
VIII
A Prototype Theorem Prover

Reasoning is the ability to make inferences, and automated reas-

oning is concerned with the building of computing systems that

automate this process. Stanford Encyclopedia of Philosophy

In this chapter we present a prototype implementation of the systems

SCALC and SCALCQ. We choose to implement the Sequent Calculi because

they represent a first step towards a ND implementations.

The prototype theorem prover was implemented in Maude [18]. So in Sec-

tion VIII.1 we present the Maude System and language and in Section VIII.2

we describe the prototype implementation.

VIII.1 Overview of the Maude System

This section presents a general overview of the main characteristics

of the Maude system and language. A complete description of Maude can

be found at [18]. We will only present the aspects of Maude used in our

implementation. Moreover, we will not present the theory foundations of

Maude in the “Rewriting logic” [47] since our implementation uses the Maude

system as an interpreter for the Maude language. We did not explored any

possible mapping between description logics and rewriting logic.

Maude’s basic programming statements are very simple and easy to

understand. They are equations and rules, and have in both cases a simple

rewriting semantics in which instances of the lefthand side pattern are replaced

by corresponding instances of the righthand side.

Maude programs are organized in modules. Maude modules containing

only equations are called functional modules. Modules containing rules are

called system module. In both cases, besides equations and rules, modules

may contain declarations of sorts (types), operators and variables.

A functional module defines one or more functions by means of equations.

Equations are used as simplification rules. Replacement of equals by equals

is performed only from left to right as simplification rewriting. A function

specification should have a final result and should be unique. Finally, Maude

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 92

equations can be conditional, that is, they are only applied if a certain condition

holds.

A Maude module containing rules and possibly equations is called a

system module. Rules are also computed by rewriting from left to right, but

they are not equations. Instead, they are understood as local transition between

states in a possibly concurrent system. For instance, a distributed banking

system can be represented as account objects and messages floating in a

“soup”. That is, in a multi-set or bag of objects and messages. Such objects and

messages in the soup can interact locally with each other according to specific

rewrite rules. The systems specified by rules can be highly concurrent and

nondeterministic. Unlike for equations, there is no assumption that all rewrite

sequences will lead to the same outcome. Furthermore, for some systems there

may not be any final states: their whole point may be to continuously engage

in interactions with their environment as reactive systems. Note that, since

the Maude interpreter is sequential, the concurrent behavior is simulated

by corresponding interleavings of sequential rewriting steps. Logically, when

rewriting logic was used as a logical framework to represent other logics a

rule specifies a logical inference rule, and rewriting steps therefore represent

inference steps.

Maude has two varieties of types: sorts, which correspond to well-defined

data, and kinds, which may contain error elements. Sorts can be structured

in subsort hierarchies, with the subsort relation understood semantically as

subset inclusion. This allows support for partial functions, in the sense that a

function whose application to some arguments has a kind but not a sort should

be considered undefined for those arguments. Furthermore, operators can be

subsort-overloaded, providing a useful form of subtype polymorphism.

In Maude the user can specify operators. An operator has arguments

(each one has a sort) and a result sort. Each operator has its own syntax,

which can be prefix, postfix, infix, or a “mixfix” combination. This is done

by indicating with underscores the places where the arguments appear in the

mixfix syntax. The combination of user-definable syntax with equations and

equational attributes for matching leads to a very expressive capability for

specifying any user-definable data. This is one of the main reasons that makes

Maude a perfect language/system for prototyping.

Rewriting with both equations and rules takes place by matching a

lefthand side term against the subject term to be rewritten. The most simpler

matching is syntactic matching, in which the lefthand side term is matched as

a tree on the (tree representation of the) subject term. Nevertheless, Maude

allows also more expressive matching like “equational matching”. when we

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 93

define operators in Maude we can use attributes like assoc (associative) and

comm (commutative) called equational attributes. For instance, if an operator

is defined with both of these attributed, terms having this operator as the

principal operator (the most external one), are not matching of trees, but as

multi-set, that is, modulo associativity and commutativity. In general, a binary

operator declared in a Maude can be defined with any combination of the

equational attributes: associativity, commutativity, left-, right-, or two-sided

identity, and idempotency.

A Maude system module implements a rewrite theory that must be

admissible, which means that rules should be coherent relative to the equations

[18]. If a rewrite theory contains both rules and equations, rewriting is

performed modulo such equations. Maude strategy to rewriting terms is to

first apply the equations to reach a canonical form, and then do a rewriting

step with a rule (in a rule-fair manner). This strategy is complete if we assume

coherence. Coherence means that we will not miss possible rewrites with rules

that could have been performed if we had not insisted on first simplifying the

term to its canonical form with the equations. Maude implicitly assumes this

coherence property.

VIII.2 A Prototype Theorem Prover

In this section we present our Maude implementation of SCALC and

SC[]
ALC sequent calculi. We will omit trivial details of the implementation

and focus on the important parts. Moreover, it is important to note that this

prototype is available for download at http://github.com/arademaker/SALC

and also includes the implementation of SCALCQI system an its counterpart

SC[]
ALCQI . Those implementations are not described here since they do not

differ considerably from the presented.

(a) The Logical Language

Due to the flexibility to specify user-definable data in Maude, the

definition of the description logics ALC and ALCQI syntax was effortless.

The language ALC is defined in the function module SYNTAX below. We

have defined sorts for atomic concepts and atomic roles besides the sort for

concepts and roles in general. The constants � and ⊥ were also specified.

fmod SYNTAX is

inc NAT .

sorts AConcept Concept ARole Role .

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 94

subsort AConcept < Concept .

subsort ARole < Role .

ops ALL EXIST : Role Concept -> Concept .

ops CTRUE CFALSE : -> AConcept .

op _&_ : Concept Concept -> Concept [ctor gather (e E) prec 31] .

op _|_ : Concept Concept -> Concept [ctor gather (e E) prec 32] .

op ~_ : Concept -> Concept [ctor prec 30] .

eq ~ CTRUE = CFALSE .

eq ~ CFALSE = CTRUE .

endfm

The syntax for defining operators is:

op NAME : Sort-1 Sort-2 ... -> Sort [attr-1 ...] .

where NAME may contain underscores to identify arguments position in infix

notation. The list of sorts before -> is the arguments and the sort after is the

sort of the resultant term.

Since our SCALC and SCALCQI systems reason over labeled concepts.

The next step was to extend the language with labels and some functions over

them. A labeled concept ∀R,∃Sα is represented by the term < al(R) ex(S) |

A > where A is a constant of the sort AConcept and R and S constants of the

sort ARole. In the modules below, we show the declarations of all operators

but omitted the specification of logical operators has-quant, has-lt and so

on.

fmod LABEL is

inc SYNTAX .

sorts Label ELabel ALabel QLabel .

subsorts ELabel ALabel QLabel < Label .

ops gt lt : Nat Role -> QLabel .

op ex : Role -> ELabel .

op al : Role -> ALabel .

endfm

The definition below of the operators neg and neg-aux should be clear

but being the first equational specification deserves an explanation. The

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 95

operator neg(L) operates over the list of labels L inverting all its quantifiers. In

Section III.1, we represent such operation as ¬L. We use neg-aux to interact

over the list accumulating the result in its second argument until the first

argument is completely consumed and the second argument returned.

fmod LALC-SYNTAX is

inc LABEL .

inc LIST{Label} .

vars L1 L2 : List{Label} .

vars R : Role .

var C : Concept .

sorts Expression LConcept .

subsort LConcept < Expression .

op <_|_> : List{Label} Concept -> LConcept [ctor] .

ops has-quant has-lt has-gt : List{Label} -> Bool .

ops has-al has-ex : List{Label} -> Bool .

op neg : List{Label} -> List{Label} .

op neg-aux : List{Label} List{Label} -> List{Label} .

...

eq neg(L1) = neg-aux(L1, nil) .

eq neg-aux(L1 al(R), L2) = neg-aux(L1, ex(R) L2) .

eq neg-aux(L1 ex(R), L2) = neg-aux(L1, al(R) L2) .

eq neg-aux(nil, L2) = L2 .

endfm

It is worth to note that this is not the only way to define neg in Maude,

the auxiliary function is not necessary at all, but we will use them frequently

in our implementation.

