
VII
Proofs and Explanations

VII.1 Introduction

From a logical point of view, the conceptual modeling tasks can be

summarized by the following steps:

1. Observe the “world”;

2. Determine what is relevant;

3. Choose or define your terminology by means of non-logical linguistic

terms;

4. Write down the main laws, the axioms, governing your “world”;

5. Verify the correctness (sometimes completeness too) of your set of laws,

that is, the theory constructed.

Steps 1, 2 and 3 may be facilitated by the use of an informal notation

(UML, ER, Flow-Charts, etc) and their respective methodology, but it is

essentially “Black Art” [42]. Step 4 demands quite a lot of knowledge of the

“world” begin specified (the model). Step 5 essentially provides finitely many

tests as support for the correctness of an infinite quantified property.

A deduction of a proposition α from a set of hypothesis Γ is essentially a

mean of convincing that Γ entails α. When validating a theory, represented by

a set of logical formulas, we mainly test entailments, possibly using a theorem

prover. Considering a model M specified by the set of axioms Spec(M), given

a property φ about M , from the entailment tests results one can rise the

following questions:

1. If M |= φ and Spec(M) � φ, why φ is truth? One must provide a proof

of φ;

2. If M |= φ, but Spec(M) �� φ from the attempt to construct the proof

of φ one may obtain a counter-model and from that counter-model an

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 82

explanation for the failed entailment. Model-checking based reasoning

can be used in such situation;

3. If M �|= φ, but Spec(M) � φ, why does this false proposition holds? In

this case, one must provide a proof of φ.

Here we are interested in the last case, tests providing a false positive

answer, that is, the prover shows a deduction/proof for an assertion that must

be invalid in the theory considered. This is one of the main reasons to explain

a theorem when validating a theory. We need to provide explanation on why

a false positive is entailed. Another reason to provide explanations of theorem

has to do with providing explanation on why some assertion is a true positive,

which is the first case. This latter use is concerned with certification; in this

case the proof/deduction itself serves as a certification document. This section

does not take into account educational uses of theorem provers, and their

resulting theorems, since explanations in these cases are more demanding.

For the tasks of providing proofs and explanations, we compare three

deduction systems, Analytic Tableaux (AT) [64], Sequent Calculus (SC) [66]

and Natural Deduction (ND) [49] as presented in the respective references.

In this section we consider the propositional logic (Minimal, Intuitionistic and

Classical, as defined in [49]). Let us consider a theory (presented by a knowledge

base KB) containing the single axiom

KB ≡ (Quad ∧ PissOnFireHydrant) → Dog

which classifies a dog as a quadruped which pisses on a fire hydrant. This KB

draws the following proposition

(Quad → Dog) ∨ (PissOnFireHydrant → Dog)

Figure VII.1 presents three from many more possible proofs of this

entailment in Propositional Tableaux system. Figure VII.2 presents three

possible proofs in Sequent Calculus, they are also sorted out from many others

possible proofs in Sequent Calculus. Figure VII.3 present the only two possible

normal proofs for this entailment.

Consider the derivations from Figure VII.1 and VII.2. They all corres-

pond to the Natural Deduction derivations that is showed in Figure VII.3.

The Tableaux and Sequent Calculus variants only differ in the order of rule

applications. In ND there is no such distinction. In this example, the order

of application is irrelevant in terms of explanation, although it is not for the

prover’s implementation. The pattern represented by the ND deduction is

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 83

V Quad ∧ PoFH → Dog

F (Quad → Dog) ∨ (PoFH → Dog)

F (Quad → Dog)

FPoFH → Dog

V Quad

FDog

V PoFH

FDog

FQuad ∧ PoFH

FQuad FPoFH

V Dog

V Quad ∧ PoFH → Dog

F (Quad → Dog) ∨ (PoFH → Dog)

F (Quad → Dog)

FPoFH → Dog

FQuad ∧ PoFH

FQuad

V Quad

FDog

FPoFH

V Quad

FDog

V PoFH

FDog

V Dog

V Quad

FDog

V Quad ∧ PoFH → Dog

FQuad ∧ PoFH

F (Quad → Dog) ∨ (PoFH → Dog)

F (Quad → Dog)

FPoFH → Dog

V Quad

FDog

V PoFH

FDog

FQuad FPoFH

V Dog

F (Quad → Dog) ∨ (PoFH → Dog)

F (Quad → Dog)

FPoFH → Dog

V Quad

FDog

Figure VII.1: Tableaux proofs

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 84

KB ⇒ PoFH ∧ Quad → Dog

Quad ⇒ Quad

Quad, PoFH ⇒ Quad

PoFH ⇒ PoFH

Quad, PoFH ⇒ PoFH

Quad, PoFH ⇒ Quad ∧ PoFH Dog ⇒ Dog

Quad, PoFH, PoFH ∧ Quad → Dog ⇒ Dog

Quad, PoFH, PoFH ∧ Quad → Dog ⇒ Dog,Dog

PoFH, PoFH ∧ Quad → Dog ⇒ (Quad → Dog), Dog

PoFH,KB ⇒ (Quad → Dog), Dog

KB ⇒ (Quad → Dog), (PoFH → Dog)

KB ⇒ (Quad → Dog) ∨ (PoFH → Dog)

KB ⇒ PoFH ∧ Quad → Dog

Quad ⇒ Quad

Quad, PoFH ⇒ Quad

PoFH ⇒ PoFH

Quad, PoFH ⇒ PoFH

Quad, PoFH ⇒ Quad ∧ PoFH Dog ⇒ Dog

Quad, PoFH, PoFH ∧ Quad → Dog ⇒ Dog

KB, Quad, PoFH ⇒ Dog

KB, Quad, PoFH ⇒ Dog,Dog

KB, PoFH ⇒ (Quad → Dog), Dog

KB ⇒ (Quad → Dog), (PoFH → Dog)

KB ⇒ (Quad → Dog) ∨ (PoFH → Dog)

KB ⇒ PoFH ∧ Quad → Dog

Quad ⇒ Quad

Quad, PoFH ⇒ Quad

PoFH ⇒ PoFH

Quad, PoFH ⇒ PoFH

Quad, PoFH ⇒ Quad ∧ PoFH

Dog ⇒ Dog

Dog ⇒ Dog,Dog

Quad, PoFH, PoFH ∧ Quad → Dog ⇒ Dog,Dog

KB, Quad, PoFH ⇒ Dog,Dog

KB, PoFH ⇒ (Quad → Dog), Dog

KB, PoFH ⇒ (Quad → Dog), Dog

KB ⇒ (Quad → Dog), (PoFH → Dog)

KB ⇒ (Quad → Dog) ∨ (PoFH → Dog)

Figure VII.2: Sequent Calculus proofs

close to what one expects from an argument drawing a conclusion from any

conjunction that it contains. This example shows how SC proofs carry more

information than that needed for a meaningful explanation. Concerning the

AT system, Smullyan [64] noted that AT proofs correspond to SC proofs by

considering sequents formed by positively signed formulas (Tα) at the ante-

cedent and negatively signed ones (Fα) appearing at the succedent. A Block

AT is defined then by considering AT expansion rules in the form of inference

rules. In this way, our example in SC would carry the same content useful for

explanation carried by the AT proofs. We must note that different SC proofs

and its corresponding AT proofs, as the ones shown, are represented, all of

them, by only two possible variations of normal derivations in ND.

Sequent Calculus seems to be the oldest among the three systems here

considered. Gentzen decided to move from ND to SC in order to detour from

technical problems faced by him in his syntactical proof of the consistency of

Arithmetic in 1936. As mentioned by Prawitz [49], SC can be understood as

a meta-calculus for the deducibility relation in ND. A consequence of this is

that ND can represent in only one deduction of α from γ1, . . . , γn many SC

proofs of the sequent γ1, . . . , γn ⇒ α. Gentzen made SC formally state rules

that were implicit in ND, such as the structural rules. We advice the reader

that the SC used here (see [66]) is a variation of Gentzen’s calculus designed

with the goal of having, in each inference rule, any formula occurring in a

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 85

[Quad]d

[Quad]a [PoFH]b

Quad ∧ PoFH Quad ∧ PoFH → Dog

Dog
b

PoFH → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥a
¬Quad

⊥
Dog

d
Quad → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥c
(Quad → Dog) ∨ (PoFH → Dog)

[Quad]a [PoFH]b

Quad ∧ PoFH Quad ∧ PoFH → Dog

Dog
b

PoFH → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥
Dog

a
Quad → Dog

(Quad → Dog) ∨ (PoFH → Dog) [¬((Quad → Dog) ∨ (PoFH → Dog))]c

⊥c
(Quad → Dog) ∨ (PoFH → Dog)

Figure VII.3: Natural Deduction proofs

premise as a sub-formula of some formula occurring in the conclusion. This

sub-formula property facilitates the implementation of a prover based on this

very system.

Consider a normal ND deduction Π1 of α from γ1, . . . , γk, and, a

deduction Π2 of γi (for some i = 1, k) from δ1, . . . , δn. Using latter Π1 in

the former Π2 deduction yields a (possibly non-normal) deduction of α from

γ1, δ1, . . . , γk, δn. This can be done in SC by applying a cut rule between

the proofs of the corresponding sequents δ1, . . . , δn ⇒ γi and γ1, . . . , γk ⇒ α

yielding a proof of the sequent γ1, δ1, . . . , γk, δn ⇒ α. The new ND deduction

can be normalized, in the former case, and the cut introduced in the latter case

can be eliminated. In the case of AT, the fact that they are closed by modus

ponens implies that closed AT for δ → γ and γ → α entails the existence of a

closed AT for δ → α. The use of cuts, or equivalently, lemmas may reduce the

size of a derivation. However, the relevant information conveyed by a deduction

or proof in any of these systems has to firstly consider normal deductions, cut-

free proofs and analytic Tableaux. They are the most representative formal

objects in each of these systems as a consequence of the sub-formula property,

holding in ND too. Besides that they are computationally easier to build than

their non-normal counterparts.

These examples are carried out in Minimal Logic. For Classical reasoning,

an inherent feature of most DLs, including ALC, the above scenario changes.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 86

Any classical proof of the sequent γ1, γ2 ⇒ α1, α2 corresponds a ND deduction

of α1 ∨ α2 from γ1, γ2, or, of α1 from γ1, γ2,¬α2, or, of α2 from γ1, γ2,¬α1,

or, of ¬γ1 from ¬α1, γ2,¬α2, and so on. In Classical logic 1, each SC may

represent more than one deduction, since we have to choose which formula

will be the conclusion in the ND side. We recall that it still holds that to

each ND deduction there is more than one SC proof. In order to serve as a

good basis for explanations of classical theorems we choose ND as the most

adequate. Note that we are not advocating that the prover has to produce ND

proofs directly. An effective translation to a ND might be provided. Of course

there must be a ND for the logic involved. If, besides that, a normalization is

provided for a system, we know that it is possible to always deal with canonical

proofs satisfying the sub-formula principle.

VII.2 An example of Explanations from Proofs
in SCALC

Let us briefly introduce the idea of providing explanations of proofs in

SCALC. Consider the proof:

Doctor ⇒ Doctor
weak-r

Doctor ⇒ Rich,Doctor
�-r

Doctor ⇒ (Rich �Doctor)
prom-∀

∀childDoctor ⇒ ∀child(Rich �Doctor)
weak-l

�, ∀childDoctor ⇒ ∀child(Rich �Doctor)
¬-r

� ⇒ ∃child¬Doctor, ∀child(Rich �Doctor)
weak-r

� ⇒ ∃child¬Doctor, ∃childLawyer, ∀child(Rich �Doctor)
∃-r

� ⇒ ∃child¬Doctor, ∃child.Lawyer, ∀child(Rich �Doctor)
∃-r

� ⇒ ∃child.¬Doctor, ∃child.Lawyer, ∀child(Rich �Doctor)
�-r

� ⇒ (∃child.¬Doctor) � (∃child.Lawyer), ∀child(Rich �Doctor)
prom-∃

∃child� ⇒ ∃child((∃child.¬Doctor) � (∃child.Lawyer)), ∃child,∀child(Rich �Doctor)
¬-l∃child�, ∀child¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∃child,∀child(Rich �Doctor)
∀-r∃child�, ∀child¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∃child∀child.(Rich �Doctor)
∀-l∃child�, ∀child.¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∃child∀child.(Rich �Doctor)
∃-r∃child�, ∀child.¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∃child.∀child.(Rich �Doctor)
∃-l∃child.�, ∀child.¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∃child.∀child.(Rich �Doctor)
�-l∃child.� � ∀child.¬((∃child.¬Doctor) � (∃child.Lawyer)) ⇒ ∃child.∀child.(Rich �Doctor)

This proof tree could be explained by the following text:

(1) Doctors are Doctors or Rich (2) So, Everyone having all children

Doctors has all children Doctors or Rich. (3) Hence, everyone either

has at least a child that is not a doctor or every children is a

doctor or rich. (4) Moreover, everyone is of the kind above , or,

1Intuitionistic Logic and Minimal Logic have similar behavior concerning the relationship
between their respective systems of ND and SC.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 87

alternatively, have at least one child that is a lawyer. (5) In other

words, if everyone has at least one child, then it has one child that

has at least one child that is a lawyer, or at least one child that is

not a doctor, or have all children doctors or rich. (6) Thus, whoever

has all children not having at least one child not a doctor or at least

one child lawyer has at least one child having every children doctors

or rich.

The above explanation was build from top to bottom (toward the

conclusion of the proof), by a procedure that tries not to repeat conjunctive

particles (if - then, thus, hence, henceforth , moreover etc) to put together

phrases derived from each subproof. In this case, phrase (1) come from weak-

r, �-r; phrase (2) come from prom-2; (3) is associated to weak-l, neg-r; (4)

corresponds to weak-r, the two following ∃-r and the �; (5) is associated to

prom-1 and finally (6) corresponds to the remaining of the proof. The reader

can note the large possibility of using endophoras in the construction of texts

from structured proofs as the ones obtained by either SCALC or SC[]
ALC.

In Section VII.3 an example illustrating the use of theoremhood to

explain reasoning on UML models is accomplished by proofs in ND, SC and

AT.

VII.3 Explaining UML in NDALCQI

In [4], DLs are used to formalize UML diagrams. It uses two DL lan-

guages: DLRifd orALCQI. The diagram on Figure VII.4 and its formalization

on Figure VII.5, are from [4].D. Berardi et al. / Artificial Intelligence 168 (2005) 70–118 81

Fig. 12. UML class diagram of Example 2.5.

2.4. General constraints

Disjointness and covering constraints are in practice the most commonly used con-

straints in UML class diagrams. However, UML allows for other forms of constraints,

specifying class identifiers, functional dependencies for associations, and, more generally

through the use of OCL [8], any form of constraint expressible in FOL. Note that, due

to their expressive power, OCL constraints could in fact be used to express the semantics

of the standard UML class diagram constructs. This is an indication that a liberal use of

OCL constraints can actually compromise the understandability of the diagram. Hence,

the use of constraints is typically limited. Also, unrestricted use of OCL constraints makes

reasoning on a class diagram undecidable, since it amounts to full FOL reasoning. In the

following, we will not consider general constraints.

We conclude the section with an example of a full UML class diagram.

