new element a without fillers in R, that is, ∃x(a, x) �∈ RI .

For the general case, where the most external roles on each concept can be

different, the element a cannot have fillers in any of the roles. That is, ∀R

occuring in front of the list of labels in ∆2, ∃x(a, x) �∈ RI . We must mention

that even if one of the concepts in ∆2 is � or ⊥, we can always construct I.

Case ⇒ ∆4 We can construct a counter-model such that I �|= ⇒ ∆4. From

the natural interpretation of a sequent, we know that an interpretation will

not satisfy this case when there exist at least one element a �∈ (∃R1,L1D1� . . .�
∃Rp,LpDp)I . Since the left side of a sequent is interpreted as a conjunction, if

empty, its semantics for any interpretation function is the universe set of the

interpretation. Once more, let us first consider the case where all existential

roles are equal, ∃R,L1D1 � . . .� ∃R,LpDp. We only need to provide an element a

without fillers in R. If we have different roles in the sequent, a can not have

fillers in any of them.

Case ∆2 ⇒ ∆4 This case can be reduced for the two cases above. We can

always provide an element a ∈ ∆I
2 (by second case) and a �∈ ∆I

4 (by third

case). In both cases, a will be a fresh element without fillers in any R, for all

R most external labels of ∆2 and ∆4. �

Lemma 22 If P is a weak∗-free proof fragment with at least one top-sequent

not initial and having S as the bottom sequent. That is, a fragment where no

weak rule were applied. If I is a counter-model for one of its top-sequents,

There is I � that is a counter-model for S.

Proof : We prove Lemma 22 by case analysis considering each possible rule

application and showing how to extend an interpretation that is counter-model

of the premiss to be a counter-model of the conclusion.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 53

Cases ∀-{l,r} and ∃-{l,r} In these rules the premiss and conclusion have

the same semantics, that is, a counter-model for its premiss is also a counter-

model for its conclusions.

Cases �-{l,r} and �-{l,r} Let us first consider the rule �-l. Let I be

an interpretation counter-model for at least one of the premiss. That is,

(∆ � ∃Lα)I �⊂ ΓI or (∆ �
∃Lβ)I �⊂ ΓI . If any of these cases holds, we have

(∆ � ∃Lα)I ∪ (∆ �
∃Lβ)I �⊂ ΓI and by the distributivity of the intersection

over the union (∆ � (∃Lα �
∃Lβ))I �⊂ ΓI , which is semantically equivalent to

conclusion of the rule: (∆� (∃Lα � β))I �⊂ ΓI . Case �-r would be proved in the

same way by showing that if A �⊂ B ∪D or A �⊂ C ∪D then A �⊂ (B ∩C)∪D.

Rules �-l and �-r are even simpler given the natural interpretation of the

sequents. Basically, we are using the results of Section III.2 which shows that

these rules are double-sound.

Case ¬-l and ¬-r First rule ¬-r where δ a labeled concept and ¬δ its

negation. Let us consider a interpretation I such that I �|= ∆, δ ⇒ Γ. So we

have an element a ∈ (∆ � δ)I and a �∈ ΓI . Thus, a ∈ δI and so, a �∈ (¬δ)I .

Consequently, a �∈ (¬δ � Γ)I as desired. The case of rule ¬-l is similar.

Case prom-∃ Assume that we have I �|= δ ⇒ Γ. So we have an element

b ∈ δI and b �∈ ΓI . We now construct I � extending I with one more new

element a in the domain and the tuple (a, b) ∈ RI . In this way, we obtain the

necessary condition to I � �|= +∃Rδ ⇒
+∃RΓ which is a ∈

+∃RδI and a �∈
+∃RΓI

since a is a fresh element.

Case prom-∀ Assume that we have I �|= ∆ ⇒ γ. Once more, we have an

element b ∈ ∆I and b �∈ γI . We construct I � as in the case above, introducing

one new element a in the domain and the tuple (a, b) ∈ RI . Since a is a fresh

element with just one filler in R, we guarantee by construction that a ∈
+∀R∆I

and a �∈ +∀RγI and so, I � �|= +∀R∆ ⇒ +∀Rγ. Alternatively, we can also introduce

in I � the element a without any filler in R to guarantee that I � will also be a

counter-model for the conclusion. �
Lemmas 21 and 22 guarantee that from the top-sequents we can construct

counter-models and extend them in fragments weak∗-free. The following lemma

states that we can merge counter-models of proof fragments with top-sequents

that are not axioms.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 54

Lemma 23 Given a weak∗ application with a conclusion S, reading top-down,

this application has two proof fragments with roots S1 and S2, their premise

and the context that was frozen. If there are interpretations I1 and I2 such

that I1 �|= S1 and I2 �|= S2 then there is I such that I �|= S.

