
3
A Faster Algorithm for Two Machine
Flow Shop Scheduling

3.1 Introduction

This chapter explores the two machine flow shop scheduling problem (2-PFS),

a particular case of the PFS problem in which the jobs must be processed in

exactly two machines. As previously stated, the 2-PFS problem can be solved

in polynomial time due to the classical algorithm of Johnson [34]. In fact,

during the last fifty years this Θ(n log n) algorithm has been considered the

most efficient method for solving the 2-PFS problem[49].

The main contribution of this work is to introduce a new and faster algorithm

for the 2-PFS problem. This algorithms runs in Θ(n log κ) time , where n is

the number of jobs and κ is the minimum number of cliques necessary to cover

a specific interval graph. This interval graph G = (V,E) is obtained from

the 2-PFS instance in Θ(n) time. In particular, |V | = n. Since that, by the

definition of a clique covering, κ ≤ |V |, this new algorithm is asymptotically

faster than the previous from Johnson. From the best of our knowledge, this

is the current faster algorithm that solves the 2-PFS problem.

It is important to stress that this new algorithm is not based on faster

sorting methods. Our algorithm may use any Θ(n log n) comparison based

sorting method to achieve the claimed Θ(n log κ) time complexity. In fact, our

results are based on the fact that it is sufficient to partition the jobs into κ

disjoint subsets in Θ(n log κ) time and order κ elements in Θ(κ log κ) time to

achieve an optimal solution. Theoretical results supporting this new algorithm

provide a more precise characterization of optimal permutation schedules for

2-PFS instances. Finally, the connection established by this new algorithm

between 2-PFS and the minimum clique covering problem is, to the best of our

knowledge, completely new.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 32

This chapter is organized as follows. At section 3.2 we review the classical

algorithm of Johnson [34], proving its correctness and time complexity analysis.

Section 3.3 explores the property of job set splitting, which holds for any 2-PFS

instance. Section 3.4 introduces the concept of job cluster, a subset of jobs for

which optimal permutation schedules can be determined in linear time. Section

3.5 extends the study of optimal permutation schedules to job sets consisting

of two or more clusters. Section 3.6 reviews the definition of interval graph.

Section 3.7 introduces the concepts of cliques and covers of a graph. Section

3.8 explores the connection between the 2-PFS problem and clique covering on

interval graphs. Final conclusions are considered at section 3.9.

3.2 Johnson’s Algorithm

First of all, let us assume that the concatenation of two permuta-

tions π = 〈aπ1
, . . . , aπn

〉 and ϕ = 〈bϕ1
, . . . , bϕm

〉 is defined as: π ◦ ϕ =

〈aπ1
, . . . , aπn

, bϕ1
, . . . , bϕm

〉.

Algorithm 2: Johnson’s Algorithm

Input : Set J of n jobs,
Processing times matrix T ∈ ℜ+

2×J.
Output: permutation schedule π : {1, . . . , n} 7→ J.
begin

A←− ∅; B ←− ∅ ;
for each job j ∈ J do

if t1,j ≤ t2,j then
A←− A ∪ {j};

else
B ←− B ∪ {j};

πA ←− Sorting of A in non-decreasing order of t1,j ;
πB ←− Sorting of B in non-increasing order of t2,j ;
π ←− πA ◦ πB ;
return π ;

end

Theorem 20 Johnson’s Algorithm generates optimal permutation schedules

for the 2-PFS problem and can be implemented in Θ(n log n) time.

Proof : Suppose, by contradiction, that the permutation π⋆ generated by

Johnson’a algorithm is not optimal, i.e., there exists a permutation π 6= π⋆

such that makespan(π) ≤ makespan(π⋆). Once π 6= π⋆, there is a pair of jobs

j and k adjacent on π, i.e., π−1(k) = π−1(j)+1, satisfying one of the following

conditions:

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 33

1. j ∈ B and k ∈ A.

2. j ∈ A, k ∈ A and t1,j > t1,k.

3. j ∈ B, k ∈ B and t2,j < t2,k.

It will be proved that switching the positions of jobs j and k on permutation π,

the makespan is not increased. More precisely, let C(1, k) and C(2, k) denote

the completion time of job k on first and second machines, respectively, under

the schedule π. Similarly, let C ′(1, j) and C ′(2, j) denote such completion

times of job j after switching positions. It will be demonstrated that since

C ′(1, j) ≤ C(1, k) and C ′(2, j) ≤ C(2, k), the pairwise interchange does not

increase the makespan.

Let us prove first that C ′(1, j) ≤ C(1, k). Due to the makespan recurrence, the

completion time of job k on the first machine, under schedule π, is:

C(1, k) = C(1, i) + t1,j + t1,k (1)

Switching the positions of jobs j and k, the completion time of job j on the

first machine would be:

C ′(1, j) = C ′(1, i) + t1,k + t1,j (2)

Once C ′(1, i) = C(1, i) follows that C ′(1, j) = C(1, k).

Let us prove now that C ′(2, j) ≤ C(2, k). In order to prove this statement,

consider the existence of a job i prior to j on π. Following the makespan

recurrence, the completion time of job k on the second machine, under schedule

π, is:
C(2, k) = max{C(1, k), C(2, j)}+ t2,k (3)

Once C(1, k) = C(1, j)+t1,k and C(2, j) = max{C(1, j), C(2, i)}+t2,j equation

3 can be rewritten as:

C(2, k) = max{C(1, j) + t1,k, C(1, j) + t2,j, C(2, i) + t2,j}+ t2,k (4)

Since C(1, j) = C(1, i) + t1,j, we have:

C(2, k) = max











C(1, i) + t1,j + t1,k + t2,k

C(1, i) + t1,j + t2,j + t2,k

C(2, i) + t2,j + t2,k

(5)

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 34

Let us consider now the effect, on the second machine, of a pairwise interchange

of jobs j and k. Once C ′(1, i) = C(1, i) and C ′(2, i) = C(2, i) equation 5

changes to:

C ′(2, j) = max











C(1, i) + t1,j + t1,k + t2,j

C(1, i) + t1,k + t2,j + t2,k

C(2, i) + t2,j + t2,k

(6)

As mentioned before, three cases must be considered now.