Finally, the module LALC-SYNTAX declares the sorts Expression and

LConcept (labeled concept). Expressions are labeled concepts but the distinc-

tion can be useful for future extensions of the calculi.

(b) The Sequent Calculus

In the function module SEQUENT-CALCULUS we implemented the generic

data structures that are used by all sequent calculi. The idea is that a proof

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 96

will be represented as a multi-set (“soup”) of goals and messages (operators

with sort State). Goals are sequents with additional properties to keep the

proof structure. Each goal will have an identifier (natural number), the goal

origin, the name of the rule used to produce that goal, and the sequent. In this

way, our proof is a graph represented as a multi-set of terms with sort Proof.

The goals operator holds a list of natural numbers as its argument, the list of

pending goals. The next operator is just an auxiliary operator that provides

in each proof step the next goal identifier.

fmod SEQUENT-CALCULUS is

inc LALC-SYNTAX .

inc SET{Expression} .

inc SET{Label} .

...

sorts Sequent Goal State Proof .

subsort Goal State < Proof .

op next : Nat -> State .

op goals : Set{Nat} -> State .

op [_from_by_is_] : Nat Nat Qid Sequent -> Goal [ctor] .

op nil : -> Proof [ctor] .

op __ : Proof Proof -> Proof [ctor comm assoc] .

op _|-_ : Set{Expression} Set{Expression} ->

Sequent [ctor prec 122 gather(e e)] .

op _:_|-_:_ : Set{Expression} Set{Expression} Set{Expression}

Set{Expression} -> Sequent [ctor prec 122 gather(e e e e)] .

...

endfm

We must also note that we have defined two operators 1 to construct

sequents. The operator |- is the simplest sequent with two multi-set of

expression, one on the left (sequent antecedent, possibly empty) and other on

the right (sequent succedent, possibly empty), it is used to implement SCALC.

The operator : |- : is used by the frozen versions of SCALC and SCALCQI .

The two additional external sets of expressions hold the frozen formulas.

1Term constructor in Maude terminology since these operators will never be reduced,
they are used to hold data.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 97

Consider the proof of the sequent ∀R.(A�B) ⇒ ∀R.A�∀R.B presented

in Figure VIII.1. One proof constructed by our system is represented by the

term below. The goal 0 is the initial state of the proof, goals 6 and 5 are the

initial sequents. Goal 1 is obtained from goal 0 applying the rule ∀-l. The empty

argument of goals(empty) represent the fact that this proof is complete, there

is no remaining goals to be proved.

goals(empty) next(7)

[0 from 0 by ’init is < nil | ALL(R, A & B) > |-

< nil | ALL(R, A) & ALL(R, B) >]

[1 from 0 by ’forall-l is < al(R) | A & B > |-

< nil | ALL(R, A) & ALL(R, B) >]

[2 from 1 by ’and-l is < al(R) | A >, < al(R) | B > |-

< nil | ALL(R, A) & ALL(R, B) >]

[3 from 2 by ’and-r is < al(R) | A >, < al(R) | B > |- < nil | ALL(R, A) >]

[4 from 2 by ’and-r is < al(R) | A >, < al(R) | B > |- < nil | ALL(R, B) >]

[5 from 3 by ’forall-r is < al(R) | A >, < al(R) | B > |- < al(R) | A >]

[6 from 4 by ’forall-r is < al(R) | A >, < al(R) | B > |- < al(R) | B >]

Figure VIII.1: An example of a proof in the implementation of SCALC

VIII.3 The SCALC System

The SCALC system was implemented in a system module. Basically, each

rule of the system is a Maude rewriting rule. The rewriting procedure construct

the proof bottom-up.

mod SYSTEM is

inc SEQUENT-CALCULUS .

[rules and equations presented below]

endm

The first observation regards the structural rules of SCALC. Since the left

and right sides of the sequents are sets of formulas, we do not need permutation

of contraction rules. We also proved in Section III.4 that the cut rule was not

necessary too. Nevertheless, we could lose completeness if we have omitted

the weak rules. We need them to allow the promotional rules applications.

Moreover, the initial sequent were implemented as an equation rather than as a

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 98

rule. We used the fact that in Maude all rewriting steps with rules are executed

module equational reductions. The implementation of the initial sequents using

equations means that a goal detected as initial will be removed from the goals

lists right aways.

eq [X from Y by Q is ALFA, E |- E, GAMMA] goals((X, XS)) =

[X from Y by Q is ALFA, E |- E, GAMMA] goals((XS))

[label initial] .

rl [weak-l] :

[X from Y by Q is ALFA, E |- GAMMA] next(N) goals((X, XS))

=>

[X from Y by Q is ALFA, E |- GAMMA] next(N + 1) goals((XS, N))

[N from X by ’weak-l is ALFA |- GAMMA] .

First we note the difference between rules and equations. They are very

similar expected that the former uses => and the later = as a term separator.

rl [label] : term-1 => term-2 [attr-1,...] .

eq term-1 = term-2 [attr-1,...] .

We note that on each rule the goal being rewritten must be repeated in

the left and right side of the rule. See weak rule above. If we omit the goal on

the right side of the rule we would be removing the goal from the proof. We

are actually including new goals on each step, that is, we put new goals in the

“soup” of goals.

Reading bottom-up, some rules create more than one (sub)-goal from

a goal. This is the case of rule �-r below. Besides that, whenever a rule has

some additional proviso, we use Maude conditional rules to express the rule

proviso in the rule condition. In the rule �-r, the proviso states that in the

list of labels of the principal formula all labels must be universal quantified, in

SCALC, this is the same of saying that L cannot contain existential quantified

labels (has-ex(L)).

crl [and-r] :

[X from Y by Q is ALFA |- GAMMA, < L | A & B >]

next(N) goals((X, XS))

=>

next(N + 2) goals((XS, N, N + 1))

[X from Y by Q is ALFA |- GAMMA, < L | A & B >]

[N from X by ’and-r is ALFA |- GAMMA, < L | A >]

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 99

[N + 1 from X by ’and-r is ALFA |- GAMMA, < L | B >]

if not has-ex(L) .

The rule condition can consist of a single statement or can be a conjunc-

tion formed with the associative connective /\. Rule promotional-∃ has two

conditions. The first, from left to right, is the rule proviso (all concepts on the

left-side of the sequent must have the same most external label), the second

is actually just an instantiation of the variable GAMMA’ with the auxiliary op-

erator remove-label. GAMMA’ will be the right-side of the new sequent (goal)

created. remove-label iterate over the concepts removing the most external

label of them.

crl [prom-exist] :

[X from Y by Q is < ex(R) L | A > |- GAMMA]

next(N) goals((X, XS))

=>

next(N + 1) goals((XS, N))

[X from Y by Q is < ex(R) L | A > |- GAMMA]

[N from X by ’prom-exist is < L | A > |- GAMMA’]

if all-label(GAMMA, ex(R)) = true

/\ GAMMA’ := remove-label(GAMMA, ex(R), empty) .

The implementation of the remain rules is straightforward. We have one

observation more about the rules above, the argument of next(N) gives the

next goal identifier. The argument of goals holds the list of goals not solved.

A derivation with goals(empty) in the “soup” is a completed proof of the

sequent in the goal with identifier 0.

(a) The SC[]
ALC System Implementation

The system SC[]
ALC is implemented in a very similar way of SCALC. The

main differences are that sequents now have frozen concepts and two additional

rules had to be implemented. Concepts that were frozen together will never be

unfrozen separated, so that, instead of defining an operator to freeze a concept,

we defined a constructor of a set of frozen concepts.

mod SYSTEM is

inc SEQUENT-CALCULUS .

...

op [_,_,_] : Nat Nat Set{Expression} -> Expression .

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 100

The constructor of frozen set of concepts has three arguments. The first

argument is the context identifier (see Section IV.2) created to group the pair

of sets of concepts frozen together on the sequent antecedent and succedent.