Example 2.5. Fig. 12 shows a complete UML class diagram that models phone calls origi-

nating from different kinds of phones, and phone bills they belong to.13 The diagram shows

that a MobileCall is a particular kind of PhoneCall and that the Origin of each PhoneCall

is one and only one Phone. Additionally, a Phone can be only of two different kinds: a

FixedPhone or a CellPhone. Mobile calls originate (through the association MobileOrigin)

from cell phones. The association MobileOrigin is contained in the binary association Ori-

gin: hence MobileOrigin inherits the attribute place of association class Origin. Finally, a

PhoneCall is referenced in one and only one PhoneBill, whereas a PhoneBill contains at

least one PhoneCall. In FOL, the diagram is represented as shown in Fig. 13.

Notice that, in the above diagram, one would like to express that each MobileCall is

related via the association Origin only to instances of CellPhone. Similarly for the other

direction of the association. This can be expressed in FOL as follows:

∀y1, y2, x. MobileCall(y1) ∧Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃ CellPhone(y2)

∀y1, y2, x. CellPhone(y2) ∧Origin(x) ∧ call(x, y1) ∧ from(x, y2) ⊃MobileCall(y1)

The association MobileOrigin approximates this, making it explicit in the diagram that Mo-

bileCalls and CellPhones are related to each other.

13 This diagram is based on an example provided with I.COM, a prototype design tool for conceptual modeling

with reasoning support [17].

Figure VII.4: UML class diagram

We use examples of DL deductions from [4, page 84], using NDALCQI to

reason on the ALCQI KB. The idea is to exemplify how one can obtain from

NDALCQI proofs, a more precise and direct explanation.

The first example concerns a refinement of a multiplicity. That is,

from reasoning on the diagram, one can deduce that the class MobileCall

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 88

Origin � ∀place.String

Origin � ∃place.� � (≤ 1 place)

Origin � ∃call.PhoneCall � (≤ 1 call) � ∃from.Phone � (≤ 1 from)

MobileOrigin � ∃call.MobileCall � (≤ 1call) � ∃from.CellPhone � (≤ 1 from)

PhoneCall � (≥ 1 call
−.Origin) � (≤ 1 call

−.Origin)

� � ∀reference−.PhoneBill � ∀reference.PhoneCall

PhoneBill � (≥ 1 reference
−)

PhoneCall � (≥ 1 reference) � (≤ 1 reference)

MobileCall � PhoneCall

MobileOrigin � Origin

CellPhone � Phone

FixedPhone � Phone

CellPhone � ¬FixedPhone

Phone � CellPhone � FixedPhone

Figure VII.5: The ALCQI theory obtained from the UML diagram on Fig-
ure VII.4

participates on the association MobileOrigin with multiplicity 0 . . . 1, instead

of the 0 . . . ∗ presented in the diagram. The proof on NDALCQI is as follows,

where we abbreviate the class names for their first letters, for instance, Origin

(O), MobileCall (MC), call (c) and so on. Note that ¬ ≥ 2c−.MO is actually

an abbreviation for ≤ 1c−.MO.

[≥ 2 c
−.MO]2

MO � O

≥ 2 c
−.MO � ≥ 2 c

−.O

≥ 2 c
−.O

[MC]1 MC � PC

PC PC � ≥ 1 c
−.O � ≤ 1 c

−.O

≥ 1 c
−.O � ≤ 1 c

−.O

≤ 1 c
−.O

⊥ 2
¬ ≥ 2 c

−.MO
1

MC � ¬ ≥ 2 c
−.MO

To exemplify deductions on diagrams, an incorrect generalization

between two classes was introduced. The generalization asserts that each

CellPhone is a FixedPhone, which means the introduction of the new ax-

iom CellPhone � FixedPhone in the KB. From that improper generalization,

several undesirable properties could be drawn.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 89

The first conclusion about the modified diagram is that Cellphone is

now inconsistent. The NDALCQI proof below explicits that from the newly

introduced axiom and from the axiom CellPhone � ¬FixedPhone in the KB,

one can conclude that CellPhone is now inconsistent.