Case I: j ∈ B and k ∈ A. So, t1,j > t2,j and t1,k ≤ t2,k. As consequence, the

first term of equation 6 is not greater than the second term of equation 5, the

second term of equation 6 is not greater than the first term of equation 5 and

the third term of both equations are identical. Therefore, C ′(2, j) ≤ C(2, k).

Case II: j ∈ A, k ∈ A and t1,j > t1,k. So, t1,j ≤ t2,j and t1,k ≤ t2,k. As

consequence, the first and second terms of equation 6 are not greater than the

second term of equation 5 and the third term of both equations are identical.

Therefore, C ′(2, j) ≤ C(2, k)

Case III: j ∈ B, k ∈ B and t2,j < t2,k. So, t2,j < t1,j and t2,k < t2,j. As

consequence, the first and second terms of equation 6 are not greater than the

first term of equation 5 and the third term of both equations are identical.

Therefore, C ′(2, j) ≤ C(2, k)

Time complexity of Johnson’s algorithm is dominated by the sorting phase

of sets A and B. It can be implemented in Θ(n log n) by using any optimal

comparison based sorting method like mergesort, heapsort or quicksort. The

remaining steps of the algorithm can be executed in linear time.

3.3 Splitting the Job Set

In this section, we explore an important property of the 2-PFS problem which

will be used during this chapter. Due to this property, it is possible to obtain

an optimal solution for a 2-PFS instance J by its decomposition into two 2-PFS

instances A and B, A
⋃

B = J, A
⋂

B = ∅, where A contains all jobs with its

maximum processing times on the first machine and B gets all remaining jobs.

In particular, one can demonstrate that an optimal permutation schedule for

J can be obtained by a simple concatenation of the optimal permutations for

A and B. The following corollary of theorem 20 formally states this result.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 35

Corollary 21 Let J be a set of n jobs from a 2-PFS instance, A ⊆ J be the

subset of jobs whose processing times on the first machine are not greater than

its processing times on the second machine and B = J\A. Let πA and πB be

optimal permutation schedules for the 2-PFS instances A and B, respectively.

Then, π⋆ = πA ◦ πB is an optimal permutation schedule for J.

Proof : Let |A| = a, |B| = b and π denote the permutation returned from

Johnson’s algorithm by taking J as input. Let πA and πB be permutations

over sets A and B such that π = πA ◦ πB.

From makespan definition, the completion time of job π(k) on the first machine

is C(1, π(k)) =
k
∑

i=1

t1,π(i). The completion time of job π(k) on the second

machine is given by the recurrence equation:

C(2, π(k)) = max{C(1, π(k)), C(2, π(k − 1))}+ t2,π(k) (7)

The basis of the recurrence is k = 1, when C(2, π(k)) = t1,π(1) + t2,π(1).

Equation 7 lead us to deduce that there will always exist one index k′ ∈

{1, . . . , n} such that C(2, π(k′)) is a recurrence invoked by the calculation

of makespan(π) = C(2, π(n)) and C(2, π(k′)) = C(1, π(k′)) + t2,π(k′). This

proof follows by contradiction. Suppose such k′ does not exist. Therefore, every

recurrence on the form C(2, π(k′)) invoked by the calculation of makespan(π)

is given by C(2, π(k′)) = C(2, π(k′ − 1)) + t2,π(k′). However, by definition this

property does not hold on the basis of equation 7, proving the assertion.

The existence of such k′ implies that makespan(π) can be rewritten as:

makespan(π) = C(2, π(n)) =
k′
∑

i=1

t1,π(i) +
n

∑

j=k′

t2,π(j) (8)

Depending on the value of k′, two cases must be considered:

Case (I): k′ ∈ {1, . . . , a}. In this case, all jobs of set B contributes to the sum 8

with its processing times on the second machine. Set A contributes to the sum

8 with the completion time of its last job, on the second machine, following

permutation πA. Hence, C(2, π(n)) =
∑

j∈B

t1,j + CA(2, πA(a)).

Case (II): k′ ∈ {a + 1, . . . , n}. In this case, all jobs of set A contributes to

the sum 8 with its processing times on the first machine. Set B contributes

to the sum 8 with the completion time of its last job, on the second machine,

following permutation πB. Hence, C(2, π(n)) =
∑

j∈A

t1,j + CB(2, πB(b)).

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 36

Therefore, the makespan resulting from permutation π becomes:

makespan(π) = max











∑

j∈A

t1,j + CB(2, πB(b))

∑

j∈B

t2,j + CA(2, πA(a))
(9)

It is important to stress that, in order to reach equation 9, it was never used

the fact that π is optimal for J. In particular, the only property of π leading

to equation 9 was that π is a concatenation of two permutations πA and πB

over sets A and B, respectively.

Let us consider now the effect of applying permutation π⋆ = π⋆
A ◦ π

⋆
B over J.

Once equation 9 is valid for π⋆, makespan(π⋆) can be calculated as:

makespan(π⋆) = max











∑

j∈A

t1,j + CB(2, π
⋆
B(b))

∑

j∈B

t2,j + CA(2, π
⋆
A(a))

(10)

Once π⋆
A and π⋆

B are optimal, CA(2, π
⋆
A(a)) ≤ CA(2, π

⋆
A(a)) and CB(2, π

⋆
B(b)) ≤

CB(2, π
⋆
B(b)) follows that makespan(π⋆) ≤ makespan(π). Since π is, by

definition, an optimal permutation, π⋆ is either.