The second argument is the state of the context where 0 means that the context

is saved but not reduced yet (context was frozen by weak rule), and 1 means

that the context was reduced (context was frozen by frozen-exchange rule).

The last argument is the set of frozen concepts.

Almost all rules of SC[]
ALC do not touch in the frozen concepts. This is

the case of negation rule below. We note the use of the operator neg inverting

the list of labels of a concept.

rl [neg-l] :

[X from Y by Q is FALFA : ALFA, < L | ~ A > |- GAMMA : FGAMMA]

next(N) goals((X, XS))

=>

next(N + 1) goals((XS, N))

[X from Y by Q is FALFA : ALFA, < L | ~ A > |- GAMMA : FGAMMA]

[N from X by ’neg-l is FALFA : ALFA |- GAMMA, < neg(L) | A > : FGAMMA] .

The weak-r rule was implemented as a conditional rewrite rule below.

The left and right-side of the sequent in goal X were frozen and added to the

set of frozen concepts on the left and right side of the sequent in the new goal

N. The variables FALFA and FGAMMA match the set of frozen concepts on both

sides. The weak-l rule is similar.

crl [weak-r] :

[X from Y by Q is FALFA : ALFA |- GAMMA, E : FGAMMA]

next(N) goals((X, XS))

=>

next(N + 1) goals((XS, N))

[X from Y by Q is FALFA : ALFA |- GAMMA, E : FGAMMA]

[N from X by ’weak-l is (FALFA, [M:Nat, 0, ALFA]) : ALFA |-

GAMMA : (FGAMMA, [M:Nat, 0, (GAMMA, E)])]

if M:Nat := next-frozen(union(FALFA, FGAMMA)) .

The other SC[]
ALC rule that modify the set of frozen concepts in a goal

is the frozen-exchange rule. The Maude pattern matching mechanism was

very useful in the implementation of this rule. The rule select randomly 2 a

2The selection is made by pattern matching of a context module commutative and associ-
ative, thanks to the attributes of the operator comma, the constructor of Set{Expression}
terms.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 101

context (sets of frozen concepts) to unfreeze – [O:Nat, 0, ES1] and [O:Nat,

0, ES2] – and freeze the set of formulas that are in the current context –

ALFA and GAMMA. The pattern also guarantee that only contexts saved but

not already reduced (second argument equals zero) will be selected. The new

context created in the goal N has the second argument equals one – it is a

reduced context. Maude’s pattern matching mechanism is very flexible and

powerful. On the other hand, this rule does not provide much control over the

choice of contexts (set of frozen formulas) that will be unfreeze. This choice

can have huge impact in the performance of a proof construction.

crl [frozen-exchange] :

[X from Y by Q is [O:Nat,0,ES1], FALFA : ALFA |-

GAMMA : FGAMMA, [O:Nat,0,ES2]]

goals((X, XS)) next(N)

=>

goals((XS, N)) next(N + 1)

[X from Y by Q is [O:Nat,0,ES1], FALFA : ALFA |-

GAMMA : FGAMMA, [O:Nat,0,ES2]]

[N from X by ’frozen-exchange is

([M:Nat,1,ALFA], FALFA) : ES1 |- ES2 : (FGAMMA, [M:Nat,1,GAMMA])]

if M:Nat := next-frozen(union(([O:Nat,0,ES1], FALFA),

([O:Nat,0,ES2], FGAMMA))) .

(b) The Interface

The current user interface of the prototype is the Maude prompt. We do

not provide any high level user interface yet, although different alternatives

exist for it. For example, we could implement the DIG [2] interface using

Maude external objects [18]. The system module THEOREM-PROVER is the main

interface with the prototype. It basically declares some constants of the sort

AConcept (atomic concepts) and ARole (atomic roles) and the operator th end.

This operator is a “syntax sugar” to assist the user in the creation of the proof

term in its initial state ready to be rewritten.

mod THEOREM-PROVER is

inc SYSTEM .

ops A B C D E : -> AConcept .

ops R S T U V : -> ARole .