Cell � ¬Fixed [Cell]1

¬Fixed
Cell � Fixed [Cell]1

Fixed
⊥ 1

Cell � ⊥

The second conclusion is that in the modified diagram, Phone ≡

FixedPhone. Note that we have only to show that Phone � FixedPhone since

FixedPhone � Phone is an axiom already in the original KB. We can conclude

from the proof below that Phone � FixedPhone is not a direct consequence

of CellPhone being inconsistent, as stated in [4], but mainly as a direct con-

sequence of the newly introduced axiom and a case analysis over the possible

subtypes of Phone.

[Phone]1 Phone � Cell � Fixed
Cell � Fixed

[Cell] Cell � Fixed
Fixed [Fixed]

Fixed 1
Phone � Fixed

Below it is shown the above discussed subsumption proved in SC

(Sequent Calculus).

MO ⇒ O

≥ 2 call
−.MO ⇒ ≥ 2 call

−.O

MC,≥ 2 call
−.MO ⇒ ≥ 2 call

−.O

MC ⇒ PC PC ⇒ ≥ 1 call
−.O � ≤ 1 call

−.O

MC ⇒ ≥ 1 call
−.O � ≤ 1 call

−.O

MC,≥ 2 call
−.MO ⇒ ≥ 1 call

−.O � ≤ 1call−.O

MC,≥ 2 call
−.MO ⇒ ≥ 1 call

−.O � ≤ 1call−.O � ≥ 2call−.O

MC,≥ 2 call
−.MO ⇒ ⊥

MC ⇒ ¬ ≥ 2 call
−.MO

In order to the reader concretely see that it is harder explaining on

Tableaux basis than on Natural Deduction basis, we prove the same MC �

¬ ≥ 2 call−.MO subsumption in Tableaux. We follow [1, Section 2.3.2.1]

and represent the Tableaux constraints as ABox assertions without unique

name assumption. 2 The constraint“a belongs to (the interpretation of) C”

is represented by C(a) and “b is an R-filler of a” by R(a, b). A complete

presentation of the Tableaux procedure for ALCQI can be found at [1].

The Tableaux procedure starts translating the subsumption problem

to a satisfiability problem. The subsumption C � D holds iff C � ¬D is

unsatisfiable. In our case, C0 ≡ MC � ≥ 2 call−.MO should be unsatisfiable.

2Instead, we allow explicit inequality assertions of the form x �= y. Those assertions are
assumed symmetric.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA



Chapter VII. Proofs and Explanations 90

Since C0 is already in the NNF (negation normal form), we are ready to the

Tableaux algorithm, otherwise we would have to first transform it to obtain a

NNF equivalent concept description. Tableaux procedure starts with the ABox

A0 = {C0(x0)} and applies consistency-preserving transformation rules to the

ABox until no more rules apply. If the completed expanded ABox obtained

does not contain clashes (contradictory assertions), then A0 is consistent and

thus C0 is satisfiable, and incosistent (unsatisfiable) otherwise.

A0 is the initial ABox. By �-rule, we get A1. Than, by ≥-rule we get A2.

A3 is obtained by using the theory axioms MO � O and MC � PC. The ABoxA4 is

obtained by using the theory axiom PC �≥ 1 call−.O � ≤ 1 call−.O. Next, A5

by �-rule. ABox A5 now contains a contradiction, the individual a is required

to have at most one successor of type O in the role call−. Nevertheless, b and

c are also required to be of type O and successors of a in role call−, vide A3

and A2. This shows that C0 is unsatisfiable, and thus MC � ¬ ≥ 2 call−.MO.

{(MC � ≥ 2 call−.MO)(a)} (A0)

A0 ∪ {MC(a), (≥ 2 call−.MO)(a)} (A1)

A1 ∪ {call−(a, b), call−(a, c), MO(b), MO(c), a �= b, b �= c, a �= c} (A2)

A2 ∪ {O(b), O(c), PC(a)} (A3)

A3 ∪ {(≥ 1 call−.O� ≤ 1 call−.O)(a)} (A4)

A4 ∪ {(≥ 1 call−.O)(a), (≤ 1 call−.O)(a)} (A5)

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA




