V A Natural Deduction for \mathcal{ALC}

In this chapter we present a Natural Deduction (ND) system for \mathcal{ALC} , named $ND_{\mathcal{ALC}}$. We briefly discuss the motivation and the basic considerations behind the design of $ND_{\mathcal{ALC}}$. We also prove the completeness, soundness and the normalization theorem for $ND_{\mathcal{ALC}}$.

It is quite well-known the fact that Natural Deduction (**ND**) proofs in intuitionistic logic (**IL**) have computational content. This content can be explicitly read from the typed λ -calculus term associated to each proof. Moreover, to each normalization step that can be applied in the proof, there is a corresponding β -reduction in its associated typed λ -term. This is known as the Curry-Howard isomorphism (**CH-ISO**) between **ND** and the typed λ -calculus [30]. For classical logic this isomorphism does not hold any more. However, there are some attempts to justify weak or modified forms of this isomorphism for classical logic (see [5] and [3] for example).

It seems to exist some connections between the computational content of a proof and its ability to provide good structures to explanation extraction from proofs. In fact, an algorithm is one of the most precise arguments to explain how to obtain a result out of some inputs. Given that, translating algorithms according the propositions-as-types **CH-ISO** we should obtain a quite good argument establishing the conclusion from the premises. Despite the fact that for classical logic the **CH-ISO** is not well-established at all, we still argue in favour of ND proofs instead of Sequent Calculus (**SC**) in order to provide good explanations. One of the main points in favour of **ND** is the fact that it is single-conclusion and provides, in this way, a direct chain of inferences linking the propositions in the proof. It is worth noting that there is more than one **ND** normal proof related to the same cut-free **SC** proof. It is mainly because of this fact that a (cut-free) **SC** proof is related to more than one **ND** proof. We believe that explanations should be as specific as their proof-theoretical counterparts.

V.1 The ND_{ALC} System

Figure V.1 shows the system called ND_{ALC} . Despite the use of labeled formulas, the main non-standard feature of ND_{ALC} is the fact that it is defined on two kind of "formulas", namely *concept formulas* and *subsumptions of concepts*.

Figure V.1: The Natural Deduction system for \mathcal{ALC}

If $\Phi_1, \Phi_2 \vdash \Psi$ is an inference rule involving only concept formulas then it states that whenever the premises are taken as non-empty collections of individuals the conclusion is taken as non-empty too. Particularly, providing any DL-interpretation for the premise concepts, if *a* is an individual belonging to both interpreted concepts then it also belongs to the interpreted conclusion. On the other hand, a subsumption $\Phi \sqsubseteq \Psi$ has no concept associate to it. It states, instead, a truth-value statement, depending on whether the interpretation of Φ is included in the corresponding interpretation of Ψ . In terms of a logical system, DL has no concept internalizing \sqsubseteq . As we will see on the next section, this imposes quite particular features on the form of the normal proofs in ND_{ALCC}. In the rule \sqsubseteq -i, ${}^{L_1}\alpha \sqsubseteq {}^{L_2}\beta$ depends only on the assumption ${}^{L_1}\alpha$ and no other hypothesis. The proviso to the application of rule *Gen* application is that the premise ${}^{L}\alpha$ does not depend on any hypothesis. In \perp_c -rule, ${}^{L}\alpha$ has to be different from \perp . In some rules the list of labels *L* has a superscript, L^{\forall} or L^{\exists} . This notation means that the list of labels *L* should contain only $\forall R$ (resp. $\exists R$) labels. When *L* has not superscript, any kind of label is allowed.

The semantics of ND_{ACC} follows the ACC semantics presented in Section II.1, that is, is given by an *interpretation*. However, since ND_{ACC} deals with two different kind of formulas, we must define how an interpretation satisfies both kinds.

Definition 24 Let $\Omega = (\mathcal{C}, \mathcal{S})$ be a tuple composed by a set of labeled concepts $\mathcal{C} = \{\alpha_1, \ldots, \alpha_n\}$ and a set of subsumption $\mathcal{S} = \{\gamma_1^1 \sqsubseteq \gamma_2^1, \ldots, \gamma_1^k \sqsubseteq \gamma_2^k\}$. We say that an interpretation $\mathcal{I} = (\Delta^{\mathcal{I}}, \cdot^{\mathcal{I}})$ satisfies Ω and write $\mathcal{I} \models \Omega$ whenever:

- 1. $\mathcal{I} \models \mathcal{C}$, which means $\bigcap_{\alpha \in \mathcal{C}} \sigma(\alpha)^{\mathcal{I}} \neq \emptyset$; and
- 2. $\mathcal{I} \models \mathcal{S}$, which means that for all $\gamma_1^i \sqsubseteq \gamma_2^i \in \mathcal{S}$, we have $\sigma(\gamma_1^i)^{\mathcal{I}} \subseteq \sigma(\gamma_2^i)^{\mathcal{I}}$.

We adopted the standard notation $\Omega \vdash F$ if exists a deduction Π with conclusion F (concept or subsumption) from Ω as set of hypothesis.

V.2 ND_{ALC} Soundness

Lemma 25 Let Π be a deduction in ND_{ACC} of F with all hypothesis in $\Omega = (\mathcal{C}, \mathcal{S})$, then if F is a concept:

$$\mathcal{S} \models \left(\bigcap_{A \in \mathcal{C}} A \right) \sqsubseteq F$$

and if F is a subsumption $A_1 \sqsubseteq A_2$:

$$\mathcal{S} \models \left(\bigcap_{A \in \mathcal{C}} A \right) \sqcap A_1 \sqsubseteq A_2$$

With the sake of clear presentation in the following proof we adopt some special notations. We will write $\forall L.\alpha$ to abbreviate $\forall R_1, \ldots, \forall R_n.\alpha$ when $L = \forall R_1, \ldots, \forall R_n$. The labelled concept ${}^L\alpha$ will be taken as equivalent to its \mathcal{ALC} correspondent concept $\sigma({}^L\alpha)$. ¹ Letters γ and δ stand for labelled concepts while α and β stand for \mathcal{ALC} concepts. We take \mathcal{C} as $\prod_{A \in \mathcal{C}} A$. We will also use many times the axioms presented in Section II.6.

Proof: The proof of Lemma 25 is done by induction on the height of the proof tree Π , represented by $|\Pi|$.

¹In Section III.1 the reader can find the definition of σ function and labeled formulas.

Base case If $|\Pi| = 1$ then $\Omega \vdash {}^{L}\alpha$ is such that ${}^{L}\alpha$ is in Ω . In that case, is easy to see that Lemma 25 holds since by basic set theory $(A \cap B) \subseteq A$ for all A and B.

 Π_1

Rule \sqcap -e By induction hypothesis, if ${}^{L}(\alpha \sqcap \beta)$ is a derivation with all hypothesis in $\{\mathcal{C}, \mathcal{S}\}$ then $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}(\alpha \sqcap \beta)$. From the definition of labeled concepts and Axiom 1 we can rewrite to $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}\alpha \sqcap {}^{L}\beta$ which from basic set theory guarantee $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}\alpha$.

Rule \sqcap -*i* Let us consider the two derivations ${}^{L}_{\alpha} \alpha$ and ${}^{L}_{\beta} \beta$ with all hypothesis in $\{C_1, S_1\}$ and $\{C_2, S_2\}$. By induction hypothesis, (1) $S_1 \models C_1 \sqsubseteq {}^{L}_{\alpha} \alpha$ an (2) $S_2 \models C_2 \sqsubseteq {}^{L}_{\beta}$. Now let us consider the deduction

$$\frac{\prod_{1} \quad \prod_{2}}{L_{\alpha} \quad L_{\beta}}$$

with all hypothesis in $\{C_1 \cup C_2, S_1 \cup S_2\}$. It is easy to see that from (1) and (2) $S_1 \cup S_2 \models (C_1 \sqcap C_2) \sqsubseteq {}^{L}\alpha$ and $S_1 \cup S_2 \models (C_1 \sqcap C_2) \sqsubseteq {}^{L}\beta$. From basic set theory we may write $S_1 \cup S_2 \models (C_1 \sqcap C_2) \sqsubseteq {}^{L}\alpha \sqcap {}^{L}\beta$ and finally from Axiom 1 we get the desired result $S_1 \cup S_2 \models (C_1 \sqcap C_2) \sqsubseteq {}^{L}(\alpha \sqcap \beta)$.

 Π_1

Rules \sqcup -*i* Again by induction hypothesis, if ${}^{L}\alpha$ is a derivation with all hypothesis in $\{\mathcal{C}, \mathcal{S}\}$ then $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}\alpha$. Using basic set theory we can rewrite to $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}\alpha \sqcup {}^{L}\beta$ and using Axiom 3 to $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}(\alpha \sqcup \beta)$.

Rule $(\sqcup - e)$ By induction hypothesis, if

$$\begin{array}{ccc} \Pi_1 & \begin{bmatrix} {}^L \alpha \end{bmatrix} & \begin{bmatrix} {}^L \beta \end{bmatrix} \\ \Pi_2 & \Pi_3 \\ \gamma & \text{and} & \gamma \end{array}$$

are derivations with hypothesis in $\{\mathcal{C}, \mathcal{S}\}$, $\{{}^{L}\alpha, \mathcal{S}\}$ and $\{{}^{L}\beta, \mathcal{S}\}$, respectively. Then, $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{L}(\alpha \sqcup \beta)$, $\mathcal{S} \models {}^{L}\alpha \sqsubseteq \gamma$ and $\mathcal{S} \models {}^{L}\beta \sqsubseteq \gamma$. From set theory $\mathcal{S} \models ({}^{L}\alpha \sqcup {}^{L}\beta) \sqsubseteq \gamma$ and from Axiom 3, $\mathcal{S} \models {}^{L}(\alpha \sqcup \beta) \sqsubseteq \gamma$. Now by the transitivity of set inclusion we can get the desired result $\mathcal{S} \models \mathcal{C} \sqsubseteq \gamma$.

Rules \forall -*i*, \forall -*e*, \exists -*i* and \exists -*e* They are sound since the premises and conclusions have the same semantics.

Rule \neg -e By induction hypothesis, if

$$\begin{array}{ccc} \Pi_1 & \Pi_2 \\ {}^L\alpha & \text{and} & {}^{\neg L}\neg\alpha \end{array}$$

are derivation with hypothesis in $\{C_1, S_1\}$ and $\{C_2, S_2\}$ we know that $S_1 \models C_1 \sqsubseteq {}^{L}\alpha$ and $S_2 \models C_2 \sqsubseteq {}^{\neg L} \neg \alpha$. Now consider the deduction

$$\frac{\prod_{1} \quad \prod_{2}}{\stackrel{L_{\alpha} \quad \neg L_{\neg \alpha}}{\perp}}$$

with hypothesis in $\{S_1 \cup S_2, C_1 \cup C_2\}$. By inductive hypothesis we can write $S_1 \cup S_2 \models C_1 \sqsubseteq {}^{L}\alpha$ and $S_2 \cup S_2 \models C_2 \sqsubseteq {}^{\neg L} \neg \alpha$. Now, from the fact that \mathcal{ALC} semantics states ${}^{L}\alpha$ and ${}^{\neg L} \neg \alpha$ as two disjoint sets, we have $C_1 \sqcap C_2 = \emptyset$ and we can write $S_1 \cup S_2 \models (C_1 \sqcap C_2) \sqsubseteq \bot$ as desired.

Rule $\neg -i$ If $\{\mathcal{C}, \mathcal{S}\}$ holds all the hypothesis of the deduction \bot then by induction hypothesis $\mathcal{S} \models \mathcal{C} \sqcap {}^{L} \alpha \sqsubseteq \bot$ (taking \bot as its semantics counterpart, namely, the empty set). From basic set theory $\mathcal{S} \models \mathcal{C} \sqsubseteq {}^{\neg L} \neg \alpha$ as desired.

Rule \perp_c The argument is similar from above.

Rule \sqsubseteq -e By induction hypothesis, if $\begin{array}{c} \Pi_1 & \Pi_2 \\ \gamma & \text{and} \end{array} \quad \gamma & \sqsubseteq \delta \end{array}$ are deduction with hypothesis in $\{\mathcal{C}_1, \mathcal{S}_1\}$ and $\{\mathcal{C}_2, \mathcal{S}_2\}$, we have (1) $\mathcal{S}_1 \models \mathcal{C}_1 \sqsubseteq \gamma$ and (2) $\mathcal{S}_2 \models \mathcal{C}_2 \sqcap \gamma \sqsubseteq \delta$. Let us now consider the application of rule \sqsubseteq -e to construct the derivation $\Pi_1 \quad \Pi_2$

$$\frac{\Pi_1}{\gamma} \quad \frac{\Pi_2}{\gamma \sqsubseteq \delta}$$

with hypothesis in $\{C_1 \cup C_2, S_1 \cup S_2\}$. From (2) and \mathcal{ALC} semantics we can conclude $S_1 \cup S_2 \models C_2 \sqcap \gamma \sqsubseteq \delta$. Finally, from basic set theory $C_1 \sqcap C_2 \sqsubseteq C_2$ we obtain $S_1 \cup S_2 \models C_1 \sqcap C_2 \sqsubseteq \delta$.

 $\begin{array}{c} & \gamma \\ \Pi_1 \\ \boldsymbol{Rule} \sqsubseteq \boldsymbol{-i} \end{array} \text{ By induction hypothesis, if } \delta \text{ is a deduction with hypothesis in} \\ \{\mathcal{C}, \mathcal{S}\} \text{ then } \mathcal{S} \models \mathcal{C} \sqsubseteq \delta \text{ and we conclude } \mathcal{S} \models \mathcal{C}^- \sqcap \gamma \sqsubseteq \delta \text{ where } \mathcal{C}^- \text{ is } \mathcal{C} - \{\gamma\}. \end{array}$

Rule Gen Let Π be a proof of ${}^{L}\alpha$ following from an empty set of hypothesis, we may write $\vdash {}^{L}\alpha$. That is, ${}^{L}\alpha$ is a DL-tautology or $\sigma({}^{L}\alpha)^{\mathcal{I}} \equiv \Delta^{\mathcal{I}}$. From the necessitation rule from Section II.6, whenever a concept C is a DLtautology, for any given R, the concept $\forall R.C$ will be also. For that, we can conclude that ${}^{\forall R,L}\alpha$ for any given R will be also a tautology. Remember that ${}^{\forall R,L}\alpha \equiv \forall R.\sigma({}^{L}\alpha).$

Let us now state the main theorem of this section.

Theorem 26 ND_{ALC} is sound regarding the standard semantics of ALC.

if $\Omega \vdash \gamma$ then $\Omega \models \gamma$

where $\Omega = (\mathcal{C}, \mathcal{S})$ is a tuple composed by a set of labeled concepts (C) and subsumptions (S).

Proof: It follows directly from Lemma 25.

V.3 ND_{ALC} Completeness

We use the same strategy from Section III.3 to prove ND_{ALC} completeness. That is, we show how the axiomatic presentation of ALC can be derived in ND_{ALC} .

Theorem 27 ND_{ALC} is complete regarding the standard semantics of ALC.

Proof: The DL rule of generalization

$$\frac{\vdash \alpha}{\vdash \forall R.\alpha}$$

is a derived rule of ND_{ACC} , for supposing $\vdash \alpha$ implies the existence of a proof (without hypothesis) Π of α . We prove $\forall R.\alpha$, without any new hypothesis by means of the following schema:

$$\begin{array}{c} \Pi \\ \vdots \\ \frac{\alpha}{R_{\alpha}} Gen \\ \overline{\forall R.\alpha} \forall -\mathrm{i} \end{array}$$

The following proofs justifies in ND_{ACC} the ALC axiom $\forall R.(A \sqcap B) \equiv (\forall R.A \sqcap \forall R.B)$, where $\alpha \equiv \beta$ is an abbreviation for $\alpha \sqsubseteq \beta$ and $\beta \sqsubseteq \alpha$, having obvious \equiv elimination and introduction rules, based on \sqsubseteq elimination and introduction rules.

 ND_{ACC} is a conservative extension of the classical propositional calculus. To see that, let Δ be a set of formulas of the form $\{\gamma_1, \ldots, \gamma_k, \alpha_1 \rightarrow \beta_1, \ldots, \alpha_n \rightarrow \beta_n\}$, where each γ_i , α_i and β_i are propositional formulas and α_i and β_i do not have any occurrence of \rightarrow . One can easily verify that any propositional classical consequence $\Delta \models \alpha$ is justified by a proof in classical **ND**. Now trasform this proof into a proof in ND_{ACC} by replacing each \rightarrow by \sqsubseteq .

Since ND_{ALC} is a conservative extension of the classical propositional **ND** system that has the generalization as a derived rule, and, proves axiom $\forall R.(A \sqcap B) \equiv (\forall R.A \sqcap \forall R.B)$, we have the completeness for ND_{ALC} by a relative completeness to the axiomatic presentation of ALC.

V.4 Normalization theorem for ND_{ALC}

In this section we prove the normalization theorem for ND_{ALC} . It is worth nothing that the usual reductions for obtaining a normal proof in classical propositional logic also applies to ND_{ALC} . Thus, the first thing to observe is that we follow Prawitz's [49] approach incremented by Seldin's [62] permutation rules for the classical absurdity \perp_c . That is, using a set of permutative rules, we move any application of \perp_c -rule downwards the conclusion. After this transformation we end up with a proof having in each *branch* at most one \perp_c -rule application as the last rule of it.

In order to move the absurdity rule downwards the conclusion and also to have a more succinct proof we restrict the language to the fragment $\{\neg, \forall, \sqcap, \sqsubseteq\}$. This will not limit our results since any \mathcal{ALC} formula can be rewritten in an equivalent one in this restricted fragment. We shall consider the system $ND^{-}_{\mathcal{ALC}}$ obtained from $ND_{\mathcal{ALC}}$ by removing from $ND_{\mathcal{ALC}} \sqcup$ -rules and \exists -rules. The Proposition 28 states that the system $ND^{-}_{\mathcal{ALC}}$ is essentially just a syntactic variation of $ND_{\mathcal{ALC}}$ system. **Proposition 28** The ND_{ALC} \sqcup -rules and \exists -rules are derived in ND⁻_{ALC}. Proof: Considering the concept description ${}^{L}\alpha \sqcup \beta$ being defined by ${}^{L}\neg(\neg \alpha \sqcap \neg \beta)$ and the concept description ${}^{L}\exists R.\alpha$ by ${}^{L}\neg \forall R.\neg \alpha$.

The rules $(\Box$ -i) can be derived as follows:

$$\frac{L_{\alpha}}{\frac{\neg L_{\neg \alpha}}{\neg L_{\neg \alpha}}} \frac{\left[\neg L_{(\neg \alpha \sqcap \neg \beta)} \right]^{1}}{\neg -e} \qquad \qquad \frac{L_{\beta}}{\frac{\bot}{\neg L_{\neg \beta}}} \frac{\left[\neg L_{(\neg \alpha \sqcap \neg \beta)} \right]^{1}}{\neg -e}}{\frac{\bot}{L_{\neg (\neg \alpha \sqcap \neg \beta)}} \neg -e} \qquad \qquad \frac{L_{\beta}}{\frac{\bot}{\neg (\neg \alpha \sqcap \neg \beta)}} \frac{\neg -e}{\neg -i}$$

where L contains only existencial quantified labels. $\neg L$ as described in Section III.1, is the negation of L, that is, universal quantified are changed to existential quantified and vice-versa. We note that rule \sqcup -i proviso requires that L contains only existential quantified labels, what makes the rule \sqcap -e proviso satisfied since $\neg L$ will only contains universal quantified labels. The rule \sqcup -e can also be derived:

$$\begin{bmatrix} {}^{L}\alpha \\ \vdots \\ \vdots \\ \neg \underline{[\neg \gamma]} \\ \hline \frac{\dot{\gamma} \\ \neg \underline{[\neg \gamma]}}{\neg \underline{[\neg \gamma]}} \\ \frac{\dot{\gamma} \\ \neg \underline{[\neg \gamma]}}{\neg \underline{[\neg \alpha]}} \\ \frac{\dot{\gamma} \\ \neg \underline{[\neg \gamma]}}{\neg \underline{[\neg \alpha]}} \\ \underline{[\neg \alpha]} \\$$