Corollary 21 proves that the decomposition of the original job set J into two

disjoint sets A and B followed by the concatenation of the optimal permutation

πA and πB, for A and B, respectively, is a sufficient condition to obtaining an

optimal permutation schedule for J. However, this is not a necessary condition.

In fact, there exist 2-PFS instances admitting optimal solutions in which the

jobs of set A not necessarily come before the jobs of set B.

Another point to be considered is that the partial solutions πA and πB

returned by Johnson’s algorithm are always optimal for the instances A and

B, respectively. To see that this is true for set A , consider a 2-PFS instance

in which every job has its maximum processing time on the second machine.

Therefore, A = J and B = ∅. Once that by theorem 20 Johnson’s algorithm

is optimal for any 2-PFS instance, it is optimal for A in particular. Similar

arguments leads to the optimality of πB.

However, as demonstrated by corollary 21, every solution for sets A and B

that minimizes the maximum of the expression 9 is optimal. In other words, if
∑

j∈A

t1,j+CB(2, πB(b)) >
∑

j∈B

t2,j+CA(2, πA(a)) we need an optimal permutation

for B, but any permutation for A is valid. Hence, there exist at least |A|!

optimal solutions for J. Otherwise, an optimal permutation for A is necessary,

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 37

the permutation for set B is irrelevant and there are at least |B|! optimal

solutions for J.

Finally, it is an open problem to obtain a complete characterization of the class

of optimal solutions for the 2-PFS problem. Pinedo [49] said that “Johnson’s

schedules are by no means the only schedules that are optimal for 2-PFS.

The class of optimal schedules appears to be hard to characterize and data

dependent”’ . One of the contributions of this work, in particular, is to provide

a better understanding on this class.

Lemma 22 Let B be a set of n jobs such that t1,j ≥ t2,j for every j ∈ B. Let

A be another set of jobs constructed from B as follows: for every job j ∈ B

create a job j′ ∈ A such that t1,j′ = t2,j and t2,j′ = t1,j. Let π be an optimal

permutation for the 2-PFS instance A. Then, the reverse of permutation π,

denoted by σ = π, is an optimal solution for the 2-PFS instance B.

Proof : Equation 8, found in the proof of corollary 21, states that the

makespan resulting from a permutation schedule of a 2-PFS instance can be

calculated by the addition of two distinct summations. As consequence, for the

job set A and permutation schedule π there is an index k ∈ {1, . . . , n} that

maximizes the following expression:

makespan(π) = CA(2, π(n)) =
k

∑

i=1

t1,π(i) +
n

∑

j=k

t2,π(j) (11)

Due to the existing relation between sets A and B, for every job π(i) ∈ B

there is a job π(i)′ ∈ A such that t1,π(i)′ = t2,π(i) and t2,π(i)′ = t1,π(i). Therefore,

makespan(π) =
k

∑

i=1

t2,π(i)′ +
n

∑

j=k

t1,π(j)′ . (12)

By the definition of reverse permutation, it follows:

makespan(π) =
n−k+1
∑

j=1

t1,σ(j)′ +
n

∑

i=n−k+1

t2,σ(i)′ (13)

Let us study now the makespan of permutation σ : {1, . . . , n} 7→ B.

Due to equation 8 there is an index k′ ∈ {1, . . . , n} such that makespan(σ)

can be rewritten as:

makespan(σ) = CB(2, σ(n)) =
k′
∑

j=1

t1,σ(j)′ +
n

∑

i=k′

t2,σ(i)′ (14)

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 38

Since the indexes n − k + 1 and k′ are selected in order to maximize iden-

tical expressions on the right-hand of equations 13 and 14 we have that

makespan(π) = makespan(σ).

Lemma 22 is a valuable tool on the design of algorithms for the 2-PFS

problem. It claims that it is possible to reduce the problem of determining

an optimal permutation schedule for an instance A, formed by jobs with

maximum processing times on the second machine, to the problem of finding

an optimal permutation for an equivalent instance B of jobs with maximum

processing times on the first machine. This reduction is also valid on the

opposite direction, from B to A. Furthermore, as stated by lemma 22, it can

be done in linear time on the number of jobs.

In this sense, from this point to the end of the chapter, lemma 22 will be used

in conjunction with corollary 21. As consequence, every 2-PFS instance J will

be considered previously partitioned into two disjoint instances A and B. In

particular, our focus will be on finding optimal solutions for the instance A,

with maximum processing times on the second machine. It must be clear, by

lemma 22, that the same algorithm used for A can be used for B. Finally, as

stated by corollary 21, from a simple concatenation of the optimal solutions

πA and πB for A and B, respectively, it is possible to determine an optimal

solution for J = A ∪B.

3.4 Job Clustering

Definition 23 Let J be a set of jobs of a 2-PFS instance, where t1,j and t2,j

represent the processing times of a job j ∈ J on the first and second machines,

respectively. A subset of jobs J ⊆ J is said a cluster if for all jobs a, b ∈ J ,

max
a∈J

t1,a ≤ min
b∈J

t2,b.

In other words, if a set of jobs belong to the same cluster then the maximum

processing time of these jobs on the first machine is not greater than the

minimum processing time of the same jobs on the second machine.

Johnson’s algorithm permits finding an optimal permutation schedule for the

2-PFS problem in O(n log n) time. In the next sections it will be proved that the

same task can be accomplished inO(n) time if the original job set is a cluster. In

order to prove this result we first define a specific type of permutations, named

as trivial permutations. In the sequence of this work, it will be demonstrated

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 39

that this family of permutations, when applied to a 2-PFS instance forming an

unique cluster, lead to optimal solutions.

Definition 24 Let J be a set of jobs of a 2-PFS instance. A permutation

schedule π : {1, . . . , |J|} 7→ J is said trivial if and only if π(1) = argmin
j∈J

t1,j.