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 102

op th_end : Sequent -> Goal .

vars ALFA GAMMA : Set{Expression} .

var SEQ : Sequent .

eq th SEQ end =

[0 from 0 by ’init is SEQ] next(1) goals(0) .

endm

The module THEOREM-PROVER includes the module SYSTEM, where SYSTEM

can be any of the implemented systems presented in the previous sections.

With the help of the above module we can prove the theorem from

Example 1 (1) using two alternatives.

∃child.� � ∀child.¬(∃child.¬Doctor) � ∃child.∀child.Doctor (1)

We can use the already declared constants assuming A = Doctor and the

role R = child or we can declare two new constants in a module that imports

THEOREM-PROVER.

mod MY-TP is

inc THEOREM-PROVER .

op child : -> ARole .

op Doctor : -> AConcept .

endm

In the second case, after entering the module MY-TP in Maude, we could

test the proof initialization with the Maude command reduce (red). The

command rewrite the given term using only equations. In that case, only the

equation of the operator th end from module THEOREM-PROVER is applied.

Maude> red th < nil | EXIST(child, CTRUE) &

ALL(child, ~ EXIST(child, ~ Doctor)) > |-

< nil | EXIST(child, ALL(child, Doctor)) > end .

result Proof: next(1) goals(0)

[0 from 0 by ’init is

< nil | EXIST(child, CTRUE) & ALL(child, ~ EXIST(child, ~ Doctor)) >

|-

< nil | EXIST(child, ALL(child, Doctor)) >]

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 103

To construct a proof of a given sequent, we can use Maude rewrite or

search command. The former will return one possible sequence of rewriting

steps until a canonical term 3 is reached. The latter will search for all possible

paths of rewriting steps from the given initial state until the final given state.

Below we present the same sequent with Doctor and child replaced by

A and R respectively. As we can see, due the presence of weak rules and the

lack of a strategy to control the applications of the rules, we failed to obtain a

proof for a valid sequent using the command rewrite.

Maude> rew th < nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) > end .

result Proof: next(3) goals(2)

[0 from 0 by ’init is

< nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) >]

[1 from 0 by ’weak-l is empty |- < nil | EXIST(R, ALL(R, A)) >]

[2 from 1 by ’weak-r is empty |- empty]

The rewrite command explores just one possible sequence of rewrites

of a system described by a set of rewrite rules and an initial state. The

search command allows one to explore (following a breadth-first strategy) the

reachable state space in different ways.

Using the search command we can ask for all possible proof trees that

can be constructed for a given sequent. Moreover, we can limit the space search

with the two optional parameters [n,m] where n providing a bound on the

number of desired solutions and m stating the maximum depth of the search.

The search arrow =>! indicates that only canonical final states are allowed,

that is, states that cannot be further rewritten. On the left-hand side of the

search arrow we have the starting term, on the right-hand side the pattern

that has to be reached, in the case below, P:Proof goals(empty).

Maude> search [1,20]

th < nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) >

|- < nil | EXIST(R, ALL(R, A)) > end

=>! P:Proof goals(empty) .

P:Proof --> next(10)

[0 from 0 by ’init is

3A term that cannot be further rewritten.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 104

< nil | EXIST(R, CTRUE) & ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) >]

[1 from 0 by ’and-l is < nil | ALL(R, ~ EXIST(R, ~ A)) >,

< nil | EXIST(R, CTRUE) > |- < nil | EXIST(R, ALL(R, A)) >]

[2 from 1 by ’forall-l is < nil | EXIST(R, CTRUE) >,

< al(R) | ~ EXIST(R, ~ A) > |- < nil | EXIST(R, ALL(R, A)) >]

[3 from 2 by ’neg-l is < nil | EXIST(R, CTRUE) > |-

< nil | EXIST(R, ALL(R, A)) >, < ex(R) | EXIST(R, ~ A) >]

[4 from 3 by ’exist-r is < nil | EXIST(R, CTRUE) > |-

< ex(R) | ALL(R, A) >, < ex(R) | EXIST(R, ~ A) >]

[5 from 4 by ’forall-r is < nil | EXIST(R, CTRUE) > |-

< ex(R) | EXIST(R, ~ A) >, < ex(R) al(R) | A >]

[6 from 5 by ’exist-r is < nil | EXIST(R, CTRUE) > |-

< ex(R) ex(R) | ~ A >, < ex(R) al(R) | A >]

[7 from 6 by ’exist-l is < ex(R) | CTRUE > |- < ex(R) ex(R) | ~ A >,

< ex(R) al(R) | A >]

[8 from 7 by ’prom-exist is < nil | CTRUE > |-

< ex(R) | ~ A >, < al(R) | A >]

[9 from 8 by ’neg-r is < nil | CTRUE >, < al(R) | A > |- < al(R) | A >]

Above, the variable P in the input pattern was bound in the result to the

desired proof term, that is, the one with goals(empty). Since P was the only

variable in the pattern, the result shows only one binding. In other worlds,

search results are bindings for variables in the pattern given after the search

arrow.

Distributed with our prototype there is a simple Maude-2-LATEX proof

terms translator developed by Caio Mello. 4 The translator receives as input a

term like the one above and return its representation in LATEX using the LATEX

package bussproof [12]. The output in LATEX is:

�, ∀RA ⇒
∀RA

¬-r
� ⇒

∃R
¬A, ∀RA

prom-∃∃R
� ⇒

∃R,∃R
¬A, ∃R,∀RA

∃-l
∃R.� ⇒

∃R,∃R
¬A, ∃R,∀RA

∃-r
∃R.� ⇒

∃R
∃R.(¬A), ∃R,∀RA

∀-r
∃R.� ⇒

∃R
∃R.(¬A), ∃R∀R.A

∃-r
∃R.� ⇒

∃R
∃R.(¬A), ∃R.∀R.A

¬-l
∃R.�, ∀R¬∃R.(¬A) ⇒ ∃R.∀R.A

∀-l
∃R.�, ∀R.(¬∃R.(¬A)) ⇒ ∃R.∀R.A

�-l
∃R.� � ∀R.(¬∃R.(¬A)) ⇒ ∃R.∀R.A

4An undergraduate student working at TecMF/PUC-Rio Lab.

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 105

(c) Defining Proof Strategies

An automated theorem prover would not be efficient or even useful if

we cannot provide strategies for deduction rules applications. Moreover, from

Section IV.2 we know that SC[]
ALC deduction rules were designed to be used

in a very specific strategy. Maude support two ways to define strategies for

rewriting rules application. The first option is the original one, we can use

Maude reflection feature to control of rules applications at the metalevel

developing a full user-definable internal strategies. The second options is to

use the Maude Strategy Language [25].

The strategy language allows the definition of strategy expressions that

control the way a term is rewritten. The strategy language was designed to be

used at the object level, rather than at the metalevel. There exist a strict

separation between the rewrite rules in system modules and the strategy

expressions, that are specified in separate strategy modules. Moreover, a

strategy is described as an operation that, when applied to a given term,

produces a set of terms as a result, given that the process is nondeterministic

in general. In the current version of Maude, not all features of the strategy

language are available in Core Maude. To be more precise, the Core Maude

does not support recursive strategies. Recursion is achieved by giving a name

to a strategy expression and using this name in the strategy expression itself or

in other related strategies. Given that limitation, we use the prototype strategy

language implementation in Full Maude [18].

In our current prototype version we defined the strategy described in

Section IV.2 to control SC[]
ALC rules applications. The basic strategies consist

of the application of a rule (identified by the corresponding rule label) to a

given term. Strategies operators allow the construction of complex strategy

expressions.

The strategy expand presented below controls how the rules of SC[]
ALC

ought to be applied. It can be interpreted as: the system must first try to

reduce the given term using one of the promotional rules (the union operator

is |). If it is successful, the system must try to further transform the result

term using ∀-{l,r}, ∃-{l,r}, �-{l,r}, �-{l,r} or ¬-{l,r} (the operator ; the a

concatenation). If neither the promotional rules nor the previous mentioned

rules could be applied, one of the weak rules should be tried. If none of the

previous rules could by applied, the frozen-exchange rule must be tried.

(smod BACKTRACKING-STRAT is

strat solve : @ Proof .