Proof : Without lost of generality, we can consider 5 a general format for

sequents conclusion of weak∗ application. Remember that if we use the strategy

define previous, weak∗ will only be applied in order to permit promotional rules

applications. The case with two existential quantified concepts on the left and

two universal quantified concepts on the right will be sufficient to tread all

possible combinations. The result of this proof can be easily generalized.

∆, ∀R,L1α1,
∃R,L2α2,

∃R,L3α3 ⇒ Γ, ∀R,L4α4,
∀R,L5α5,

∃R,L6α6 (5)

To prove Lemma 23, we have to consider each possible pair of proof frag-

ments that a weak∗ rule can combine in a top-down construction. In addition,

we assume as hypothesis that for both fragments we already constructed a

counter-model for its roots – from Lemmas 21 and 22.

1. S ≡ ∆, ∃R,L2α2 ⇒ Γ, ∃R,L6α6. From the hypothesis, we have I1 �|= ∆ ⇒ Γ

and I2 �|= ∃R,L2α2 ⇒ ∃R,L6α6, that is, ∆I1 �⊂ ΓI1 and ∃R,L2α2
I2 �⊂

∃R,L6α6
I2 . We create an interpretation I = I1 � I2, a disjoint union

of I1 and I2. Now, from I1 we select an element a ∈ ∆I1 and a �∈ ΓI1

that must exist by hypothesis. From I2 we select an element b ∈ αI2
2 and

b �∈ αI2
6 that must exist by hypothesis. Now In I we add (a, b) ∈ RI and

we guarantee that (∆ � ∃R,L2α2)I �⊂ (Γ � ∃R,L6α6)I .

2. S ≡ ∆, ∀R,L1α1 ⇒ Γ, ∀R,L5α5. By hypothesis, we have I1 �|= ∆ ⇒ Γ and

I2 �|= ∀R,L1α1 ⇒ ∀R,L5α5, that is, ∆I1 �⊂ ΓI1 and ∀R,L1α1
I2 �⊂ ∀R,L5α5

I2 .

We create the interpretation I as in the previous case, I = I1�I2. From

I1 we select an element a ∈ ∆I1 and a �∈ ΓI1 . From I2 we select an

element b ∈ αI2
1 and b �∈ αI2

5 . In I we add (a, b) ∈ RI and we guarantee

that (∆ � ∀R,L1α1)I �⊂ (Γ � ∀R,L5α5)I .

3. S ≡ ∃R,L2α2, ∃R,L3α3 ⇒
∃R,L6α6. By hypothesis, we have I1 �|= ∃R,L2α2 ⇒

∃R,L6α6 and I2 �|= ∃R,L3α3 ⇒
∃R,L6α6. We create the interpretation I as in

the previous case, I = I1�I2. From I1 we have a ∈ (∃R,L2α2)I1 , and thus,

an (a, b) ∈ RI1 with b ∈ αI1
2 . From I2 we have b ∈ (∃R,L3α3)I2 , and thus,

an (b, c) ∈ RI2 with c ∈ αI2
3 . We create now a fresh element d and add in

RI the set {(d, b), (d, c)}. We have guarantee that d ∈ (∃R,L2α2�
∃R,L3α3)I

and d �∈ (∃R,L6α6)I . Note that b �∈ (∃R,L6α6)I (resp. c) by hypothesis.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter IV. Comparing SCALC with other ALC Deduction Systems 55

4. If we consider ∀R.α ≡ ¬∃R.¬α, cases S ≡ ∃R,L2α2, ∀R,L1α1 ⇒

∃R,L6α6, ∀R,L4α4 and S ≡ ∀R,L1α1 ⇒ ∀R,L4α4, ∀R,L5α5 has been already

considered.

�

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA




