
4
Competitive Deterministic Heuristics

4.1 Introduction

This work focuses on the PFS with the makespan criterion, which was firstly

denoted as Fm|prmu|Cmax by Graham et al. [24]. Its main objective is to

introduce new deterministic and polynomial time heuristics which are partially

based on the NEH-T heuristic of Taillard [63], extended by an improvement

phase. The heuristics construct k solutions and perform l iterations in order

to improve them (see Section 4.3). These extensions lead to a total time

complexity of O(n2 · k · l · (m+ log k)).

This work is organized as follows. A literature review of heuristics for the PFS

is provided in Section 4.1(a). In Section 4.2, the original NEH of Nawaz et al.

[42] and the NEH-T heuristics are considered. Section 4.3 discusses the effect

of initial job ordering and tie breaking rules on the quality of the solutions

generated by the NEH heuristic, suggesting new approaches to explore the

solution space of the PFS. The construction and improvement phases of the

new heuristics proposed in this work, named NEH-Delta and NEH-Alpha,

are presented in Sections 4.4 e 4.5, respectively. In Section 4.6, experiments

on the benchmark instances of Taillard [64] are taken, showing that these

new deterministic heuristics are competitive with the metaheuristics currently

standing among the most effective ones for the PFS. Final conclusions are drawn

in Section 4.7.

(a) Previous work review

Since the PFS was proved to be Strongly NP-hard, fairly much research was

attracted to find good heuristic algorithms for this problem. The algorithms

range from deterministic and polynomial time constructive methods to meta-

heuristics based on non-deterministic approaches.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 54

Deterministic approaches appeared already four decades ago. The pioneer work

of Johnson [34] was followed by the pairing algorithm of Page [47], Palmer’s

algorithm [48]’s, the CDS algorithm [7], the algorithms of Gupta [25, 26] and

Bonney [5], Dannenbring’s effective Rapid Access heuristic (RA) [10] and some

further variations based on it, the famous NEH heuristic of Nawaz et al. [42],

the algorithm of Hundall [32] and the heuristic of Koulamas [37]. In 1990,

Taillard [63] showed how to bring the original runtime of NEH from O(n3 ·m)

down to O(n2 ·m) (see Section 4.2). As the NEH is still considered one of the

best heuristics for the PFS, as demonstrated in recent works such as [54] and

[35], there can be found many NEH based works, extending or modifying the

original algorithm. Some methods [15, 35, 11] work with different initial orders

of the jobs and special tie breaking rules to improve the performance of the

original heuristic.

Non-deterministic approaches include metaheuristics such as Tabu Search,

Simulated Annealing, Local Search, Genetic Algorithms and Ant Colonies.

The Tabu Search from Taillard [63] was one of the first non-deterministic

approaches for the PFS. One of the today’s most competitive metaheuristics

is the Iterated Greedy Algorithm of Ruiz and Stützle [56]. They review

many of the most effective metaheuristics and, given a specified time limit,

outperform all of them in the computational experiments. Other references to

metaheuristics for the PFS can be found in numerous surveys and reviews such

as [14, 54, 31] that appeared due to the large number of algorithms for this

problem.

Most of the surveys concerning heuristics for the PFS tried to address dif-

ferent scopes instead of giving just an up-to-date review of past works. Frami-

nan et al [14] introduced a new framework to classify deterministic as well as

non-deterministic approaches into three phases: index development, solution

construction and solution improvement. Ruiz and Maroto [54] made a compre-

hensive evaluation of deterministic heuristics and metaheuristics for the PFS,

presenting vast computational experiments regarding its comparison. Hejazi

and Saghafian [31] extended this effort to exact methods as well.

4.2 NEH and NEH-T

The NEH algorithm of Nawaz et al. [42] can be described by the following

steps:

1. For each job j, compute the sum Sj of its processing times on all

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 55

machines:

Sj =
m∑

i=1

ti,j, ∀j ∈ J

2. Sort all jobs in descending order of Sj to form the sequence of jobs

j1, .., jn.

3. Take the first two jobs j1 and j2 and order them so that the makespan

of the sequence given by the ordering of these two jobs is minimized.

4. Do for each of the jobs j3, ..., jn, successively: Insert the next job into the

sequence at the position that results in the smallest partial makespan

among all possible insertion positions.

The first step needs O(n · m) time to calculate the sum of processing times

for each job and O(n log n) to sort the jobs. In the following insertions for the

n jobs, the original NEH evaluates each insertion position by determining the

new makespan in O(n ·m). As there are j insertion positions for the j-th job

to be inserted, it takes O(n2 ·m) to evaluate all insertion positions for one job.

Hence, the original NEH has a total time complexity of O(n3 ·m). Taillard [63]

shows that the j insertion positions can be evaluated in O(n ·m) time using

dynamic programming and thus reduced the total running time to O(n2 ·m).