Following the previous definition, the job located at the first position of a trivial

permutation is that of minimum processing on machine 1. If more than one

job meet this criterion, any can be chosen arbitrarily. Therefore, given a 2-PFS

instance of n jobs it is possible to obtain a trivial permutation in O(n) time.

Finally, every instance of n jobs admits at least (n− 1)! trivial permutations.

The next lemma determines a closed form to the makespan resulting from a

trivial permutation over a cluster:

Lemma 25 Let J be a set of n jobs from a 2-PFS instance forming a cluster

and makespan(π) be the makespan obtained by applying a trivial permutation

schedule π : {1, 2, . . . , |J|} 7→ J on J. Then, makespan (π) = min
j∈J

t1,j +
∑

j∈J

t2,j.

Proof : By the recursive definition of makespan, the completion time of job

π(k) on the second machine is:

C(2, π(k)) = max{C(1, π(k)), C(2, π(k − 1))}+ t2,π(k) (15)

On the first machine, in particular, the following equation holds:

C(1, π(k)) =
k

∑

i=1

t1,π(i) (16)

Let us prove now by induction on k that C(2, π(k)) can be rewritten as:

C(2, π(k)) =
k

min
i=1

t1,π(i) +
k

∑

i=1

t2,π(i) (17)

The basis of the induction is for k = 1. Taking equation 16 and remembering

that π is a trivial permutation, i.e., π(1) is the job with the lowest processing

time on the first machine, follows that:

C(2, π(1)) = C(1, π(1))+ t2,π(1) = t1,π(1) + t2,π(1) =
k

min
i=1

t1,π(i) +
k

∑

i=1

t2,π(i) (18)

In order to prove the inductive step, let us consider now, by the induction

hypothesis, that equation 17 is valid for all jobs belonging to positions 1 to

k − 1 in the permutation π. Applying equations 16 and 17 on 15:

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 40

C(2, π(k)) = max

{

k
∑

i=1

t1,π(i),
k−1
∑

i=1

t2,π(i) +
k

min
i=1

t1,π(i)

}

+ t2,π(k). (19)

By rearranging the terms of equation 19:

C(2, π(k)) = max

{

k
∑

i=2

t1,π(i) + t1,π(1),

k−1
∑

i=1

t2,π(i) + t1,π(1)

}

+ t2,π(k) (20)

Once the set of jobs J is a cluster, follows that t1,π(k) ≤ t2,π(l) for all 1 ≤ k, l ≤ n.

Therefore,
k
∑

i=2

t1,π(i) ≤
k−1
∑

i=1

t2,π(i). Hence, C(2, π(k)) = t1,π(1) +
k
∑

i=1

t2,π(i), what

proves the inductive step.

Lemma 25 states that on a 2-PFS instance represented by a job cluster, the

makespan resulting from a trivial permutation schedule is always equal to the

sum of the processing times on the second machine increased by the minimum

processing time of a job on the first machine. The forthcoming proposition

establishes that this value is a lower bound for the makespan of an optimal

permutation schedule.

Lemma 26 Let J be a set of n jobs from a 2-PFS instance consisting of a

cluster and π⋆ : {1, 2, . . . , |J|} 7→ J be one of its optimal permutation schedules.

Then, makespan (π⋆) ≥ min
j∈J

t1,j +
∑

j∈J

t2,j

Proof : We shall demonstrate the following stronger statement. For all k ∈

{1, 2, . . . , n}:

C(2, π⋆(k)) ≥
k

min
i=1

t1,π⋆(i) +
k

∑

i=1

t2,π⋆(i) (21)

The proof proceeds by means of induction on k. The basis of the induction

is for k = 1. From the makespan definition follows that C(2, π⋆(1)) ≥

C(1, π⋆(1)) + t2,π⋆(1) = t1,π⋆(1) + t2,π⋆(1). Once t1,π⋆(1) ≥
k

min
i=1

{

t1,π⋆(k)

}

the basis

of induction is true. In order to demonstrate the inductive step, let us consider

by the inductive hypothesis that the following inequality holds: C(2, π⋆(k −

1)) ≥
k−1

min
i=1

{

t1,π⋆(i)

}

+
k−1
∑

i=1

t2,π⋆(i). From the makespan recurrence, C(2, π⋆(k)) =

max {C(1, π⋆(k)), C(2, π⋆(k − 1))}+t2,π⋆(k) ≥ C(2, π⋆(k−1))+t2,π⋆(k). Once the

induction hypothesis is valid: C(2, π⋆(k)) ≥
k−1

min
i=1

{

t1,π(i)⋆
}

+
k−1
∑

i=1

t2,π⋆(k)+ t2,π⋆(k).

Therefore, the inductive step was proved and the inequality 21 holds.

The results obtained so far lead to the following Theorem:

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 41

Theorem 27 Let J be a set of n jobs from a 2-PFS instance consisting of a

cluster. A trivial permutation is an optimal permutation schedule for J and

can be obtained in Θ(n) time.

Proof : Once by Lemmas 25 and 26 the makespan resulting from a trivial

permutation π is, respectively, an upper bound and a lower bound for the

optimal permutation schedule, π is optimal. From the definition of trivial

permutation follows that π can be determined in Θ(n) steps by a simple

reduction to the problem of finding the minimum from a list of n elements.

3.5 Cluster Decomposition

Last section introduced the concept of job cluster, proving that it is easy to

find optimal permutation schedules for the 2-PFS problem if all jobs belong to

the same cluster. In this section we extend the study of optimal permutation

schedules to job sets consisting of κ ≥ 2 clusters.

Definition 28 Let J be a 2-PFS instance formed by n jobs and π :

{1, . . . , n} 7→ J be a permutation schedule. The turning point of π is a job

π(k), k ∈ {1, . . . , n}, such that makespan(π) =
k
∑

i=1

t1,π(i) +
n
∑

j=k

t2,π(j).

Lemma 29 Let π : {1, . . . , n} 7→ J be a a permutation schedule. Let π(k) be

a turning point in π. If t1,π(k) ≤ t1,π(i) for every i ∈ {k, k+1, . . . , n}, then π is

an optimal permutation schedule for J.

Proof : Once π(k) ≤ π(i), for every i ∈ {k, k+1, . . . , n}, and π(k) is a turning

point in π, makespan(π) can be rewritten as the following summation:

makespan(π) =
k−1
∑

i=1

t1,π(i) +
n

min
j=k

t1,π(j) +
n

∑

j=k

t2,π(j) (22)

Suppose by means of contradiction that π is not optimal. Therefore, there

exists a permutation σ : {1, . . . , n} 7→ J, σ 6= π such that makespan(σ) <

makespan(π).

Let σ(γ) be a turning point in σ. By the definition of turning point,

makespan(σ) can be rewritten as:

makespan(σ) =

γ
∑

i=1

t1,σ(i) +
n

∑

j=γ

t2,σ(j) (23)

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 42

Let α ∈ {1, . . . , n} be the minimum possible value such that the job represented

by σ(α) is positioned on permutation π at a position less than or equal to k.

In other words, α =
n

min
j=1
{π−1(σ(j)) ≥ k}. Once α is not necessarily a turning

point in σ:

α
∑

i=1

t1,σ(i) +
n

∑

j=α

t2,σ(j) ≤

γ
∑

i=1

t1,σ(i) +
n

∑

j=γ

t2,σ(j) (24)

The expression on the left-hand of previous equation can be rearranged as:

α−1
∑

i=1

t1,σ(i) + t1,σ(α) +
n

∑

j=α

t2,σ(j) (25)

Once α =
n

min
j=1
{π−1(σ(j)) ≥ k} all the jobs from the set {σ(1), . . . , σ(α − 1)}

belong to the set {π(1), . . . , π(k−1)}. By using this property and remembering

that t1,i ≥ t2,i for all i ∈ J, one can conclude two facts. First, t1,σ(α) ≥
n

min
j=k

t1,π(j). Second, the following inequality holds:

α−1
∑

i=1

t1,σ(i) +
n

∑

j=α

t2,σ(j) ≥
k−1
∑

i=1

t1,π(i) +
n

∑

j=k

t2,π(j) (26)

Therefore, makespan(π) ≤ makespan(σ) what is a contradiction the fact that

π is not optimal.

Definition 30 Let J be a 2-PFS instance formed by n jobs. A cluster

decomposition of J is a family of job clusters {J1, . . . , Jm} such that
m
⋃

t=1

Ji =

J and Ji ∩ Jj = ∅ , ∀Ji, Jj ⊆ J.

Lemma 31 Let J be a 2-PFS instance formed by n jobs and {J1, . . . , Jm} be

a cluster decomposition of J. Let σ1, . . . , σm be trivial permutations for the

job clusters J1, . . . , Jm, respectively. Let π : {1, . . . , n} 7→ J be a permutation

schedule for J defined as π = σ1 ◦ . . . ◦σm. Then, there is a turning point σi(1)

in one of the trivial permutations σ1, . . . , σm such that σi(1) is a turning point

in π;

Proof : Let π(k) be a turning point in π. From the definition of turning point,

makespan(π) can be calculated as follows:

makespan(π) =
k

∑

i=1

t1,π(i) +
n

∑

j=π

t2,σ(j) (27)

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 43

Since J1, . . . , Jm is a cluster decomposition of J, it is true that π(k) = σp(k
′)

for some p ∈ {1, . . . ,m} and some k′ ∈ {1, . . . , |Jp|}.

Once π = σ1 ◦ . . . ◦ σm, equation 27 can be rewritten as:

makespan(π) =

k1
∑

i=1

t1,π(i) +
k′
∑

i′=1

t1,σt(i′) +

|Jp|
∑

j′=k′

t2,σt(j′) +
n

∑

j=k2

t2,π(j) (28)

Since σp is a trivial permutation of a job cluster, σp(1) is a turning point in

σp. As consequence, makespan(σp) can be determined by the expression:

makespan(σ) = t1,σp(i) +

|Jp|
∑

j=1

t2,σp(j) (29)

From the definition of turning point, the following inequality holds:

t1,π(i) +

|Jp|
∑

j=1

t2,σp(j) ≥
k′
∑

i′=1

t1,σp(i′) +

|Jp|
∑

j′=k′

t2,σp(j′) (30)

Hence, makespan(π) can be rewritten as:

makespan(π) =

k1
∑

i=1

t1,π(i) +
1

∑

i′=1

t1,σp(i′) +

|Jp|
∑

j′=1

t2,σp(j′) +
n

∑

j=k2

t2,π(j) (31)

Therefore, σp(1) is a turning point in π.

Theorem 32 Let J be a 2-PFS instance, {J1, . . . , Jm} be a cluster decompo-

sition of J and Σ = {σ1, . . . , σm} be trivial permutations over {J1, . . . , Jm},

respectively. Consider now a total order � of Σ, defined as: σi � σj if and only

if t1,σi(1) ≤ t1,σj(1). Let π : J 7→ J be a permutation obtained by the concatena-

tion of the trivial permutations from Σ following the total order �. In other

words, π = σ1 ◦ σ2 ◦ . . . ◦ σm, where σ1 � σ2 � . . . � σm. Then π is an optimal

permutation schedule for J.

Proof : By Lemma 31 there is a trivial permutation σi ∈ Σ such that σi(1) is

a turning point of both π and σi. Let π(k) = σi(1) be this job. Once σ1, . . . , σm

are trivial permutations and σ1 � σ2 � . . . � σm, follows that t1,σi(1) ≤ t1,σi′ (j)

for all i ≤ i′ ≤ m and 1 ≤ j ≤ |Ji′ |. Since π = σ1 ◦ σ2 ◦ . . . ◦ σm, we have that

t1,π(k) ≤ t1,π(k′), for all k
′ ∈ {k, k + 1, . . . , n}. Therefore, by Lemma 29, π is an

optimal permutation schedule for J.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 44

As stated by Theorem 32, it is possible to determine an optimal permutation

schedule for a 2-PFS instance by a concatenation of trivial permutations, each

one corresponding to a job cluster. However, these trivial permutations must

be sorted on a specific way before being concatenated. In particular, the key

used for this non-decreasing sorting is the processing time of the first job

of each permutation on the first machine. Since, from Theorem 27, a trivial

permutation of a job cluster can be determined in linear time, we proceed on

the investigation of efficient algorithms to decompose a 2-PFS instance into

job clusters. In the next section we explore the concept of interval graphs, one

of the most fundamental graph classes, which is strongly related to the 2-PFS

problem.

3.6 Interval Graphs

In this section we introduce the concept of interval graph and review some

basic results concerning this graph class.

Definition 33 Let R denote the set of Real numbers where a and b are two

of its elements, with a ≤ b. A subset [a, b] = {p ∈ R|a ≤ p ≤ b} of R is said

an interval. Furthermore, it is said that the two intervals [a1, b1] and [a2, b2]

overlap if b1 ≥ a2 and b2 ≥ a1.

Definition 34 Let I = {[a1, b1], [a2, b2], . . . , [an, bn]} be a finite set of intervals.

An interval graph G = (V,E) is the undirected graph created from the set

I in which there is a vertex u ∈ V for each interval [a1, u2] ∈ I and there is

an edge (u, v) ∈ E for each pair of intervals [au, bu] ∈ I and [av, bv] ∈ I that

overlap. In this case, G is said the underlying graph of interval I.

3.1(a): Set of intervals 3.1(b): Interval
graph

Figure 3.1: Example of an interval graph

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 45

Figure 3.1 shows an example of an interval graph. This example corresponds

to a set of intervals I = {[2, 7], [3, 10], [5, 8], [9, 12]} and an underlying interval

graph G = (V,E), where V = {1, 2, 3, 4} and E = {(1, 2), (1, 3), (2, 3), (3, 4)}.

The concept of interval graph was introduced independently by Hajos and

Benzer. [22]. In 1957, Hajos proposed the problem of characterizing interval

graphs. In 1959, the molecular biologist Seymour Benzer asked a related ques-

tion during an investigation of the topology of genes. The first characterization

of interval graphs is due to Lekkerkerker and Boland [22]:

Theorem 35 An undirected graph G = (V,E) is an interval graph if and only

if the following two conditions are satisfied:

(i) G is a chordal graph, i.e., every cycle of length strictly greater than 3

possesses an edge joining two nonconsecutive vertices of the cycle.

(ii) Any three vertices of G can be ordered in such a way that every path from

the first to the third vertex passes through a neighbor of the second vertex.

Interval graphs can be also characterized as those graphs whose clique matrices

satisfy the consecutive 1’s property for columns. A clique matrix is a matrix

obtained from a graph G by its decomposition into maximal cliques, with a

row for every maximal clique in G and a column for every vertex in G. A cell

(i, j) in a clique matrix has an entry 1 if the maximal clique i has the vertex

j and 0 otherwise. A matrix whose entries are zeros and ones is said to have

the consecutive 1’s property for columns if its rows can be permutated in such

a way that the 1’s in each column occur consecutively. This characterization

is due to Fulkerson and Gross [22]. Finally, Booth and Leuker (1965) proved

that interval graphs can be recognized in O(|V |+ |E|) time using the PQ-tree

data structure, introduced by the same authors [22].

3.7 Cliques and Covers

In this section we introduce the concept of clique covering of a graph and

review three algorithms for solving the minimum clique covering problem on

interval graphs.

(a) Definitions

Definition 36 Let G = (V,E) be a graph. A clique on G is a graph

Kn = (V ′, E ′) such that V ′ ⊆ V,E ′ ⊆ E, |V ′| = n and for all pairs of vertices

u, v ∈ V ′ there is an edge (u, v) ∈ E ′. In this case, Kn is said a clique of size

n.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 46

From the definition of clique follows that, an interval graph corresponding to

a set of intervals I on the real line is a clique if and only if all of its pairs

of vertices overlap, i.e., max[ai,bi]∈I {ai} ≤ min[ai,bi]∈I {bi}. Due to this fact,

recognizing if a graph is a clique is computationally little time consuming for

interval graphs in comparison to ordinary graphs. If the edges of the interval

graph are implicitly defined by a set of n intervals, it is possible to determine

if this graph is a clique in Θ(|V |) time. However, determining if an ordinary

graph is a clique requires at least Ω(|V | + |E|) = Ω(|V |2) steps in the worst

case.

The decision problem of, given a graph G = (V,E) and a positive integer

k ≤ |V |, determining if G has a clique of size at least k is strongly NP-hard

[19]. However, the same question can be solved in polynomial time if G is an

interval graph [22].

Definition 37 Let G = (V,E) be a graph. A clique covering of G is a set of

graphs G1 = (V1, E1), G2 = (V2, E2), . . . , Gp = (Vp, Ep), such that
⋃p

i=1 Vi = V

and, for all 1 ≤ i ≤ p, the graph Gi is a clique.

Figure 3.2 shows an example of a clique covering of a graph.

Figure 3.2: A clique covering of a graph

The Clique Covering Problem is the decision problem of, given a graph G

and a positive integer k ≤ |V |, determining if there is a set of k cliques

or less whose union is the entire vertex set of G. If k ≤ 2 the Clique

Covering Problem can be solved in polynomial time by a reduction to the

maximum cardinality matching problem. However, for all fixed k ≥ 3 this

problem becomes NP-complete [19]. The equivalent optimization problem,

named Minimum Clique Covering Problem, asks for a clique covering that

minimizes k. In graph theory, the minimum integer k for which there exists a

clique covering of a graph G = (V,E) is named the clique covering number of

G, being denoted by κ(G) [4].