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 106

strat expand : @ Proof .

var P : Proof .

sd expand := (((try(prom-exist | prom-all) ;

(and-l | and-r | or-l | or-r | forall-l | forall-r |

exist-l | exist-r | neg-l | neg-r))

orelse (weak-l | weak-r))

orelse frozen-exchange) .

sd solve := if (match P s.t. (is-solution(P))) then

idle

else

expand ; if (match P s.t. (is-ok(P))) then solve else idle fi

fi .

endsm)

The strategy expand defines how each proof step will be performed. The

solve strategy is the complete strategy to construct a proof. It is basically

a backtracking procedure, on each step, the system verifies if it has already

a solution – using the defined operator is-solution. If the term is not a

solution, it executes the expand step and check if the result term is a valid

term, that is, a term still useful to reach to a solution – this is done with the

operator is-ok. If the term is still valid but not yet a solution it continues

recursively.

The implementations of is-solution and is-ok were done in a separ-

ated module. The operator is-ok evaluates to false whenever we detected a

loop in the proof construction. There are differents loop situations, below we

present one of them, when we have a sequent with two equal sets of frozen

formulas (contexts).

op is-ok : Proof -> Bool .

op is-solution : Proof -> Bool .

eq is-solution(P:Proof goals(empty)) = true .

eq is-solution(P:Proof) = false [owise] .

...

eq is-ok(P:Proof

[M from N by RL is FALFA1, [X1, X3, FALFA0],

[X2, X4, FALFA0] : ALFA |- GAMMA :

[X1, X3, FGAMMA0], [X2, X4, FGAMMA0], FGAMMA1])

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

Chapter VIII. A Prototype Theorem Prover 107

= false .

eq is-ok(P:Proof) = true [owise] .

Using the solve strategy defined above, we can prove the subsumption

from Equation 1 in SC[]
ALC. We use the strategy aware command srew instead

of the rew. In additional, since we are not using Full Maude, the command in

Maude prompt is inside parentheses.

Maude> (srew th empty : < nil | EXIST(R, CTRUE) &

ALL(R, ~ EXIST(R, ~ A)) > |-

< nil | EXIST(R, ALL(R, A)) > : empty end using solve .)

result Proof :

goals(empty)next(10)

[0 from 0 by ’init is empty : < nil | EXIST(R,CTRUE) &

ALL(R,~ EXIST(R,~ A))> |-

< nil | EXIST(R,ALL(R,A))> : empty]

[1 from 0 by ’and-l is empty : < nil | ALL(R,~ EXIST(R,~ A))>,

< nil | EXIST(R,CTRUE)> |- < nil | EXIST(R,ALL(R,A))> : empty]

[2 from 1 by ’forall-l is empty : < nil | EXIST(R,CTRUE)>,

< al(R)| ~ EXIST(R,~ A)> |- < nil | EXIST(R,ALL(R,A))> : empty]

[3 from 2 by ’exist-l is empty : < al(R)| ~ EXIST(R,~ A)>,

< ex(R)| CTRUE > |- < nil | EXIST(R,ALL(R,A))> : empty]

[4 from 3 by ’exist-r is empty : < al(R)| ~ EXIST(R,~ A)>,

< ex(R)| CTRUE > |- < ex(R)| ALL(R,A)> : empty]

[5 from 4 by ’forall-r is empty : < al(R)| ~ EXIST(R,~ A)>,

< ex(R)| CTRUE > |- < ex(R)al(R)| A > : empty]

[6 from 5 by ’neg-l is empty : < ex(R)| CTRUE > |- < ex(R)| EXIST(R,~ A)>,

< ex(R)al(R)| A > : empty]

[7 from 6 by ’prom-exist is empty : < nil | CTRUE > |- < nil | EXIST(R,~ A)>,

< al(R)| A > : empty]

[8 from 7 by ’exist-r is empty : < nil | CTRUE > |- < al(R)| A >,

< ex(R)| ~ A > : empty]

[9 from 8 by ’neg-r is empty : < nil | CTRUE >, < al(R)| A > |-

< al(R)| A > : empty]

DBD
PUC-Rio - Certificação Digital Nº 0521487/CA