This improved version is referred to the NEH-T heuristic.

Due to its exceptional results in fairly short running time, the NEH is up-to-

date one of the most discussed and analyzed PFS heuristics. Comprehensive

computational experiments [54] argue that, considering its low computation

costs, the NEH can still be considered the best heuristic among all deterministic

ones.

4.3 Extending NEH

The outstanding practical performance of the NEH heuristic is mainly related

to two factors: first, the job grouping mechanism, based on the operation of

inserting a new job at the best partial position, can be computed in O(m)

time. Second, the order in which jobs are taken for insertion (decreasing sum

of processing times) has a considerable impact if compared with other ordering

mechanisms. Framinan et al. [15] showed that the initial order of the original

NEH is the best among roughly 140 evaluated starting sequences. Recently,

Kalczynski and J. Kamburowski [35] presented a new initial order with special

tie breaking rules which yields better results than the original NEH order.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 56

Considering that the makespan of a partial permutation schedule is an effective

criterion to decide whether this partial solution must be explored or discarded,

two important points, not directly treated by the NEH, come to mind. First,

how to select the partial permutation schedule to be explored in the case of ties,

when two or more solutions have the same makespan. Nowicki and Smutnicki

[45] constructed a special family of instances for which the NEH algorithm have

an approximation factor of Ω(
√
m) due to ties on the selection of job insertion

positions. Second, what is the effect of exploring not only one partial solution

with minimum makespan but a set of partial solutions with low makespans.

The effect of initial job ordering and tie breaking rules. The

following example illustrates how the initial job ordering and arbitrary tie

breaking for the NEH have effect on the quality of the generated solutions.

Consider an instance of the PFS composed of n = 3 jobs and m = 9 machines

in which the processing times matrix is defined in Table 4.1.

M1 M2 M3 M4 M5 M6 M7 M8 M9

J1 1+2ǫ 0 0 0 0 1 0 1 0
J2 0 1+ǫ 0 0 1 0 1 0 0
J3 0 0 1 1 0 0 0 0 1

Table 4.1: Example of a processing times matrix

Some considerations are necessary at this point. First, zero processing times on

the matrix represent extremely small values, once by definition all processing

times are strictly positive on the PFS. More precisely, the value represented by

0 is less than 1

n+m−1
. Consider also that 0 ≤ ǫ < 1/2. The application of the

NEH heuristic to such instance leads to an initial insertion ordering (J1, J2, J3)

calculated by the sums of jobs processing times. On the insertion phase, J2 is

positioned right before J1, minimizing the partial makespan of these two first

jobs. As consequence, any insertion point for J3 will result in a final makespan

of 5+ǫ. However, the optimal solution π = (J3, J1, J2) generates a makespan

of 4+3ǫ. Making ǫ also very small, leads to a gap1 of about 25% between

the optimal solution and the one found by the NEH. This simple example

illustrates how the selection of the second best partial solution (insertion of J2

after J1) can result in a better choice. In particular, when ǫ = 0 ties can occur

1We define the gap of a solution’s makespan, denoted by makespansol, as its devia-
tion from the optimal makespan for this instance, denoted by makespanopt, i.e. gap =
makespansol−makespanopt

makespanopt
.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 57

on the initial job ordering phase and on the job insertion phase. Similarly, tie

breaking decisions can affect the quality of the generated solutions.

Many works such as Framinan et al. [15] and Kalczynski et al. [36, 35] confirmed

the strong influence of the tie breaking decisions and showed that both the

initial order and the tie breaking decisions are crucial to the good results of the

NEH. Based on such studies, Kalczynski et al [35] presented a new initial order

and a simple tie breaking method which outperform the solutions obtained by

the original NEH method.

NEH and Enumeration Trees. Consider that the construction mecha-

nism for the enumeration tree of the PFS selects, at the level j, the position

p ∈ {1, · · · , j} in which the j-th job should be inserted in the partial permu-

tation consisting of the first j − 1 jobs. Once position p is selected, all jobs

previously allocated at positions p′ ≥ p are shifted to positions p′+1. Clearly,

all possible permutation schedules can be generated from such enumeration

process. As consequence, the partial permutation schedule represented by a

node is the path from the root of the enumeration tree to it. The NEH heu-

ristic defines a strategy that limits the exploration of every branch of a node

on this enumeration tree. Following the insertion phase of NEH, only the node

with minimum cost is explored at level j. All other nodes and its correspon-

ding subtrees are pruned. The cost of a node in the enumeration tree is the

makespan of the partial permutation schedule that it represents. Figure 4.1(a)

illustrates such explicit enumeration process for the previous example with

three jobs. The final permutation π = (J3, J2, J1) found by NEH is represented

by the node (3, 2, 1) on the enumeration tree, the path from root to this node

denotes the job insertions carried out by NEH. Dashed edges represent pruned

nodes on the enumeration tree.