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 47

(b) Algorithms

Three algorithms, of distinct time complexities, are known for solving the

minimum clique covering problem on interval graphs. The first one is due to

Gavril [21], who provided a Θ(|V | + |E|) algorithm to solve this problem for

the class of chordal graphs. Once that by Theorem 35 every interval graph is

a chordal, the Clique Covering Problem can be solved in linear time if G is

an interval graph. This algorithm proceeds by listing all maximal cliques of

the graph (cliques not contained in other cliques) using a perfect elimination

scheme, which can be implemented by a breadth-first search [22].

The second algorithm is due to Gupta, Lee and Leung [29] and works with

an interval graph given in the form of a family of intervals. They show that a

maximum independent set, a maximum clique and a minimum clique covering

can be found in Θ(|V | log |V |). The algorithm works in two stages. In the first

stage, the intervals are sorted by it right endpoints in Θ(|V | log |V |) time. In

the second stage, a minimum clique covering is constructed in Θ(|V |) time

by scanning the intervals following such ordering, always trying to insert the

current interval on the current clique, in order to increase the its size. If this is

not possible, a new clique is created containing the current interval, becoming

the current clique.

Before presenting the third algorithm, some additional definitions become

necessary. An independent set of a graph G = (V,E) is a subset of vertices

I ⊂ V such that for all pairs of vertices u, v ∈ I we have (u, v) /∈ E. An

independent set I1 is said maximum if there is no independent set I2 ∈ V such

that |I2| ≥ |I1|. In this case, |I1| is said the independence number of G, being

denoted by α(G). A classical result from Gallai [57] states that, if G is an

interval graph then its independence and clique covering numbers are equal,

i.e, α(G) = κ(G).

The third algorithm is based on the work of Snoeyink [59] and also works with

an interval graph given in the form of a family of intervals. In this work, it was

demonstrated an O(|V | logα(G)) divide-and-conquer algorithm that produces

a maximum independent set of an interval graph with independence number

equal to α(G). However, it is not hard to extend it to obtain a minimum

clique covering for the same graph in O(|V | log κ(G)) by using the theorem

from Gallai [57]. This method can be implemented in O(|V | log κ(G)) by using

a binary search tree to store the intervals of the independent set. In this case,

the query used for inserting a vertex on its corresponding clique or creating a

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 48

new clique can be executed in O(log κ(G)) time. The algorithm from Snoeyink

is more efficient than the algorithm from Gupta et al., since, by the definition

of clique covering, κ(G) ≤ |V |. Furthermore, it is an optimal algorithm due

to a well-known lower bound of Ω(n log k) comparisons for sorting a list of n

elements from which only k are distinct[38]. Table 3.1 summarizes the three

algorithms introduced in this section for determining minimum clique coverings

on interval graphs.

Author Year Technique Time Complexity

Gavril 1972 Breadth-First Search Θ(|V |+ |E|)
Gupta et al. 1982 Sorting Θ(|V | log |V |)
Snoeyink 2007 Divide-and-Conquer Θ(|V | log κ(G))

Table 3.1: Clique covering algorithms for interval graphs.

3.8 2-PFS and Interval Graphs

In this section we demonstrate how to reduce the problem of finding a cluster

decomposition of a set of jobs to the problem of determining a clique covering

for an equivalent interval graph.

Let J be a set of jobs representing a 2-PFS instance. Let us define an equivalent

interval graph G given in the form of a family of intervals. More precisely, for

every job j ∈ J with processing times t1,j and t2,j on first and second machines,

we associate an interval [a, b] ∈ G such that a = t1,j and b = t2,j. Once that,

as proved at section 3.3, all jobs of a 2-PFS instance can be assumed as having

its processing times on the first machine less then or equal to its processing

times on the second machine, this interval graph can always be constructed.

Next lemma establishes that finding a job decomposition of a 2-PFS instance

is equivalent to determine a clique covering of its equivalent interval graph.

Lemma 38 Let J be a 2-PFS instance and G = (V,E) be its equivalent

interval graph. Then, J admits a decomposition into k clusters if and only

if G has clique covering of size k.

Proof : The proof of necessity is constructive. Suppose that J admits a

decomposition into k clusters. Let J = {j1, . . . , jt} be a subset of jobs in J

forming one of these clusters. Let H = {[a1, b1], . . . , [at, bt]} be a subset of

intervals from G such that [ai, bi] ∈ H is equivalent to ji ∈ J , for all 1 ≤ i ≤ t.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 49

From the definition of job cluster follows that max
1≤i≤t

t1,ji ≤ min
1≤i≤t

t2,ji . Therefore,

for all vertices [ai, bi] ∈ H it is true that max
1≤i≤t

ai ≤ min
1≤i≤t

bi. Hence, H is a clique.

The proof of sufficiency follows similar arguments.

Let us proceed now by reviewing some important results from last sections.

At the end of the section 3.3 it was proved that its is possible to determine an

optimal permutation schedule for a 2-PFS instance by a concatenation of trivial

permutations, each one corresponding to a job cluster. However, as stated by

Theorem 32, such trivial permutations must be sorted in non-decreasing way

before being concatenated. The key used for this non-decreasing sorting is

the processing time of the first job of each permutation on the first machine.

Therefore, any efficient comparison based algorithm can be used for sorting

such trivial permutations. Furthermore, from theorem 27, a trivial permutation

can be easily obtained in linear time.

The question that kept unanswered until the beginning of this section was

how to decompose the original set of jobs into job clusters. In order to provide

an answer to this question, the concept of interval graph was introduced at

section 3.7. The minimum clique covering problem was also defined at section

3.7, and three polynomial time algorithms with distinct time complexities were

reviewed for this problem. Finally, lemma 38 demonstrated that the cluster

decomposition problem of a 2-PFS instance admits a linear time reduction to

the clique covering problem of an equivalent interval graph.

As consequence of the previous results obtained, we present now an algorithm

for finding an optimal permutation schedule of a 2-PFS instance in Θ(n log κ),

where κ is the minimum number of job clusters necessary to decompose the

original 2-PFS instance.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 50

Algorithm 3: Fast 2-PFS algorithm

Input : Set J of n jobs,
Processing times matrix P ∈ ℜ+

2×J.
Output: permutation schedule π : {1, . . . , n} 7→ J.
begin

Let A be the subset of jobs j ∈ J such that t1,j ≤ t2,j ;
Let B ←− J\A ;

Create an interval graph GA equivalent to the job set A ;
Create an interval graph GB equivalent to the job set B ;

Find a minimum clique covering C = {c1, . . . , ct} of GA ;
Find a minimum clique covering D = {d1, . . . , ds} of GB ;

Sort C in non-decreasing order using the minimum left endpoint
of each clique ci as the key ;

Sort D in non-decreasing order using the minimum left endpoint
of each clique di as the key ;

πA ←− ∅ ;
for every clique ci in the sorted set C do

ϕi ←− trivial permutation of jobs equivalent to ci ;
πA ←− πA ◦ ϕi ;

πB ←− ∅ ;
for every clique di in the sorted set D do

σi ←− trivial permutation of jobs equivalent to di ;
πB ←− πB ◦ σi ;

π ←− πA ◦ πB ;
return π ;

end

Theorem 39 Fast 2-PFS algorithm generates an optimal permutation sche-

dule for the 2-PFS problem and can be implemented in Θ(n log κ) time, where

κ is the minimum number of job clusters necessary to decompose J.

Proof : The correctness proof of Fast 2-PFS algorithm comes directly from

theorem 32 and lemma 38. Let us analyze now the time complexity of the

algorithm proposed. The algorithm starts by splitting J into sets A and B,

what can done in Θ(n) time. The creation of the interval graph GA can be done

by associating an interval to each job of A, as demonstrated at the beginning

of this section. The creation of GB from set B is similar. For every job j ∈ J

we define an interval [u, v] ∈ GB with u = t2,j and v = t1,j. Since GA and

GB are represented by a family of intervals, their edge sets will be implicitly

defined. Hence, GA and GB can be determined in Θ(n) time.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 51

Minimum clique coverings for GA and GA can be obtained in Θ(n log κ) by

applying the algorithm of Snoeyink, introduced at section 3.7. The choice of

this algorithm is related to its lower time complexity in comparison to the

algorithms of Gavril and Gupta et al. Applying the algorithm of Gavril, in

particular, would result on a time complexity of Θ(n2) since its time complexity

considers the number of edges in G, which can be up to n2. The use of the

algorithm of Gupta et al implies on a time complexity of Θ(n log n), which does

not result on an improvement over the classical 2-PFS algorithm of Johnson.

The minimum clique coverings C and D can be sorted Θ(κ log κ) using any

optimal comparison based sorting algorithm [38]. The keys used for sorting

these sets of cliques are the minimum left endpoints of each clique. All trivial

permutations ϕi and σi can be determined in Θ(n) time, as proved in section

3.4. Permutations πA and πB can also be determined in Θ(n) time, as well as

the final permutation schedule π. Therefore the Fast 2-PFS algorithm can

be executed in Θ(n log κ) time.

3.9 Conclusion

This chapter introduces a new and faster algorithm for solving the 2-PFS

problem. This algorithm runs in Θ(n log κ) time complexity, where κ is the

clique covering number of an interval graph equivalent to the 2-PFS instance.

To the best of our knowledge this is the faster algorithm already obtained for

the 2-PFS problem.

The Fast 2-PFS algorithm is composed by five stages. Stage I split the set

of jobs J into two disjoint sets, A and B. Stage II transforms A and B to

equivalent interval graphs, denoted by GA and GB, respectively. This reduction

runs in linear time. Stage III uses an Θ(n log κ) algorithm to find minimum

clique coverings CA and CB in the interval graphs GA and GB, respectively.

The parameter κ denotes the minimum number of job clusters necessary to

decompose the original job set, which is equal to the sum of the clique covering

numbers of the interval graphs GA and GB. Stage IV order the κ cliques in

CA and CB in Θ(κ log κ) time using any efficient comparison based sorting

algorithm. Stage V determines the final permutation schedule in Θ(n) time

using the sorted clique covers. Therefore, the Fast 2-PFS algorithm can be

executed in Θ(n log κ).

It is important to stress that this new algorithm is not based on faster sorting

methods. Our algorithm uses a classical Θ(n log n) comparison based sorting

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

Chapter 3. A Faster Algorithm for Two Machine Flow Shop Scheduling 52

method to achieve the claimed Θ(n log κ) time complexity. In particular our

results are based on the fact that is possible to decompose the jobs into κ

disjoint subsets and order κ elements to achieve an optimal solution.

Furthermore, we prove that the time complexity of algorithm Fast 2-PFS

problem is dominated by the time complexity of finding an equivalent minimum

clique covering problem in interval graphs. This connection between 2-PFS and

minimum clique covering on interval graphs is, from the best of our knowledge,

completely new.

Finally, the theoretical results supporting this new algorithm provide a more

precise characterization of optimal permutation schedules for 2-PFS instances.

As Pinedo [49] said “Johnson’s schedules are by no means the only schedules

that are optimal for 2-PFS. The class of optimal schedules appears to be hard

to characterize and data dependent ”. One of the contributions of this work,

in particular, is to provide a better understanding about the class of optimal

permutation schedules for the 2-PFS problem. In particular, it was proved that

by ordering any cluster decomposition of a 2-PFS instance we create an optimal

solution. This result is a generalization of the results obtained by Johnson, in

which there were always n disjoint clusters consisting of a single job.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA

