
V
A Natural Deduction for ALC

In this chapter we present a Natural Deduction (ND) system for ALC,

named NDALC. We briefly discuss the motivation and the basic considerations

behind the design of NDALC. We also prove the completeness, soundness and

the normalization theorem for NDALC.

It is quite well-known the fact that Natural Deduction (ND) proofs

in intuitionistic logic (IL) have computational content. This content can

be explicitly read from the typed λ-calculus term associated to each proof.

Moreover, to each normalization step that can be applied in the proof, there

is a corresponding β-reduction in its associated typed λ-term. This is known

as the Curry-Howard isomorphism (CH-ISO) between ND and the typed

λ-calculus [30]. For classical logic this isomorphism does not hold any more.

However, there are some attempts to justify weak or modified forms of this

isomorphism for classical logic (see [5] and [3] for example).

It seems to exist some connections between the computational content

of a proof and its ability to provide good structures to explanation extraction

from proofs. In fact, an algorithm is one of the most precise arguments to

explain how to obtain a result out of some inputs. Given that, translating

algorithms according the propositions-as-types CH-ISO we should obtain a

quite good argument establishing the conclusion from the premises. Despite

the fact that for classical logic the CH-ISO is not well-established at all, we

still argue in favour of ND proofs instead of Sequent Calculus (SC) in order

to provide good explanations. One of the main points in favour of ND is the

fact that it is single-conclusion and provides, in this way, a direct chain of

inferences linking the propositions in the proof. It is worth noting that there

is more than one ND normal proof related to the same cut-free SC proof.

It is mainly because of this fact that a (cut-free) SC proof is related to more

than one ND proof. We believe that explanations should be as specific as their

proof-theoretical counterparts.
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V.1 The NDALC System

Figure V.1 shows the system called NDALC. Despite the use of labeled

formulas, the main non-standard feature of NDALC is the fact that it is defined

on two kind of “formulas”, namely concept formulas and subsumptions of

concepts.
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Figure V.1: The Natural Deduction system for ALC

If Φ1,Φ2 � Ψ is an inference rule involving only concept formulas then

it states that whenever the premises are taken as non-empty collections of

individuals the conclusion is taken as non-empty too. Particularly, providing

any DL-interpretation for the premise concepts, if a is an individual belonging

to both interpreted concepts then it also belongs to the interpreted conclusion.

On the other hand, a subsumption Φ � Ψ has no concept associate to

it. It states, instead, a truth-value statement, depending on whether the

interpretation of Φ is included in the corresponding interpretation of Ψ. In

terms of a logical system, DL has no concept internalizing �. As we will see

on the next section, this imposes quite particular features on the form of the

normal proofs in NDALC.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter V. A Natural Deduction for ALC 58

In the rule �-i, L1α �
L2β depends only on the assumption L1α and no

other hypothesis. The proviso to the application of rule Gen application is that

the premise Lα does not depend on any hypothesis. In ⊥c-rule, Lα has to be

different from ⊥. In some rules the list of labels L has a superscript, L∀ or L∃.

This notation means that the list of labels L should contain only ∀R (resp.

∃R) labels. When L has not superscript, any kind of label is allowed.

The semantics of NDALC follows the ALC semantics presented in Sec-

tion II.1, that is, is given by an interpretation. However, since NDALC deals

with two different kind of formulas, we must define how an interpretation sat-

isfies both kinds.

Definition 24 Let Ω = (C,S) be a tuple composed by a set of labeled concepts

C = {α1, . . . , αn} and a set of subsumption S = {γ1
1 � γ1

2 , . . . , γ
k
1 � γk

2}. We

say that an interpretation I = (∆I , �I) satisfies Ω and write I |= Ω whenever:

1. I |= C, which means
�

α∈C σ(α)
I �= ∅; and

2. I |= S, which means that for all γi
1 � γi

2 ∈ S, we have σ(γi
1)

I ⊆ σ(γi
2)

I.

We adopted the standard notation Ω � F if exists a deduction Π with

conclusion F (concept or subsumption) from Ω as set of hypothesis.

V.2 NDALC Soundness

Lemma 25 Let Π be a deduction in NDALC of F with all hypothesis in

Ω = (C,S), then if F is a concept:

S |=
��

A∈C
A
�
� F

and if F is a subsumption A1 � A2:

S |=
��

A∈C
A
�
� A1 � A2

With the sake of clear presentation in the following proof we adopt

some special notations. We will write ∀L.α to abbreviate ∀R1. . . . .∀Rn.α when

L = ∀R1. . . . .∀Rn. The labelled concept Lα will be taken as equivalent to

its ALC correspondent concept σ(Lα). 1 Letters γ and δ stand for labelled

concepts while α and β stand for ALC concepts. We take C as
�

A∈C A. We

will aso use many times the axioms presented in Section II.6.

Proof : The proof of Lemma 25 is done by induction on the height of the

proof tree Π, represented by | Π |.

1In Section III.1 the reader can find the definition of σ function and labeled formulas.
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Base case If | Π |= 1 then Ω � Lα is such that Lα is in Ω. In that case, is

easy to see that Lemma 25 holds since by basic set theory (A∩B) ⊆ A for all

A and B.

Rule �-e By induction hypothesis, if
Π1

L(α � β) is a derivation with all

hypothesis in {C,S} then S |= C �
L(α � β). From the definition of labeled

concepts and Axiom 1 we can rewrite to S |= C � Lα �
Lβ which from basic

set theory guarantee S |= C � Lα.

Rule �-i Let us consider the two derivations
Π1
Lα and

Π2
Lβ with all hypothesis

in {C1,S1} and {C2,S2}. By induction hypothesis, (1) S1 |= C1 � Lα an (2)

S2 |= C2 �
Lβ. Now let us consider the deduction

Π1
Lα

Π2
Lβ

L(α � β)

with all hypothesis in {C1 ∪C2,S1 ∪S2}. It is easy to see that from (1) and (2)

S1 ∪S2 |= (C1 � C2) � Lα and S1 ∪S2 |= (C1 � C2) �
Lβ. From basic set theory

we may write S1 ∪ S2 |= (C1 � C2) � Lα �
Lβ and finally from Axiom 1 we get

the desired result S1 ∪ S2 |= (C1 � C2) �
L(α � β).

Rules �-i Again by induction hypothesis, if
Π1
Lα is a derivation with all

hypothesis in {C,S} then S |= C � Lα. Using basic set theory we can rewrite

to S |= C � Lα �
Lβ and using Axiom 3 to S |= C �

L(α � β).

Rule (�-e) By induction hypothesis, if

Π1
L(α � β),

[Lα]
Π2
γ and

[Lβ]
Π3
γ

are derivations with hypothesis in {C,S}, {Lα,S} and {
Lβ,S}, respectively.

Then, S |= C �
L(α � β), S |= Lα � γ and S |= Lβ � γ. From set theory

S |= (Lα �
Lβ) � γ and from Axiom 3, S |= L(α � β) � γ. Now by the

transitivity of set inclusion we can get the desired result S |= C � γ.

Rules ∀-i, ∀-e, ∃-i and ∃-e They are sound since the premises and

conclusions have the same semantics.
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Rule ¬-e By induction hypothesis, if

Π1
Lα and

Π2
¬L¬α

are derivation with hypothesis in {C1,S1} and {C2,S2} we know that S1 |=

C1 �
Lα and S2 |= C2 �

¬L¬α. Now consider the deduction

Π1
Lα

Π2
¬L¬α
⊥

with hypothesis in {S1 ∪ S2, C1 ∪ C2}. By inductive hypothesis we can write

S1 ∪ S2 |= C1 � Lα and S2 ∪ S2 |= C2 � ¬L¬α. Now, from the fact that ALC

semantics states Lα and ¬L¬α as two disjoint sets, we have C1�C2 = ∅ and we

can write S1 ∪ S2 |= (C1 � C2) � ⊥ as desired.

Rule ¬-i If {C,S} holds all the hypothesis of the deduction

Lα
Π2
⊥ then by

induction hypothesis S |= C � Lα � ⊥ (taking ⊥ as its semantics counterpart,

namely, the empty set). From basic set theory S |= C � ¬L¬α as desired.

Rule ⊥c The argument is similar from above.

Rule �-e By induction hypothesis, if
Π1
γ and

Π2
γ � δ are deduction with

hypothesis in {C1,S1} and {C2,S2}, we have (1) S1 |= C1 � γ and (2)

S2 |= C2 � γ � δ. Let us now consider the application of rule �-e to construct

the derivation
Π1
γ

Π2
γ � δ
δ

with hypothesis in {C1 ∪ C2, S1 ∪ S2}. From (2) and ALC semantics we can

conclude S1 ∪ S2 |= C2 � γ � δ. Finally, from basic set theory C1 � C2 � C2 we

obtain S1 ∪ S2 |= C1 � C2 � δ.

Rule �-i By induction hypothesis, if

γ
Π1
δ is a deduction with hypothesis in

{C,S} then S |= C � δ and we conclude S |= C− � γ � δ where C− is C − {γ}.

Rule Gen Let Π be a proof of Lα following from an empty set of hypothesis,

we may write � Lα. That is, Lα is a DL-tautology or σ(Lα)I ≡ ∆I . From
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the necessitation rule from Section II.6, whenever a concept C is a DL-

tautology, for any given R, the concept ∀R.C will be also. For that, we can

conclude that ∀R,Lα for any given R will be also a tautology. Remember that
∀R,Lα ≡ ∀R.σ(Lα). �

Let us now state the main theorem of this section.

Theorem 26 NDALC is sound regarding the standard semantics of ALC.

if Ω � γ then Ω |= γ

where Ω = (C,S)) is a tuple composed by a set of labeled concepts (C) and

subsumptions (S).

Proof : It follows directly from Lemma 25. �

V.3 NDALC Completeness

We use the same strategy from Section III.3 to prove NDALC complete-

ness. That is, we show how the axiomatic presentation of ALC can be derived

in NDALC.

Theorem 27 NDALC is complete regarding the standard semantics of ALC.

Proof : The DL rule of generalization

� α
� ∀R.α

is a derived rule of NDALC, for supposing � α implies the existence of a proof

(without hypothesis) Π of α. We prove ∀R.α, without any new hypothesis by

means of the following schema:

Π....
α
Rα

Gen

∀R.α ∀-i

The following proofs justifies in NDALC the ALC axiom ∀R.(A � B) ≡

(∀R.A � ∀R.B), where α ≡ β is an abbreviation for α � β and β � α, having

obvious ≡ elimination and introduction rules, based on � elimination and

introduction rules.
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[∀R.(A �B)]
∀-e∀R(A � B)

�-e∀RA ∀-i
∀R.A

[∀R.(A � B)]
∀-e∀R(A �B)

�-e∀RB ∀-i
∀R.B �-i

∀R.A � ∀R.B �-i
∀R.(A � B) � ∀R.A � ∀R.B

[∀R.A � ∀R.B]
�-e

∀R.A ∀-e∀RA

[∀R.A � ∀R.B]
�-e

∀R.B ∀-e∀RB �-i∀R(A � B)
∀-i

∀R.(A �B)
�-i

∀R.A � ∀R.B � ∀R.(A �B)

NDALC is a conservative extension of the classical propositional calculus.

To see that, let ∆ be a set of formulas of the form {γ1, . . . , γk, α1 →

β1, . . . , αn → βn}, where each γi, αi and βi are propositional formulas and

αi and βi do not have any occurrence of →. One can easily verify that any

propositional classical consequence ∆ |= α is justified by a proof in classical

ND. Now trasform this proof into a proof in NDALC by replacing each → by

�.

Since NDALC is a conservative extension of the classical propositional

ND system that has the generalization as a derived rule, and, proves axiom

∀R.(A � B) ≡ (∀R.A � ∀R.B), we have the completeness for NDALC by a

relative completeness to the axiomatic presentation of ALC. �

V.4 Normalization theorem for NDALC

In this section we prove the normalization theorem for NDALC. It is worth

nothing that the usual reductions for obtaining a normal proof in classical pro-

positional logic also applies to NDALC. Thus, the first thing to observe is that

we follow Prawitz’s [49] approach incremented by Seldin’s [62] permutation

rules for the classical absurdity ⊥c. That is, using a set of permutative rules,

we move any application of ⊥c-rule downwards the conclusion. After this trans-

formation we end up with a proof having in each branch at most one ⊥c-rule

application as the last rule of it.

In order to move the absurdity rule downwards the conclusion and

also to have a more succinct proof we restrict the language to the fragment

{¬, ∀,�,�}. This will not limit our results since any ALC formula can be

rewritten in an equivalent one in this restricted fragment. We shall consider

the system ND−
ALC obtained from NDALC by removing from NDALC �-rules

and ∃-rules. The Proposition 28 states that the system ND−
ALC is essentially

just a syntactic variation of NDALC system.
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Proposition 28 The NDALC �-rules and ∃-rules are derived in ND−
ALC.

Proof : Considering the concept description Lα � β being defined by
L
¬(¬α � ¬β) and the concept description L

∃R.α by L
¬∀R.¬α.

The rules (�-i) can be derived as follows:

Lα

�
¬L(¬α � ¬β)

�1

¬L¬α
�-e

⊥
¬-e

L
¬(¬α � ¬β)

¬-i

Lβ

�
¬L(¬α � ¬β)

�1

¬L
¬β

�-e

⊥
¬-e

L
¬(¬α � ¬β)

¬-i

where L contains only existencial quantified labels. ¬L as described in Sec-

tion III.1, is the negation of L, that is, universal quantified are changed to

existential quantified and vice-versa. We note that rule �-i proviso requires

that L contains only existential quantified labels, what makes the rule �-e

proviso satisfied since ¬L will only contains universal quantified labels. The

rule �-e can also be derived:

�
Lα

�
....
γ [¬γ]

⊥
¬L¬α

�
Lβ

�
....
γ [¬γ]

⊥
¬L
¬β

¬L(¬α � ¬β) L
¬(¬α � ¬β)

⊥
γ

For rules (∃-i) and (∃-e), it is worth noting that ND−
ALC does not restrict

the occurrence of existential labels, only the existential constructor of ALC. In

other words, we have just reused the ALC constructors ∀ and ∃ to “type” the

labels and keep track of the original role quantification when it is promoted

to label. Nevertheless, although the confusion could be avoided if we adopted

¬∀R instead of ∃R in the labels of ND−
ALC concepts, for clear presentation

we choose to allow ∃R on ND−
ALC concept’s labels.

L,∃Rα

�¬L
∀R.¬α

�

(¬L),∀R¬α
⊥

L
¬∀R.¬α

�
(¬L),∀R¬α

�

¬L
∀R.¬α L

¬∀R.¬α
⊥

L,∃Rα

�

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter V. A Natural Deduction for ALC 64

In the sequel, we adopt Prawitz’s [50] terminologies such as: formula-tree,

deductions or derivations, rule application, minor and major premises, threads,

branches and so on. Nevertheless some terminologies have different definition

in our system, in that case, we will present that definition.

A branch in a NDALC or ND−
ALC deduction is an initial part

α1, α2, . . . , αn of a thread such that αn is either (i) the first formula occur-

rence in the thread that is a minor premise of an application of �-e or (ii) the

last formula occurrence of a thread (the end-formula of the deduction) if there

is no such premise in the thread.

Given a deduction Π on NDALC or ND−
ALC, we define the height of a

formula occurrence α in Π inductively:

– if α is the end-formula of Π (conclusion), then h(α) = 0;

– if α is a premise of a rule application, say λ, in Π and is not the end-

formula of Π, then h(α) = h(β) + 1 where β is the conclusion of λ.

In a similar matter we can define the height of a rule application in a deduction.

A maximal formula is a formula occurrence that is consequence of an

introduction rule and the major premise of an elimination rule. A maximal

�-formula in a proof Π is a maximal formula that is a subsumption.

Lemma 29 Let Π be a proof of α (concept or subsumption of concepts) from

∆ in ND−
ALC. Then there is a proof Π� without maximal �-formulas.

Proof : We prove Lemma 29 by induction over the number of maximal �-

formulas occurrences. We apply a sequence of reductions choosing always

a highest maximal �-formula occurence in the proof tree. In the reduction

shown below we note that α cannot be a subsumpption, so that, the reduction

application will never introduce new maximal �-formulas. In other words, we

cannot have nested subsumptions, subsumptions are not concepts.

Π1
α

[α]
Π2
β

α � β
β ✄

Π1

[α]
Π2
β

�

Lemma 30 (Moving ⊥c downwards on branches) If Ω �ND−ALC α, then

there is a deduction Π in ND−
ALC of α from Ω where each branch in Π has

at most one application of ⊥c-rule and, whenever it has one, it is one of the

following cases: (i) the last rule applied in this branch; (ii) its conclusion is the

premisse of a �-i application, being this �-i the last rule applied in the branch.
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Proof : Let Π be a deduction in ND−
ALC of α (subsumption of concepts or

concept) from a set of hypothesis ∆. Let λ be an application of a ⊥c-rule in Π

with h(λ) = d such that there is no other application of ⊥c-rule above λ. Let

us consider each possible rule application immediately below λ. For each case,

we show how one can exchange the rules decreasing the height of λ.

Rule ∀-e

[¬L¬∀R.α]....
⊥

L
∀R.α
L,∀Rα ✄

[L∀R.α]
L,∀Rα [¬L,∃R¬α]

⊥
¬L
¬∀R.α....
⊥

L,∀Rα

Rule ∀-i

[¬L,∃R¬α]....
⊥

L,∀Rα
L
∀R.α ✄

[L,∀Rα]
L
∀R.α

�¬L
¬∀R.α

�

⊥
¬L,∃R¬α....

⊥
L
∀R.α

Rule �-i

∃L¬α....
⊥

∀Lα
Π

∀Lβ
∀L(α � β) ✄

[∀Lα]2
Π

∀Lβ
∀L(α � β)

�
∃L
¬(α � β)

�1

⊥
∃L¬α

2

....
⊥

∀L(α � β)
1

Rule �-e

∃L
¬(α � β)....

⊥
∀L(α � β)

∀Lα ✄

�∃L¬α
�2

�
∀L(α � β)

�1

∀Lα

⊥
∃L
¬(α � β)

1

....
⊥

∀Lα
2
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Rule ¬-e

�¬L¬α
�

....
⊥
Lα

[∆]
Π

¬L¬α
⊥ ✄

�
Lα

�
[∆]
Π

¬L¬α

⊥
¬L¬α....
⊥

One must observe that in all reductions above, the conclusion of ⊥c rule

application is the premise of the rule considered in each case. That is why

the ¬-i rule was not considered, if so, the conclusion of ⊥c rule would

have to be a ⊥, wish is prohibit by the restriction on ⊥c-rule.

Rule �-e

[¬α]
Π1
⊥
α

Π2
α � β
β ✄

[α]1
Π2

α � β
β [¬β]2

⊥
¬α

1

Π1
⊥

β
2

�
The reductions below will be used in the induction step in Theorem 31.

Let Π be a deduction of α from Ω which contains a maximal formula

occurrence F . We say that Π� is a reduction of Π at F if we obtain Π� by

removing F using the reductions below. Since F clearly can not be atomic,

each reduction refers to a possible principal sign of F . If the principal sign of

F is ψ, then Π� is said to be a ψ-reduction of Π. In each case, one can easily

verify that Π� obtained is still a deduction of α from Ω.

�-reduction

Π1
∀Lα

Π2
∀Lβ

∀L(α � β)
∀Lα ✄

Π1
∀Lα

∀-reduction

Π1
L,∀Rα
L
∀R.α
L,∀Rα ✄

Π1
L,∀Rα
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¬-reduction

�
Lα

�

Π1
⊥

¬L¬α
Π2
Lα

⊥ ✄

Π2�
Lα

�

Π1
⊥

The fact that DL has no concept internalizing � imposes quite particular

features on the form of the normal proofs in NDALC.

A ND−
ALC deduction is called normal when it does not have maximal

formula occurrences. Theorem 31 shows how we can construct a normal

deduction in ND−
ALC.

Consider a deduction Π in ND−
ALC. Applying Lemma 29 we obtain a new

deduction Π� without any maximal �-formulas. Then we apply Lemma 30 to

reduce the number of applications of ⊥c-rule on each branch and moving the

remaining downwards to the end of each branch. Without loss of generality

we can from now on consider any deduction in ND−
ALC as having no maximal

�-formula and at most one ⊥c-rule application per branch, namely, the last

one application in the branch.

Theorem 31 (normalization of NDALC) If Ω �ND−ALC α, then there is a

normal deduction in ND−
ALC of α from Ω.

Proof : Let Π be a deduction in ND−
ALC having the form remarked in the

previous paragraph. Consider the pair (d, n) where d is the maximum degree

among the maximal formulas, and n is the number of maximal formulas with

degree d. We proceed the normalization proof by induction on the lexicographic

pair (d, n).

Let F be one of the highest maximal formula with degree d and consider

each possible case according the principal sign of F .

If F has as principal sign �, applying the �-reduction we get a new

deduction Π1 with complexity (d1, n1). We now have d1 ≤ d, depending on the

existence of other maximal �-formulas on Π. If d1 = d, then necessarily n1 < n.

The cases where the principal sign of F is ¬ or ∀ are similar. Two facts can be

observed. First, the �-reduction will not be used anymore, since Π does not

have any remaining maximal �-formula. Second, although the ¬-reduction

can increase the number of maximal formulas, those maximal formulas will

undoubtedly have degree less than d, so that, we indeed have (d1, n1) < (d, n).

So induction hypothesis we have that Π1 is normalizable and so is Π for each

principal sign considered. �
As we have already mentioned NDALC has no concept internalization �.

This imposes quite particular form of the normal proofs in ND−
ALC. Consider
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a thread in a deduction Π in ND−
ALC, such that no element of the thread is a

minor premise of �-e rule. We shall see that if Π is normal, the thread can be

divided into two parts. There is one formula occurrence A in the thread such

that all formula occurrences in the thread above A are premises of applications

of elimination rules and all formula occurrences below A in the thread (except

the last one) are premises of applications of introduction rules. Therefore, in

the first part of the thread, we start from the top-most formula an decrease the

complexity of that until A. In the second part of the thread we pass to more

and more complex formulas. Given that, A is said thus the minimum formula

in the thread. Moreover, each branch on Π has at most one application of ⊥c

rule as its last rule application.

Normalization is important since form it one can provide complete

procedure to produce canonical proofs in ALC. Canonical proofs are important

regarding explaining theoremhood.
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