
2
A Linear Time Approximation Algo-
rithm for PFS

2.1 Introduction

In the last fifty years, PFS has been a central and well-studied problem

in scheduling community, known by its intractability, from theoretical and

practical aspects. Since PFS was proved to be Strongly NP-Hard by Garey,

Johnson and Sethi [20], a considerable amount of work has been employed in

finding good approximation algorithms for this problem.

The purpose of this chapter is to introduce a new approximation algorithm

for the PFS problem. This algorithm achieves an approximation guarantee

of 2
√
2n+m and runs in linear time over the instance size. This is the

best performance ratio already obtained for the PFS problem in the case of

n = Θ(m). Furthermore, a novel connection between PFS and monotone

subsequence problems is established, resulting on an extension of the Erdös-

Szekeres theorem to weighted monotone subsequences.

(a) Previous Results

Gonzalez and Sahni [23] showed that every busy scheduling for PFS has an

approximation factor of m times the optimal solution. Nowicki and Smutnicki

[43, 44, 45] explored worst-case analysis on the approximation factor of several

PFS algorithms, achieving a tight bound of ⌈m/2⌉ for all them. Potts, Shmoys
and Williamson [50] proved the existence of some instances for which non-

permutation based solutions are Ω(
√
m) less costly than permutation ones.

Sevastjanov [58] developed geometric methods to analyze scheduling problems,

including PFS, introducing an algorithm that always produces a permutation

schedule with additive factor bounded by O(m2)max{tij}. Hall [30] presented
a PTAS for PFS when m = 3. Sviridenko [62] introduced a randomized

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 19

algorithm for PFS based on Chernoff Bounds arguments with a performance

ratio of O(
√
m logm) and an additive factor limited to O(m logm)max{tij}.

Approximation ratios for a large number of PFS heuristics were surveyed by

Gupta, Koulamas and Kyparisis[27].

The best known up to date approximation algorithm for PFS, due to Nagarajan

and Sviridenko [40], has a performance ratio of O(
√

min {n,m}) and is

based on a connection between PFS and the longest increasing subsequence

problem. This reduction allows proving that a random permutation achieves

the claimed approximation guarantee. A corresponding deterministic algorithm

is obtained further using the method of pessimistic estimators [51]. Finally,

this algorithm answers an open question from Potts, Shmoys and Williamson

[50] matching the gap between permutation and non-permutation schedules

optimal solutions. Due to the relevance of the approximation factor obtained,

the time complexity analysis of the deterministic approximation algorithm

from Nagarajan and Sviridenko [40] was not explicitly given in their paper. In

the appendix 2.6 of this chapter, a lower bound of Ω(n4.m) is established for

it.

(b) Contribution and Organization

The objective of this work is to present a simple and intuitive determinis-

tic approximation algorithm for PFS with performance ratio 2
√
2n+m and

time complexity Θ(nm). These results were achieved independently [60] and

in parallel with the ones of Nagarajan and Sviridenko, as mentioned in their

published paper [41](section 1.2). In the case that n = Θ(m) this is the best

approximation algorithm already obtained for PFS, achieving the same ap-

proximation factor of [40], but in linear time complexity. A novel technique for

performance guarantee analysis of PFS solutions is also developed, exploring

the relationship between weighted monotone subsequence problems and PFS.

We prove that a job permutation reaching the claimed approximation gua-

rantee has the cells representing the longest operation of each job comprising

a specific path on the processing times matrix. Furthermore, a permutation

with this property can be obtained by a simple job sorting algorithm. Its ap-

proximation factor analysis is based on deterministic combinatorial arguments

related to some extensions of the Erdös-Szekeres Theorem, from which the

lower bounds on optimal solutions are obtained.

The main idea considered in work involves the analysis of PFS by a new

perspective related to matrix games and monotone subsequences. First of all,

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 20

PFS is considered as an equivalent, but more intuitive, matrix game problem

between two players. In this game, the first player selects a permutation over

the columns of an original matrix, creating a new matrix, and the second player

tries to select a sequence of cells in such modified matrix with the maximum

sum possible. The sequence of cells selected by player two must follow a specific

property, composing what we call a path. The objective of player one is to find

a permutation that turns the task of player two difficult. We argue that this

game, with the objective of acting as player one, is equivalent to PFS.

Once the problem is defined, a natural strategy to player would be to choose

a permutation that avoids cells with high weights on a path for player two.

An approximation algorithm with such property, based on a simple ordering

of jobs, is therefore presented. One of the main contributions in this work

comes from the technique used to analyze the approximation guarantee of

this algorithm. We prove that it is possible to obtain upper bounds on the

approximation factor of the presented algorithm by a reduction of the matrix

game problem to the Minimum Double Weighted Sequence Problem. This

last problem is a generalization of the classical problem considered by Erdös

and Szekeres [12] in which every sequence element has two associated weights,

one if it is considered in increasing subsequences and other if considered in

decreasing ones, and the objective is to define a sequence that minimizes

the maximum weight of its increasing or decreasing subsequences. We provide

extensions of Erdös-Szekeres Theorem to the case of weighted sequences, first

considering the case in which every element has the same weight in increasing

or decreasing subsequences and then generalizing it to the case of distinct

weights.

This work is organized as follows. In section 2.2 we introduce the notion

of weighted and double weighted sequences, proving an extension of Erdös-

Szekeres Theorem applied to these concepts. Section 2.3 first presents PFS by

a matrix game perspective. This new approach is used on the development of

a new technique to obtain upper bounds on the approximation guarantee of a

PFS specific solution by its transformation into a Minimum Double Weighted

Sequence Problem corresponding solution. In section 2.4, the approximation

algorithm Greedy Avoided Path is proposed and analyzed. Final conclusions

are drawn in section 2.5.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 21

2.2 Weighted Sequences

(a) Weighted Monotone Sequences

Definition 1 Let S = 〈s1, s2, . . . , sn〉 be a sequence of distinct real elements.

A monotone subsequence of S is a sequence T = 〈sϕ1
, sϕ2

, . . . , sϕm
〉 such

that 1 ≤ ϕ1 < ϕ2 < . . . < ϕm ≤ n and sϕ1
< sϕ2

< . . . < sϕm
or

sϕ1
> sϕ2

> . . . > sϕm
.

The classical theorem of Erdös and Szekeres [12] states that from a sequence of

n2+1 distinct real elements is always possible extract a monotone subsequence

of cardinality at least n+ 1.

Theorem 2 Every sequence S of n2 + 1 distinct elements has a monotone

subsequence of at least n+ 1 elements.

Proof : Let ai be the i-th element from S and f(ai) : S 7→ |S| a function that
returns the number of elements of the longest increasing subsequence starting

from ai, where i ∈ {1, 2, . . . , n2 + 1}. If f(ai) ≥ n + 1 for some i, then the

theorem is proved. Otherwise, 1 ≤ f(ai) ≤ n, for all i. In this case we have, by

the pigeonhole principle, at least ⌈n2+1
n
⌉ elements ai with the same value for

f(ai). Let S
′ =

〈

aj1 , aj2 , . . . , ajn+1

〉

be a subsequence of S composed by n + 1

of these elements. We shall prove now that S ′ is a decreasing subsequence.

Suppose this is a fallacy. Then, there are two elements ai and aj belonging to

S ′, i < j, for which f(ai) = f(aj) and ai < aj. Therefore, it is possible to

obtain a subsequence of S with f(aj) + 1 elements starting from ai and being

followed by the f(aj) elements of a longest increasing subsequence starting

from aj. Hence, f(ai) ≥ f(aj) + 1, what is a contradiction to the hypothesis

that f(ai) = f(aj).

Example: In order to illustrate an application of the previous theorem let us

consider the sequence S = 〈5, 9, 3, 7, 4, 10, 1, 8, 2, 6〉. By the theorem of Erdös

and Szekeres, S should have a monotone subsequence of at least 4 elements.

Following the definition of the function f(ai) : S 7→ |S| given on the proof of
theorem 2: f(5) = 3, f(9) = 2, f(3) = 3, f(7) = 2, f(4) = 2, f(10) = 1, f(1) =

3, f(8) = 1, f(2) = 2, f(6) = 1. Therefore, the longest increasing subsequence

of S has length 3. However, the subsequence S ′ = 〈9, 7, 4, 2〉, formed by the

elements ai from S with f(ai) = 2, is a decreasing subsequence of 4 elements.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 22

Definition 3 A set T1, T2, . . . , Tk of monotone subsequences of a sequence S

is said to be a S-monotone partition of size k if
k
⋃

i=1

Ti = S and
k
⋂

i=1

Ti = ∅.