4.1(a): Original NEH 4.1(b): Extended NEH

Figure 4.1: NEH and Enumeration Trees

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 58

New approaches to explore the PFS solution space. Following the

principles introduced by NEH, a natural extended strategy to explore the

solution space consists of considering, at each level of the enumeration tree,

not only the node with the minimum cost (makespan of its corresponding

partial permutation) but a set of k nodes with costs close to the lowest one

on that level. The previously introduced example illustrates the benefits that

can be obtained by following such approach, as shown in Figure 4.1(b). In

such example, considering that k = 2, both nodes (1, 2) and (2, 1) are kept on

the second level of the enumeration tree. Consequently, the two solutions of

lowest costs are selected at the third level, one of them is the optimal solution.

Finally, fixing parameter k or defining it as a polynomial function on input

size lead to algorithms that explore the PFS solution space in polynomial time.

4.4 Construction Phase

This work proposes two extensions over the NEH heuristic, named NEH-

Delta and NEH-Alpha. The common framework governing these extensions

is related to the definition of a set of nodes to be explored at a level of

the enumeration tree. In the classical NEH heuristic, this set has only one

element. The extensions proposed in this work consider sets of nodes with

larger cardinality but always limited to a polynomial function on the input size

so that the final heuristic can be executed in polynomial time. Throughout this

work, we refer the execution of the algorithms NEH-Delta and NEH-Alpha as

the construction phase.

(a) NEH-Delta

Given a positive integer k defined as a parameter, this heuristic makes use of

a greedy strategy to select at most k nodes to be explored from a level of the

enumeration tree. All other nodes at this level and its corresponding subtrees

are pruned. The k nodes selected at a level are those of minimum cost that are

valid. A node is called valid if none of its ancestral on the enumeration tree was

pruned. A node u is said an ancestral of a node v on the enumeration tree if and

only if u is on the unique path from the root of the enumeration tree to v. Each

level of the enumeration tree corresponds to the insertion of a job, selected on

the initialization phase of NEH that sorts the jobs by decreasing sum of its

processing times. At the end of the execution, k solutions are obtained from

which that of minimum makespan is returned. The complete pseudo-code for

the NEH-Delta is presented in Algorithm 4.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 59

Algorithm 4: NEH-Delta

Input : Set J of n jobs,
Set M of m machines,
Integer k,
Processing times matrix T ∈ ℜ+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time
sums resulting in order (j1, . . . , jn) ;
∆←− {j1};
for each job ji, i = 2 . . . n do

∆next ←− ∅ ;
for each partial permutation δ ∈ ∆ do

for each position p ∈ {1, . . . , i} do
Insert job ji at the position p of partial permutation δ
generating partial permutation δ′ ;
if |∆next| < k then

∆next ←− ∆next ∪ {δ′} ;

else if makespan(δ′) < maxδ′∈∆next
{makespan(δ′)}

then
∆next ←− ∆next − {δ′} ;
∆next ←− ∆next ∪ {δ′} ;

∆←− ∆next ;

π ←− permutation of ∆ with minimum makespan;
return π ;

end

Implementation details and time complexity analysis. The NEH-

Delta implementation implicitly constructs the pruning mechanism on the

enumeration tree. Every partial permutation schedule δ is represented by a

linked list so that, given a partial permutation δ, a new job ji can be inserted

at position p, generating partial permutation δ′, in O(1) amortized time. An

important point concerning this time complexity for the construction of δ′ is

that the elements of δ do not necessarily have to be stored in δ′. In fact, it

is possible to store in δ′ only a reference (pointer) to δ and the position p in

which job ji should be inserted. However, at the end of an iteration, when

the elements of ∆next are copied to ∆, every permutation δ′ ∈ ∆next must

copy the elements from its originating permutation δ in O(k · i) time. The

partial permutation sets ∆ and ∆next are implemented as binary heaps using

the permutations’ makespan as key. Thus, the permutation δ′ of maximum

makespan in ∆next can be found in O(log k) time. Similarly, permutations can

be inserted or removed from these sets in O(log k) time.

In the case of makespan ties, the solution that was firstly inserted into the heap

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 60

always has the priority of being maintained inside the heap. This criterion

is used throughout this work as a tie breaking rule. The job sorting initial

operation can be accomplished in O(n ·m + n log n) time. Making use of the

dynamic programming algorithm of Taillard [63], the makespan of all partial

solutions δ′ obtained by inserting job ji in every position of a previous partial

solution δ can be generated and calculated in O(i · m). Consequently, NEH-

Delta can be implemented in O(k · n2 · (m+ log k)) time.

(b) NEH-Alpha

Though the NEH-Delta tends to yield better results increasing k, this is not a

rule. In some rare cases the increase of k leads to a worse final makespan2, as

the better solution is pruned by other partial solutions during the construction

phase. This behavior is directly linked to the fact that only the k partial

solutions with best makespan are further explored. In order to increase the

diversity of the explored solutions, the NEH-Alpha heuristic determines, at

each level of the enumeration tree, not an unique set of nodes to be explored

but n disjoint sets of nodes. Each set Ap represents the nodes to be explored at

level i of the enumeration tree so that the ith job (following the job ordering)

is inserted at position p. Furthermore, given a positive integer k defined as a

parameter, all sets A1, A2, · · · , An must have its cardinalities limited to ⌊ k
n
⌋.

Making use from the same greedy criterion introduced for the NEH-Delta

heuristic, the ⌊ k
n
⌋ nodes selected to compose the set Ap at a level of the

enumeration tree are those of minimum cost that are valid. The main difference

from this strategy to the one employed by NEH-Delta is that, in this approach,

nodes only compete with nodes at the same level of the enumeration tree in

which the current job is inserted at the same position. The heuristic obtains

up to k solutions (in fact, we have a total of n · ⌊ k
n
⌋ solutions) at the end of the

heuristic’s execution. The one with minimum makespan is the final solution.

The complete pseudo-code for the NEH-Alpha is presented in Algorithm 5.

Implementation details and time complexity analysis. Data struc-

tures and implementation strategies used for NEH-Alpha are quite similar to

the ones of NEH-Delta. The main difference is that partial permutations sets

A1∪ . . .∪An are implemented as n independent binary heaps so that permuta-

tions can be inserted or removed from the permutation sets in O(log⌊ k
n
⌋) time.

Consequently, NEH-Alpha can be implemented in O(k ·n2 ·(m+log⌊ k
n
⌋)) time.

2As example, we refer to Taillard’s benchmark instance tai20 5. The NEH-Delta with
k = 1 leads to a makespan of 1223, whereas k = 5 yields a final solution of makespan 1229.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 61

Algorithm 5: NEH-Alpha

Input : Set J of n jobs,
Set M of m machines,
Integer k,
Processing times matrix T ∈ ℜ+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time
sums resulting in order (j1, . . . , jn) ;
A1 ←− {j1} ;
for p ∈ {2, . . . , n} do

Ap ←− ∅ ;

for each job ji, i = 2 . . . n do
for p ∈ {1, . . . , i} do

Ap
next ←− ∅ ;

for each partial permutation α ∈ A1 ∪ . . . ∪ Ai do
for each position p ∈ {1, . . . , i} do

Insert job ji at the position p of partial permutation α
generating partial permutation α′ ;
if |Ap

next| < k then
Ap

next ←− Ap
next ∪ {α′} ;

else if makespan(α′) < maxα∈Ap

next
{makespan(α)}

then
Ap

next ←− Ap
next − {α} ;

Ap
next ←− Ap

next ∪ {α′} ;

for p ∈ {1, . . . , i} do
Ap ←− Ap

next ;

π ←− permutation of A1 ∪ . . . ∪ An with minimum makespan;
return π ;

end

(c) Computational experiments

All computational experiments in this work were performed using the well

known benchmark instances of Taillard [64]. For all instances that already

have been solved to optimality, the optimum value is used to compute the

gap. For all other instances, the upper bounds shown in Table 4.2 are used.

The algorithms were implemented in C++ and compiled under the standard

configuration of Visual Studio 2005 Version 8. The experiments were carried

out on a Notebook Sony VAIO (VGN-FZ21M), Dual Core 2.0GHz, 3Gb

memory, on Windows Vista Home.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 62

Figure 4.2 shows the average gaps over all instances of Taillard’s benchmark

for the NEH-Delta and NEH-Alpha for varying k. The results for the NEH-

Alpha are only given for k ≥ 500, as Taillard’s benchmark contains instances

with up to 500 jobs.

An interesting fact is that the NEH-Alpha performs better than the NEH-

Delta for low values of k, but is then outperformed by the NEH-Delta for

higher k. Figure 4.3 illustrates the execution times of the algorithms. The linear

increase confirms the linear influence of the parameter k in the asymptotic time

complexity of the algorithm. Though the execution time grows linearly in k,

the gap improvement decreases in both methods.

Instance lb ub Instance lb ub Instance lb ub
ta051 3771 3847 ta081 6106 6202 ta101 11152 11181
ta052 3668 3704 ta083 6252 6271 ta102 11143 11203
ta053 3591 3640 ta084 6254 6269 ta107 11337 11360
ta054 3635 3719 ta085 6262 6314 ta108 11301 11334
ta055 3553 3610 ta086 6302 6364 ta109 11145 11192
ta057 3672 3704 ta087 6184 6268 ta110 11284 11288
ta058 3627 3691 ta088 6315 6401 ta111 26040 26059
ta059 3645 3741 ta089 6204 6275 ta112 26500 26520
ta060 3696 3756 ta090 6404 6434 ta116 26469 26477

Table 4.2: Upper and lower bounds for Taillard’s benchmark instances
(http://mistic.heig-vd.ch/taillard/, May 2008) that have not been solved to
optimality yet

Figure 4.2: Average gap over Taillard’s benchmark instances for the NEH-Delta
and NEH-Alpha construction phase using varying k

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 63

Figure 4.3: Average execution time (in seconds) over Taillard’s benchmark
instances for the NEH-Delta and NEH-Alpha construction phase using varying
k

4.5 Improvement Phase

After keeping active k distinct nodes at each level of the enumeration tree,

the application of the algorithms NEH-Alpha and NEH-Delta leads to a

final set of k distinct solutions. From this set, the permutation schedule of

minimum makespan is selected as the final solution. The central point that

motivates these new algorithms relies on the expectation of obtaining better

final solutions when increasing the value of parameter k. However, increasing

the value of k beyond large values (for example 50.000) seems not to pay-

off in relation to the computational efforts, as it can be observed in Figure

4.2. Clearly, it is always possible to achieve optimal solutions by increasing the

values of k up to n!. These results induced the development of new strategies to

improve the permutation schedules generated by NEH-Delta and NEH-Alpha,

using the knowledge of such threshold values for k to benefit better from the

computational effort and focus on new techniques to enhance the quality of

the solutions obtained by the construction phase.

(a) Breadth Search Improvement Phase

As result of the construction phase, after applying either the NEH-Delta or

the NEH-Alpha heuristic, a final permutation is selected from a set S =

{s1, s2, . . . , sk} of candidate solutions. These candidate solutions are construc-
ted in the last iteration of NEH-Delta or NEH-Alpha, after inserting the last

job on the permutation schedules. The objective of the Breadth Search Impro-

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 64

vement Phase (BSI) is to improve the solutions obtained from the construction

phase by working over the whole set S. The strategy adopted by the BSI is

composed of a sequence of l improvement iterations. Each of such improvement

iterations is constituted of n basic steps. A basic step removes and reinserts

the same job from every permutation in S. After removing a job, all n feasible

positions in which it can be reinserted are considered. Hence, applying a basic

step of a BSI improvement iteration to a solution si ∈ S creates n possible so-

lutions, including one identical to si. However, not all n possible solutions are

considered. In fact, from the set of all n · k (possibly new) solutions obtained

by removing and reinserting the same job in every permutation of S only k of

them with minimum makespan values are selected at the end of a basic step.

All other solutions obtained are discarded. The job selected to be removed and

reinserted on the ith basic step of a BSI improvement iteration is the ith job

in the initial ordering of the classical NEH heuristic. Algorithm 6 outlines the

pseudo-code of the method.

Implementation details and time complexity analysis. Each of the

l iterations of the BSI is composed of a set of n basic steps. A basic step

comprises the deletion of a job from the permutation set, its reinsertion in all n

possible positions of every partial permutation and the selection of k solutions

to be considered. Hence, the execution time of a basic step is dominated

by its n operations of reinsertion and makespan calculations. The deletion

of a job can be executed in O(n) time. A job can also be reinserted on a

permutation’s position p in O(1) amortized time if reinsertions are always

taken on subsequent positions. The makespan calculation after reinserting a

job can be achieved in O(m) time using the dynamic programming algorithm

of Taillard. The set S ′ can be maintained as a binary heap, bringing a cost of

O(log k) to delete or insert a permutation in S ′. As consequence, a basic step

can be executed in O(m + log k) and the total execution time of the BSI is

therefore O(n2 ·k · l · (m+log k)). In fact, this work applies two slightly distinct

implementation strategies for the BSI improvement phase. The decision of

which strategy should be applied is related to the choice of the algorithm used

on the construction phase. In the case that NEH-Delta was applied, the BSI

implementation strategy is identical to Algorithm 6. However, when NEH-

Alpha is used there is a slight modification on the BSI method. Instead of

having an unique set S of solutions for each iteration, k disjoint sets Ap of

solutions are considered, following exactly the same idea as applied to the

construction phase of NEH-Alpha.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 65

Algorithm 6: Breadth Search Improvement Phase

Input : Set S = {s1, s2, ..., sk} of solutions obtained from
construction phase,
Integer l,
Set J of n jobs,
Set M of m machines,
Processing times matrix T ∈ ℜ+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time
sums resulting in order (j1, . . . , jn) ;
S1 ←− S ;
for each iteration t = 1 . . . l do

S ′ ←− ∅ ;
for each job position q ∈ {1, . . . , n} do

for each solution s ∈ St do
srem ←− remove job jq from solution s ;
for each position p ∈ {1, . . . , n} do

snew ←− insert job jq at position p in srem ;
if |S ′| < k then

S ′ ←− S ′ ∪ {snew} ;

else if makespan(snew) < maxs′∈S′ {makespan(s′)}
then

S ′ ←− S ′ − {s′} ;
S ′ ←− S ′ ∪ {snew} ;

St+1 ←− S ′ ;

π ←− permutation of Sl+1 with minimum makespan;
return π ;

end

(b) Depth Search Improvement Phase

This improvement phase aims to improve separately each of the solutions given

by the construction phase. As the previously presented improvement phase,

this method receives an integer l, indicating the number of times (iterations)

that all jobs will be removed and reinserted following the ordering given by the

original NEH. In contrast to the BSI phase, the Depth Search Improvement

Phase (DSI) inserts each job exclusively at the position that leads to the best

makespan and uses the generated solution as starting point for the next job

reinsertion. The procedure applied to each of the given starting solutions can

be seen as a Local Search with a finite number of steps and a fixed order of the

jobs whose neighborhood is examined. Algorithm 7 outlines the pseudo-code

of the method.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 66

Algorithm 7: Depth Search Improvement Phase

Input : Set S = {s1, s2, ..., sk} of solutions obtained from
construction phase,
Integer l,
Set J of n jobs,
Set M of m machines,
Processing times matrix T ∈ ℜ+

M×J .
Output: permutation function π : {1, . . . , n} 7→ J .
begin

Sort the jobs in set J in decreasing order of its processing time
sums resulting in order (j1, . . . , jn) ;
for each solution si ∈ S do

for each iteration t = 1 . . . l do
for each job ji, i = 2 . . . n do

srem ←− remove job ji from solution si ;
si ←− insert job ji at its best position in srem ;

π ←− permutation of S with minimum makespan;
return π ;

end

Implementation details and time complexity analysis. For each of

the k solutions from the set S given in the input data, the algorithm performs

l iterations, i.e. the deletion and reinsertion of all n jobs will be performed

l times. Using Taillard’s dynamic programming algorithm to calculate the

makespans for all possible insertion positions, the deletion and reinsertion of a

job at the best position costs O(n·m). This leads to a total asymptotic runtime

of O(n2 ·m ·k · l) for this improvement method. In practice, we can skip further

evaluation of a solution if it does not improve during one whole iteration, i.e.

after removing and reinserting all n jobs. We also can prune further iterations

t′, t′+1, . . . , l on a solution, if the solution’s permutation is the same as one of

the already examined ones from other solutions generated after the first t′− 1

iterations. An implementation of such redundancy verifications may change the

overall time complexity. However, in our experiments, the use of such pruning

turned out to be very effective and significantly reduced the execution time on

all instances.

(c) Computational experiments

Figure 4.4 illustrates the influence of the number of iterations during the

improvement phase. Both NEH-Delta and NEH-Alpha (with a fixed k =

500) are followed by the Depth and Breadth Search Improvement phases.

Two observations can be made. First, the gap improves similarly for each

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 67

configuration of construction and improvement phase so that a ranking can be

established. Second, the average gap seems to converge, i.e. one may limit the

number of iterations without a strong influence on the final gap.

Figure 4.4: Gap improvement during 50 iterations of the two improvement
phases combined with the NEH-Delta and NEH-Alpha for k=500 (average
gaps over Taillard’s benchmark instances)

4.6 Performance Comparison

In this section, the competitiveness of the algorithms presented in this work

are evaluated by comparing them with the most effective heuristics known for

the PFS. In particular, the following algorithms are considered: the NEH-T

algorithm of Taillard [63], the NEH-KK1 algorithm from Kalczynski and

Kamburowski [35], the NEH-D method by Dong et al. [11], the genetic

algorithms GA RMA and HGA RMA from Ruiz and Maroto [55], the

simulated annealing algorithm SA OP from Osman and Potts [46], the

tabu search SPIRIT from Widmer and Hertz[66], the genetic algorithm

GA CHEN of Chen et al. [9], the genetic algorithm GA REEV from Reeves

[52], the hybrid genetic algorithm GA MIT from Murata et al. [39], the

genetic algorithm GA AA from Aldowaisan and Allahverdi [1] and the ant

colony algorithms M-MMAS and PACO from Chandrasekharan and Ziegler

[8]. Furthermore, we compare our results with the Iterated Local Search (ILS)

, the Iterated Greedy method (IG RS) and Iterated Greedy with Local Search

(IG RSLS) of Ruiz and T. Stützle [56]. Our algorithms were configured as

follows:

– NEH-Delta and NEH-Alpha with Depth Search Improvement phase, de-

noted by NEH-Delta/DSI and NEH-Alpha/DSI respectively. The values

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 68

for k were chosen as follows: k = 10000 for the instances with 20 jobs,

k = 5000 for instances with 50 jobs, k = 2000 for instances with 100

jobs and k = 1000 for instances with 200 or 500 jobs. The improvement

phase was limited to 10 iterations.

– NEH-Delta and NEH-Alpha with Breadth Search Improvement phase,

denoted by NEH-Delta/BSI and NEH-Alpha/BSI respectively. The va-

lues for k were chosen as follows: k = 5000 for the instances with 20 jobs,

k = 2500 for instances with 50 jobs, k = 1000 for instances with 100 jobs

and k = 500 for instances with 200 or 500 jobs. The improvement phase

was limited to 20 iterations.

The execution time for all algorithms was strictly limited to (n · m · 3/100)
seconds, the same stopping criterion as used by Ruiz and Stützle [56] to

compare their algorithm with other algorithms for the PFS. If this time limit

was exceeded, the best makespan found so far was considered.

In order to compare the results of this work with the ones of others, one

must consider two crucial factors that complicate direct comparison. First,

the upper bounds of Taillard’s benchmark instances were constantly updated

in the last years. Hence, works based on this set of instances may have used

different values of upper bounds to compute the gaps. Second, the performance

of the computational resources may directly impact on the results when the

experiments are time limited. Clearly, the fairest way to compare results of

different works is to use the original implementation of the authors and execute

the algorithms under the same conditions. If this is not the case, the above

mentioned points must be considered. For algorithms whose results are not

impacted by a time limit within their execution (i.e. the algorithms always

terminate before the time limit is reached), the impact of computational

resources does not have to be considered.

In our comparisons, these crucial factors were considered as best as possible.

The NEH-T algorithm was implemented and executed in the same machine

that our algorithms to guarantee a fair comparison. Table 4.3 shows the

average gaps per instance group. All NEH-Delta and NEH-Alpha variations

considerably improve the results when compared with the original NEH-T.

Clearly, the computational effort for these algorithms are much higher.

We now compare with the other algorithms mentioned in the beginning of

this section. Table 4.4 compares their average gaps. The original code of Ruiz

and Stützle’s Iterated Greedy Algorithm with Local Search (IG RSLS) was

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 69

Instance NEH-T NEH-Delta NEH-Alpha NEH-Delta NEH-Alpha
/DSI /DSI /BSI /BSI

20x5 3.30 0.36 0.20 0.39 0.27
20x10 4.60 0.21 0.19 0.22 0.19
20x20 3.73 0.10 0.09 0.03 0.05
50x5 0.73 0.18 0.02 0.18 0.08
50x10 5.07 1.05 0.94 1.53 1.38
50x20 6.68 1.64 1.77 1.89 1.79
100x5 0.53 0.11 0.06 0.21 0.03
100x10 2.21 0.39 0.35 1.03 0.57
100x20 5.34 1.99 1.94 2.28 2.19
200x10 1.26 0.26 0.25 0.47 0.38
200x20 4.42 1.83 1.60 2.30 2.06
500x20 2.07 0.80 0.85 1.22 1.05
Average 3.33 0.74 0.69 0.98 0.84

Table 4.3: Comparison of the average gaps of the NEH-Delta and NEH-Alpha
with the original NEH-T

executed 20 times, yielding an average gap of 0.417%. In order to compare

with the results for the other eleven algorithms listed Ruiz and Stützle by [56],

we estimated the difference within the sets of upper bounds and computational

resources as explained in the following.

The similarity between sets of upper bound values used in different works is

measured by using the average gap of the NEH-T as a reference. Ruiz and

Stützle as well as Kalczynski and Kamburowski reported a NEH-T average

gap that is very close to the average gap found in the experiments of this

work. Thus, it is assumed that the set of upper bounds used by the above

authors is similar to the one used in our experiments. Dong et al. seem to have

worked with an older set of upper bounds and reported an NEH-T average

gap of 2.74%, which is 21.5% less than the average we found. Hence, the gap

reported for their algorithm was multiplied by this factor.

Now, possible differences in the computational resources must be considered.

Kalczynski and Kamburowski’s NEH-KK1 algorithm does not exceed the given

time limit, so it is valid to compare their results directly with the ones of our

algorithms. Ruiz and Stützle report their results based on the above explained

time limit. The average gap reported for their IG RSLS algorithm is 0.44%, a

difference of exactly 5.227% to the gap we found for this algorithm executing

it on our machine. In order to have an estimated average gap for the other

algorithms used in the comparisons of Ruiz and Stützle, we discount this

5.227% from the average gaps of these algorithms.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 70

Algorithm Avg gap
IG RSLS 0.42
HGA RMA 0.54
NEH-Alpha/DSI 0.69
PACO 0.71
IG RS 0.74
NEH-Delta/DSI 0.74
M-MMAS 0.84
NEH-Alpha/BSI 0.84
NEH-Delta/BSI 0.98
ILS 1.01
GA RMA 1.07
GA REEV 1.52
GA AA 2.16
SA OP 2.24
GA MIT 2.30
NEH-D 2.87
NEH-KK1 3.15
NEH-T 3.33
GA CHEN 4.57
SPIRIT 4.83

Table 4.4: Comparison of the average gaps of the NEH-Delta and NEH-Alpha
with other heuristics and metaheuristics by time limited execution

All algorithms in Table 4.4, except the NEH-T, NEH-KK1, NEH-D and our

algorithms, are metaheuristics, i.e. are non-polynomial and non-deterministic.

The metaheuristics of Ruiz and Stützle (IG RSLS, IG RS), Ruiz (HGA RMA)

and Chandrasekharan and Ziegler (PACO, M-MMAS) perform extremely well

on the set of instances, leading to an average gap lower than one percent.

While the NEH-T, NEH-KK1 and NEH-D reach average gaps around three

percent, our NEH-Delta and NEH-Alpha approaches lead to gaps lower than

one percent, competing well with the other leading metaheuristics.

Farahm et al. [13] presented five polynomial deterministic heuristics while Ruiz

and Maroto [54] reviewed further 13 polynomial-time deterministic heuristics

for the PFS. None of those algorithms reported an average gap smaller then

the ones listed above for the heuristics introduced in this work, considering

Taillard’s benchmark instances.

4.7 Conclusions

This work introduces new deterministic heuristics for the PFS based on

extensions of the classical NEH algorithm. The development of the new

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 71

proposed methods was motivated by an analysis of the partial solutions

generated during the NEH construction process, exploring the quality of partial

solutions close to the ones selected by the NEH heuristic and its relation to the

nodes belonging to the enumeration tree of the PFS. Following such analysis,

the algorithm NEH-Delta was proposed with the objective of considering not

only the best partial permutation schedules on a level of the enumeration tree,

but a set with k promising solutions to be explored. The NEH-Alpha heuristic

also preserves k partial solutions active, but, in order to increase the diversity of

solutions, keeps it in n disjoint sets representing the position of the last inserted

job. Computational experiments demonstrated a significant enhancement on

the quality of the solutions generated by NEH-Delta and NEH-Alpha heuristics

when compared to the results obtained from the classical NEH. However, it

was observed that, for some threshold values of k, the increase of parameter k

leads to little improvement on solutions in comparison with the increase of the

total execution time. Inspired by this fact, there were proposed two strategies

to comprise a phase of improvement of the solutions generated by NEH-Delta

and NEH-Alpha, named Breadth Search Improvement (BSI) and Depth Search

Improvement (DSI).

NEH-Alpha/DSI, NEH-Alpha/BSI, NEH-Delta/DSI and NEH-Delta/BSI are

deterministic heuristics, which can be executed in polynomial time taking

parameters k and l as a polynomial function in n or m. Following the

methodology introduced by Ruiz and Stützle [56], computational experiments

were carried out in order to compare the performance of the new stated

methods with currently well performing heuristics for the PFS.

Regarding the heuristics here proposed, it is interesting to observe that the best

results for the construction phase alone is not confirmed when the improvement

phase is added. NEH-Delta beats NEH-Alpha for large values of k in the

construction phase. One possible explanation for this phenomenon is that the

diversity of the solutions can be enforced by augmenting the number k of

partial solutions, not requiring an explicit mechanism for this as NEH-Alpha

provides. The comparison of the four new NEH heuristics, improvement phase

included, says this is not necessarily true. It allows two observations. The first

one is that for both search approaches, BSI and DSI, the NEH-Alpha was

dominant. This may be due to the larger diversity imposed by the explicit

mechanism which now, with the improvement phase, makes a difference. The

second one is that the DSI (depth search) seems to be consistently better.

Although the purpose of the application of the breadth search was to provide

a more diversified search, it seems that selecting a whole new set of k best

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA



Chapter 4. Competitive Deterministic Heuristics 72

solutions at each step may, in fact, lead to a less diversified one, when

comparing to equivalent sets of the BSI. In other words, assuming that good

heuristics are the ones capable of diversifying and intensifying the search, the

dominance of NEH-Alpha/BSI was somewhat expected.

Finally, the experimental results attest that NEH-Alpha/DSI, NEH-

Alpha/BSI, NEH-Delta/DSI and NEH-Delta/BSI stand among the most

effective heuristics already proposed for the PFS. In particular, from the best

of our knowledge, following the experimental methodology introduced by Ruiz

and Stützle, no polynomial time deterministic heuristics proposed so far lead

to experimental results close to the ones obtained in this work.

DBD
PUC-Rio - Certificação Digital Nº 0521491/CA