For rules (\exists -i) and (\exists -e), it is worth noting that ND⁻_{ALC} does not restrict the occurrence of existential labels, only the existential constructor of ALC. In other words, we have just reused the ALC constructors \forall and \exists to "type" the labels and keep track of the original role quantification when it is promoted to label. Nevertheless, although the confusion could be avoided if we adopted $\neg \forall R$ instead of $\exists R$ in the labels of ND⁻_{ALC} concepts, for clear presentation we choose to allow $\exists R$ on ND⁻_{ALC} concept's labels.

$$\frac{\frac{L,\exists R_{\alpha}}{\Box_{\neg\forall R,\neg\alpha}}}{\frac{\bot}{L_{\neg\forall R,\neg\alpha}}} \qquad \qquad \frac{\begin{bmatrix} (\neg L),\forall R_{\neg\alpha} \\ \neg L,\forall R_{\neg\alpha} \end{bmatrix}}{\frac{\neg L}{\Box_{\neg\forall R,\neg\alpha}}} \qquad \qquad \frac{\begin{bmatrix} (\neg L),\forall R_{\neg\alpha} \\ \neg L \\ \neg \forall R,\neg\alpha \end{bmatrix}}{\frac{\neg L}{L_{\neg\forall R,\neg\alpha}}}$$

In the sequel, we adopt Prawitz's [50] terminologies such as: formula-tree, deductions or derivations, rule application, minor and major premises, *threads*, *branches* and so on. Nevertheless some terminologies have different definition in our system, in that case, we will present that definition.

A branch in a ND_{ALC} or $ND^-{}_{ALC}$ deduction is an initial part $\alpha_1, \alpha_2, \ldots, \alpha_n$ of a thread such that α_n is either (i) the first formula occurrence in the thread that is a minor premise of an application of \sqsubseteq -e or (ii) the last formula occurrence of a thread (the end-formula of the deduction) if there is no such premise in the thread.

Given a deduction Π on ND_{ACC} or ND^{-}_{ACC} , we define the *height* of a formula occurrence α in Π inductively:

- if α is the end-formula of Π (conclusion), then $h(\alpha) = 0$;
- if α is a premise of a rule application, say λ , in Π and is not the endformula of Π , then $h(\alpha) = h(\beta) + 1$ where β is the conclusion of λ .

In a similar matter we can define the height of a *rule application* in a deduction.

A maximal formula is a formula occurrence that is consequence of an introduction rule and the major premise of an elimination rule. A maximal \Box -formula in a proof Π is a maximal formula that is a subsumption.

Lemma 29 Let Π be a proof of α (concept or subsumption of concepts) from Δ in ND⁻_{ACC}. Then there is a proof Π' without maximal \sqsubseteq -formulas.

Proof: We prove Lemma 29 by induction over the number of maximal \sqsubseteq -formulas occurrences. We apply a sequence of reductions choosing always a highest maximal \sqsubseteq -formula occurrence in the proof tree. In the reduction shown below we note that α cannot be a subsumption, so that, the reduction application will never introduce new maximal \sqsubseteq -formulas. In other words, we cannot have nested subsumptions, subsumptions are not concepts.

Lemma 30 (Moving \perp_c downwards on branches) If $\Omega \vdash_{\text{ND}^- ALC} \alpha$, then there is a deduction Π in ND^-_{ALC} of α from Ω where each branch in Π has at most one application of \perp_c -rule and, whenever it has one, it is one of the following cases: (i) the last rule applied in this branch; (ii) its conclusion is the premisse of a \sqsubseteq -i application, being this \sqsubseteq -i the last rule applied in the branch. *Proof*: Let II be a deduction in ND^-_{ALC} of α (subsumption of concepts or concept) from a set of hypothesis Δ . Let λ be an application of a \perp_c -rule in Π with $h(\lambda) = d$ such that there is no other application of \perp_c -rule above λ . Let us consider each possible rule application immediately below λ . For each case, we show how one can exchange the rules decreasing the height of λ .

Rule \forall -e

Rule ⊓-i

Rule ⊓-e

 $\exists L$

One must observe that in all reductions above, the conclusion of \perp_c rule application is the premise of the rule considered in each case. That is why the \neg -i rule was not considered, if so, the conclusion of \perp_c rule would have to be a \perp , wish is prohibit by the restriction on \perp_c -rule.

 $\mathbf{Rule} \sqsubseteq \mathbf{-e}$

The reductions below will be used in the induction step in Theorem 31.

Let Π be a deduction of α from Ω which contains a maximal formula occurrence F. We say that Π' is a reduction of Π at F if we obtain Π' by removing F using the reductions below. Since F clearly can not be atomic, each reduction refers to a possible principal sign of F. If the principal sign of F is ψ , then Π' is said to be a ψ -reduction of Π . In each case, one can easily verify that Π' obtained is still a deduction of α from Ω .

 \sqcap -reduction

$$\frac{\prod_{\substack{\forall L \\ \alpha \\ \forall L \\ \alpha \\ \forall L \\ \alpha \\ \forall L \\ \alpha \\ \neg L \\$$

\forall -reduction

 \neg -reduction

The fact that DL has no concept internalizing \sqsubseteq imposes quite particular features on the form of the normal proofs in ND_{ALC}.

A ND⁻ $_{ALC}$ deduction is called *normal* when it does not have maximal formula occurrences. Theorem 31 shows how we can construct a normal deduction in ND⁻ $_{ALC}$.

Consider a deduction Π in ND⁻_{ALC}. Applying Lemma 29 we obtain a new deduction Π' without any maximal \sqsubseteq -formulas. Then we apply Lemma 30 to reduce the number of applications of \bot_c -rule on each branch and moving the remaining downwards to the end of each branch. Without loss of generality we can from now on consider any deduction in ND⁻_{ALC} as having no maximal \sqsubseteq -formula and at most one \bot_c -rule application per branch, namely, the last one application in the branch.

Theorem 31 (normalization of ND_{ACC}) If $\Omega \vdash_{\text{ND}^-ACC} \alpha$, then there is a normal deduction in ND⁻_{ACC} of α from Ω .

Proof: Let Π be a deduction in ND^-_{ACC} having the form remarked in the previous paragraph. Consider the pair (d, n) where d is the maximum degree among the maximal formulas, and n is the number of maximal formulas with degree d. We proceed the normalization proof by induction on the lexicographic pair (d, n).

Let F be one of the highest maximal formula with degree d and consider each possible case according the principal sign of F.

If F has as principal sign \sqcap , applying the \sqcap -reduction we get a new deduction Π_1 with complexity (d_1, n_1) . We now have $d_1 \leq d$, depending on the existence of other maximal \sqcap -formulas on Π . If $d_1 = d$, then necessarily $n_1 < n$. The cases where the principal sign of F is \neg or \forall are similar. Two facts can be observed. First, the \sqsubseteq -reduction will not be used anymore, since Π does not have any remaining maximal \sqsubseteq -formula. Second, although the \neg -reduction can increase the number of maximal formulas, those maximal formulas will undoubtedly have degree less than d, so that, we indeed have $(d_1, n_1) < (d, n)$. So induction hypothesis we have that Π_1 is normalizable and so is Π for each principal sign considered.

As we have already mentioned ND_{ALC} has no concept internalization \sqsubseteq . This imposes quite particular form of the normal proofs in ND^{-}_{ALC} . Consider a thread in a deduction Π in ND⁻_{ALC}, such that no element of the thread is a minor premise of \sqsubseteq -e rule. We shall see that if Π is normal, the thread can be divided into two parts. There is one formula occurrence A in the thread such that all formula occurrences in the thread above A are premises of applications of elimination rules and all formula occurrences below A in the thread (except the last one) are premises of applications of introduction rules. Therefore, in the first part of the thread, we start from the top-most formula an decrease the complexity of that until A. In the second part of the thread we pass to more and more complex formulas. Given that, A is said thus the minimum formula in the thread. Moreover, each branch on Π has at most one application of \perp_c rule as its last rule application.

Normalization is important since form it one can provide complete procedure to produce canonical proofs in \mathcal{ALC} . Canonical proofs are important regarding explaining theoremhood.