The maximum cardinality monotone subsequence problem can be solved in

polynomial time. However, finding a minimum size monotone partition is a

NP-Hard problem [65]. Bar-Yehuda and Fogel [3] presented an approximation

algorithm for minimum size monotone partition based on the following Lemma,

which can be proved directly by successive removal of maximum cardinality

monotone subsequences of S:

Lemma 4 [3] Let S = 〈s1, s2, . . . , sn〉 be a sequence. There is a S-monotone

partition of size at most 2
√
n.

At this point, we define the notion of weighted monotone subsequence and

extend the Erdös-Szekeres Theorem applied to such new concept.

Definition 5 Let w : S 7→ ℜ+ be a weight function over a sequence S. The

weight of a subsequence T = 〈sϕ1
, sϕ2

, . . . , sϕl
〉 of S, denoted by w(T), is

l
∑

i=1

w (sϕi
). Denote by w(Tmax) the maximum weight on a monotone subse-

quence of S.

Corollary 6 w(Tmax) ≥ w(S)
2
√
n
.

Proof : From Lemma 1, there is a S-monotone partition in at most 2
√
n

monotone subsequences. Let T1, T2, . . . , Tk be such subsequences and T ⋆ that

of maximum weight. By the concept of monotone partition of a sequence,
k
∑

i=1

w(Ti) = w(S). So, w(T ⋆) ≥ w(S)
k
. Once k ≤ 2

√
n follows that w(T ⋆) ≥ w(S)

2
√
n
.

Once w(T ⋆) ≤ w(Tmax) the result is proved.

A survey on Erdös-Szekeres theorem and its variations was presented by Steele

[61]. From the best we know, weighted monotone subsequence concept has not

been explored so far.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 23

(b) Double Weighted Sequences

Definition 7 A double weighted set, denoted by (Γ, α, β) is composed by a set

Γ = {γ1, γ2, . . . , γn} ⊂ ℜ of distinct elements and two weight functions

α : Γ 7→ ℜ+ and β : Γ 7→ ℜ+.

Definition 8 Let (Γ, α, β) be a double weighted set.

A permutation π : {1, 2, . . . , n} 7→ Γ defines a sequence

S =
〈

γπ(1), γπ(2), . . . , γπ(n)
〉

named a double weighted sequence of (Γ, α, β).

Definition 9 Given a double weighted set (Γ, α, β) and a double weighted se-

quence S defined over it, let Sα be a maximum weighted increasing subse-

quence of S considering α as the weight function, where C (Sα) denotes the

weight of Sα. Similarly, let Sβ be a maximum weighted decreasing subse-

quence of S considering β as the weight function, where C (Sβ) denotes the

weight of Sβ. The weight of the double weighted sequence S, denoted by C (S),

is defined as max{C (Sα) , C (Sβ)}.

In order to illustrate these definitions consider the following example: let

(Γ, α, β) be a double weighted set with Γ = {1, 2, 3} , α = (α(1), α(2), α(3)) =

(10, 7, 8) and β = (β(1), β(2), β(3)) = (6, 11, 9). Consider that the permutation

π is the identity function, defining the sequence S = 〈1, 2, 3〉. Clearly, the
maximum weighted increasing subsequence of S is Sα = S and C(Sα) =

α(1) + α(2) + α(3) = 25. Furthermore, the maximum weighted decreasing

subsequence of S is Sβ = 〈2〉 and C(Sβ) = β(2) = 11. Therefore, the weight of

the double weighted sequence S is C(S) = max{C (Sα) , C (Sβ)} = 25.

Now we are ready to define the Minimum Double Weighted Sequence Problem:

The Minimum Double Weighted Sequence Problem (MDWS):

Given a double weighted set (Γ, α, β), construct a double weighted sequence

S⋆ such that C (S⋆) is minimum.

Considering the instance (Γ, α, β) given in the previous example, the sequence

S⋆ = 〈2, 3, 1〉 is the unique optimal solution for the MDWS problem. In particular,
S⋆α = 〈2, 3〉, S⋆β = 〈2, 1〉, C(S⋆α) = 15 and C(S⋆β) = C(S⋆) = 17.

Definition 10 Let D1 = (Γ1, α1, β1) and D2 = (Γ2, α2, β2) be double weigh-

ted sets. Assume, w.l.o.g. , that Γ1 = {γ1, γ2, ..., γn} elements are given in

increasing order. Consider that D2 was constructed from D1 by removal of an

element γi ∈ Γ1 and insertion of two new elements γ′j and γ′j+1 in Γ2 such

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 24

that: γi = γ′j < γ′j+1, γ
′
j+1 < γi+1 if γi+1 exists, α1 (γi) = α2

(

γ′j
)

+ α2
(

γ′j+1
)

and β1 (γi) = β2
(

γ′j
)

= β2
(

γ′j+1
)

. It’s said that D2 is a split of D1 and that

element γi was split into γ′j and γ′j+1.

To illustrate splitting process, consider the following example:

Γ1 = {2, 4, 7, 12}, α1 = (α1(2), α1(4), α1(7), α1(12)) = (12, 7, 4, 8),

β1 = (β1(2), β1(4), β1(7), β1(12)) = (7, 10, 9, 11). Element γ3 = 7 can be

split into two elements γ′3 = 7 and γ′4 = 10 with weights α2 (γ
′
3) = 3,

α2 (γ
′
4) = 1 and β1 (γ3) = β2 (γ

′
3) = β2 (γ

′
4) = 9, creating a double weighted set

(Γ2 = {2, 4, 7, 10, 12}, α2 = (12, 7, 3, 1, 8), β2 = (7, 10, 9, 9, 11)).

Lemma 11 Let D1 = (Γ, α, β) be a double weighted set, D2 a split of D1, Φ1

and Φ2 optimal double weighted sequences for D1 and D2 respectively. Then,

C (Φ2) ≤ C (Φ1).

Proof : Consider that Φ1 =
〈

γφ1(1), γφ1(2), . . . , γφ1(n)
〉

. Construct a solution

Ψ to D2 from Φ1 as follows: let γi = γφ1(k) the element from D1 split into

γ′j and γ′j+1 in D2. For all k
′ < k do γψ(k′) = γφ1(k′). Let γψ(k) = γ′j and

γψ(k+1) = γ′j+1. For k′ = k + 2 to n + 1 do γψ(k′) = γφ1(k′−1). Once, by

split definition, α (γi) = α
(

γ′j
)

+ α
(

γ′j+1
)

, every increasing subsequence of

Ψ can be transformed into an increasing subsequence of Φ1, with not smaller

weight. When elements γ′j and γ′j+1 belong to such increasing sequence they

can be both substituted by γi. All other elements are identical. An equivalent

transformation is valid for decreasing subsequences of Ψ, in which only one of

γ′j or γ
′
j+1 can be present, and, by split definition, β (γi) = β

(

γ′j
)

= β
(

γ′j+1
)

.

Hence, C(Ψ) ≤ C(Φ1). Once C (Φ2) ≤ C (Ψ), the result follows.

The use of the split concept in conjunction with Corollary 6 permits obtaining

a lower bound on optimal solutions of a MDWS instance.

Theorem 12 Let Φ1 be an optimal solution of a MDWS instance

D1 = (Γ1, α1, β1), |Γ1| = n.

Then, C(Φ1) ≥
n
∑

i=1

α1(i)

√

4

(

n+
n
∑

i=1

⌈α1(i)/β1(i)⌉
)
.

Proof : Consider a succession of splits that convertsD1 into a double weighted

set D2 = (Γ2, α2, β2) such that, α2(i) ≤ β2(i), for all i ∈ {1, . . . , |Γ2|}.
Clearly,

n
∑

i=1

⌈α1(i)/β1(i)⌉ splits are sufficient, what implies that |Γ2| ≤ n +

n
∑

i=1

⌈α1(i)/β1(i)⌉. Let Φ2 be an optimal sequence for D2. By Lemma 10,

C(Φ1) ≥ C(Φ2). Consider now a double weighted set D3 = (Γ3, α3, β3) such

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 25

that Γ3 = Γ2 and α3 = β3 = α2. Let Φ3 be an optimal sequence for D3. Once

Γ2 = Γ3, α3(i) ≤ α2(i) and β3(i) ≤ β2(i) for all i ∈ {1, . . . , |Γ3|}, is true that
C(Φ2) ≥ C(Φ3). Once α3 = β3, α3 and β3 can be viewed as a unique weight

function. Then, by Corollary 6:

C(Φ3) ≥
|Γ3|
∑

i=1

α3(i)/(2
√

|Γ3|) =
n

∑

i=1

α1(i)

√

√

√

√4

(

n+
n

∑

i=1

⌈α1(i)/β1(i)⌉
)

. (1)

Hence, C(Φ1) ≥ C(Φ2) ≥ C(Φ3) and the result follows.

2.3 Lower Bounds for a Matrix Game

This section introduces the Matrix Min-Max Path Problem, which is exactly

PFS viewed from a game perspective. A technique to construct lower bounds on

Matrix Min-Max Path Problem optimal solutions based on its transformation

into the Minimum Double Weighted Sequence Problem is presented.

(a) Paths and Anti-Paths

Let T ∈ ℜ+m×n be a matrix and T1, T2, . . . , Tn its columns. A permutation

π : {1, 2, . . . , n} 7→ {T1, T2, . . . , Tn} over T defines a new matrix T π, named

permutated matrix.

Definition 13 A path, defined over a permutated matrix T π, is a sequence

P = 〈p1, p2, . . . , pn+m−1〉 of distinct cells in T π, such that, p1 = tπ1,1, pn+m−1 =

tπm,n and pk = tπik,jk is the successor of pk−1 = tπik−1,jk−1
on P if an only if one

of the two relations below is valid:

1. ik = ik−1 and jk = jk−1 + 1

2. ik = ik−1 + 1 and jk = jk−1.

The weight of P, W (P), is defined as
n+m−1
∑

i=1

pi. P is said a maximum weight

path if W (P) ≥ W (P ′) for every path P ′ over T π.

Definition 14 An anti-path, defined over a permutated matrix T π, is a

sequence A = 〈a1, a2, . . . , an+m−1〉 of distinct cells in T π, such that, a1 = tπm,1,

an+m−1 = tπ1,n and ak = tπik,jk is the successor of ak−1 = tπik−1,jk−1
on A if an

only if one of the two relations below is valid:

1. ik = ik−1 and jk = jk−1 + 1

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 26

2. ik = ik−1 − 1 and jk = jk−1.

The weight of A, W (A), is defined as
n+m−1
∑

i=1

ai.

(b) PFS and Matrix Games

The PFS problem can be viewed as a two-person matrix game. Given a matrix

T ∈ ℜm×n with positive elements, player 1 acts first, selecting a permutation
π over the columns of T that creates a new matrix T π. Then, player 2 selects

a path P on matrix T π, that is, a sequence of cells on T π, starting from tπ1,1

such that, the cell after tπi,j on P can only be tπi+1,j or tπi,j+1 respecting the

matrix limits, i.e., i + 1 ≤ n and j + 1 ≤ m. At the end of game, player

1 pays to player 2 the sum of cells on P . Let us name this game Matrix

Min-Max Path Game, denoting it by MMP. The equivalence between PFS and

MMP is clear. A schedule on PFS corresponds to a permutation on MMP and

the makespan of such schedule is exactly the cost of a maximum path chose

by player 2 given player’s 1 permutation. Therefore, player’s 2 objective of

maximize such sum can be accomplished by an O(nm) dynamic-programming

algorithm based on the recursive makespan definition presented at section 1.2

which computes a maximum path over T π, i.e, the makespan of a selected

schedule. The cost of a solution π for MMP is denoted by W (T π). From this

point, PFS problem is analyzed as MMP problem considering that our objective

is to act as player 1, with the objective pay the minimum possible value to

player 2. Furthermore, due to the polynomial time algorithm that calculates

the maximum path (makespan) on a permutated matrix, it will be considered

that player 2 always select this maximum path.

(c) Approximation guarantees of PFS solutions

A technique to obtain upper bounds on approximation guarantees of PFS

solutions using double weighted sequences is presented at this point. Consider

that player 1 chose a permutation π over original matrix T , creating the

matrix T π. Assume w.l.o.g. that π = 〈1, 2, . . . , n〉. Let TOPT be the optimal

permuted matrix of T and OPT its corresponding optimal permutation,

P π and POPT maximum paths over T π and TOPT , respectively, and Aπ an

anti-path of T π. Construct a double weighted set (Γ, α, β) as follows: make

Γ = {π(1), π(2), . . . , π(n)} = {1, 2, . . . , n}. Let α(i) be the sum of all P π cells

over column T π
i and β(i) be the sum of all Aπ cells over the same column. From

here to the end of this section, consider that (Γ, α, β) was constructed from

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 27

permutation π, chosen by player 1. Furthermore, let S⋆ represent an optimal

solution of Minimum Double Weighted Sequence Problem for (Γ, α, β).

Lemma 15 C(Sπ) = W (T π)

Proof : Once Sπ = 〈1, 2, . . . , n〉, the maximum weight monotone subsequence

of Sπ is exactly the increasing subsequence Sπ. Hence, C(Sπ) =
n
∑

i=1

α(i) =

W (T π).

Theorem 16 Let σ be an arbitrary permutation, T σ the permutated matrix

obtained applying σ to T and Sσ the sequence constructed applying σ to

(Γ, α, β). Then C(Sσ) ≤ W (T σ)

Proof : Every weighted increasing subsequence of Sσ, taking α as weight

function, is equivalent to a subsequence of a path in T σ whose cells belong

only to P π. Similarly, every weighted decreasing subsequence of Sσ, taking β

as weight function, is equivalent to a subsequence of a path in T σ whose cells

belong only to Aπ. Consequently, the maximum weight monotone subsequence

of Sσ is equivalent to a subsequence of a path in T σ whose cells belong

exclusively to P π or Aπ. Therefore, W (T σ) ≥ C(Sσ).

Corollary 17 C(S⋆) ≤ W (TOPT)

Proof : By Theorem 16, C(SOPT) ≤ W (TOPT). By optimal solution defini-

tion, C(S⋆) ≤ C(SOPT). Consequently, C(S⋆) ≤ W (TOPT).

From the previous results we have,

Theorem 18 W (Tπ)
W (TOPT)

≤ C(Sπ)
C(S⋆)

Proof : W (Tπ)
W (TOPT)

≤ W (Tπ)
C(SOPT)

≤ W (Tπ)
C(S∗)

= C(Sπ)
C(S∗)

.

As consequence of last theorem it is possible to obtain an upper bound on

the approximation guarantee of a PFS specific solution π by constructing an

equivalent MDWS instance (Γ, α, β), as described in this section, and analyzing

the approximation factor of any permutation π applied as solution to such

instance.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 28

2.4 The Greedy Avoided Path Algorithm

This section presents a polynomial time deterministic algorithm which

constructs a solution for PFS based on weighted monotone subsequences pro-

perties previously explored. Time complexity and approximation guarantee of

algorithm are also analyzed. We prove that a job permutation, in which cells

representing the longest operation of each job constitute an avoided path on

processing times matrix, reach the claimed approximation guarantee. Further-

more, a permutation with this property can be obtained by a simple job sorting

algorithm. Its approximation factor analysis is based on deterministic combi-

natorial arguments based on Erdös-Szekeres Theorem extensions, introduced

in last sections.

Algorithm 1: Greedy Avoided Path

begin

for each job j ∈ J : set max−machine(j) as the index of the
machine with the longest operation of job j ;

construct a permutation π by sorting the jobs in non-increasing
order of max−machine(j) variables ;

return permutation π. ;

end

Theorem 19 Greedy Avoided Path is an 2
√
2n+m-approximation algorithm

for PFS and can be executed in Θ(nm) time.

Proof : Let π be the solution returned by Greedy Avoided Path algorithm,

T π the permutated matrix of T and P π a maximum path in T π. Consider

that Aπ is an anti-path in T π with the following property: all cells on

positions (MaxMachinej, j) in T belong to Aπ. Once π was obtained by

application of Greedy Avoided Path algorithm the construction of such anti-

path in T π is possible. Let TOPT be an optimal permutated matrix of T .

The approximation factor of solution π is, by definition, W (T π)/W (TOPT).

By the technique presented at section 2.3(c) it is possible, from T π, P π and

Aπ, to construct a solution Sπ for an instance (Γ, α, β) of MDWS problem such

that C(Sπ) = W (T π). Consider that (Γ, α, β) was constructed following such

technique. Let C(S⋆) be an optimal solution for (Γ, α, β).

By Theorem 12: C(S⋆) ≥
n
∑

i=1

α(i)/

√

4

(

n+
n
∑

i=1

⌈α(i)/β(i)⌉
)

.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 29

By Aπ property,
n
∑

i=1

⌈α(i)/β(i)⌉ ≤ n+m− 1.

Consequently, C(S⋆) ≥
n
∑

i=1

α(i)/2
√

2n+m) = C(Sπ)/2
√
2n+m.

By Theorem 18, C(Sπ)/C(S⋆) ≥ W (T π)/W (TOPT).

Hence, W (T π)/W (TOPT) ≤ 2
√
2n+m.

Time complexity analysis of Greedy Avoided Path algorithm is straightfor-

ward once observing that the sorting phase can be done in linear time using,

for example, counting sort. Line 1 can be executed in Θ(nm) time. Permu-

tation construction on line 2 can be achieved sorting jobs in Θ(n + m) time

using MaxMachine variables as key. Line 3 costs Θ(n) steps. Hence, Greedy

Avoided Path is a polynomial time Θ(nm) algorithm.

2.5 Conclusion

This work presents a deterministic approximation algorithm for PFS with

performance ratio 2
√
2n+m and time complexity Θ(nm). In the case that

n = Θ(m) this is the best approximation algorithm already obtained for PFS

achieving the same approximation factor found by Nagarajan and Sviridenko

[40] in linear time, reducing its complexity from Ω(n4.m). The Erdös-Szekeres

Theorem was extended, considering a weighted version in which elements

of monotone subsequences can have different weights. As consequence, a

novel technique to obtain upper bounds on approximation guarantees of

PFS solutions using double weighted sequences was introduced, exploring the

connection between Weighted Monotone Subsequence Problems and PFS.

2.6 Appendix

The algorithm from Nagarajan and Sviridenko [40] has two phases. The

first phase comprises decomposing the original processing time matrix into

k ≤ n.m permutation matrices. Such decomposition can be achieved by

applying an algorithm for minimum edge-coloring on bipartite multigraphs.

On the selection of such edge-coloring algorithm it is important to observe

that the number of edges on the bipartite multigraph representing the original

processing time matrix would be pseudopolynomial in the input size. From the

best we know, the most efficient algorithms to solve this problem are weakly

polynomial time algorithms depending on a log factor of the maximum degree

of a vertex [57]. In particular, the well-performing algorithm from Gabow

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 2. A Linear Time Approximation Algorithm for PFS 30

and Kariv [17] with a time complexity of O(|V |.|Ẽ|. log µ) could be applied

here, where |V | = n +m, |Ẽ| = n.m and µ = max{maxi
∑

j tij,maxj
∑

i tij}.
Disregarding the µ factor, a lower bound on the time complexity of the first

phase of the algorithm would be Ω(n2.m). The second phase of the algorithm

constructs the permutation schedule and is composed by n steps. Each step

1 ≤ i ≤ n selects a job to be inserted at position i of the schedule. Once a job is

selected to be inserted on step i, its position can not be changed. The selection

of the job to be inserted at position i comprises testing all n − i remaining

jobs, calculating the insertion cost of each one (estimated by an upper bound

function Ui), and selecting that of minimum insertion cost at position i. The

function Ui is defined as the weighted sum of k ≤ n.m functions Uk
i . The

calculus of each function Uk
i takes at least Ω(n). Hence, a lower bound on

the time complexity of the second phase of the algorithm would be Ω(n4.m).

Therefore, the time complexity of the deterministic algorithm from [40] is lower

bounded by Ω(n4.m).

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

