
1
Introduction

1.1 Motivation and Objectives

Current generation video game consoles (Xbox 360 and Playstation

3) have multiple processors allowing parallel execution of the game tasks

[Xbox360Hardware], [CellMicroprocessor]. However, many games are not

reaching their full potential because they are not properly threaded for multi-

core architectures. In order to appropriately use this type of hardware, it is

necessary to change the usual ways of solving problems in game programming.

Furthermore, game engine architectures must evolve towards more flexible and

efficient ways of dividing the workload between the processing cores.

Game engine is a class of software framework extensively used by the

game industry. There are many ways of dividing game engine tasks between

multiple cores of a computer. One way is simply taking a task from a single

threaded game engine and placing it to run on another core. The performance

increase will be the result of how much parallelism the task separation allows

and the amount of communication overhead.

Figure 1.1 shows how a game on the Xbox 360 divides its tasks between

the different cores of the processor. The processor of the Xbox 360 has 3

symmetrical cores with two hardware threads per core. The threads in this

figure reveal that the engine has its main processing done in a single core. The

other cores are used for graphical complementary tasks and audio. This is an

unbalanced task division of a game, where a single core is responsible for the

most important tasks. Figure 1.2 presents a game with a more balanced task

division than the one found in figure 1.1.

It is possible to divide the workload of a game on a multicore processor

not only by placing different tasks on different cores. It is also possible to

implement parallel versions of game algorithms in several game activities, such

as graphics, physics, collision detection and artificial intelligence.

However, despite the importance of parallelism for the game industry,

there are few related academic works available. The literature on parallel

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 1. Introduction 13

Figure 1.1: Project Gotham Racing Threads (source:[Dawson06])

Figure 1.2: Kameo’s Threads - a more balanced task division
(source:[Dawson06])

game engine techniques and architectures is scarce and game programmers

usually consult classic references [Grama03], [Wilkinson05]. Furthermore, most

of the work on parallel rendering is focused on PC clusters and grids, while

the literature on parallel rendering for multicore systems is rare.

This work has the objective of contributing to the research of parallel

game engine technology by looking at the different ways a game programmer

can organize and improve the parallel game engine tasks. Firstly, we look at

this task division on an architectural level. Then we present parallel algorithms

on computer graphics and collision detection, which are standard targets for

parallelization in games.

The present thesis is about strategies and algorithms for parallel game

engines. The computer graphics algorithms that will be analyzed will not

include any rendering and, as such, there will be no 3D rendered scenes in

this work. The reader should visit the project web page (see section 1.3) to

find some systems based on the present work.

The solutions presented on this thesis are all based on multicore

CPUs and don’t use CUDA [Kirk10]. CUDA (Compute Unified Device

Architecture) is a parallel computing architecture developed by NVIDIA that

allow programmers to use highly parallel GPUs (Graphical Processing Units)

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 1. Introduction 14

and a C like language to solve general problems. CUDA is an excelent solution

to solving parallel problems that don’t required a lot of branching (such as

traversing a space partitioning data structure). The reason we didn’t researched

CUDA solutions was to have more time to find better architectures and

algorithms for multicore CPUs.

1.2 The Organization of the thesis

Chapter 2 of this thesis deals with parallel game engine architectures and

shows different forms to divide game tasks. As far as we are aware, there is

no reference in the literature to a comprehensive analysis between different

parallel game engine architectures. Chapter 2 contributes to narrow this gap

in the literature. A partial analysis on this subject can be found in works by

Monkkonen [Monkkonen06] and Lake [Lake05].

Sometimes, in order to achieve scalability, it is necessary to transform

standard game engine algorithms into parallel algorithms. Chapter 3 and 4 deal

with parallel versions of standard algorithms in games for computer graphics

and collision detection.

Octree is a classic data structure generally used in games for optimizing

scene rendering. An Octree recursively divides space into eight chunks until a

certain level is reached (figure 1.3). In computer graphics, this data structure

is used for quickly eliminating parts of the scene by testing the intersection of

the camera frustum against the octree nodes. If a node is not intersected by

the frustum, its children will also not be intersected.

Chapter 3 provides a parallel implementation of octree culling. It also

presents how to sort resources in parallel in order to accelerate the rendering

process. Sorting resources before rendering reduces the amount of resource

changes requested by the graphics device. Since changing the render state of the

graphics device can be an expensive operation [ResourceChangeCost], reducing

the number of render state changes will improve rendering performance.

Collision detection systems usually work in two steps. The first step is

the broad phase of the collision detection, which detects objects that are close

to each other. The second step is the narrow phase of the collision detection,

where the objects that are close to each other are tested for collision. The first

step is necessary to reduce the amount of tests in the narrow phase. Without

the broad phase, we would have to perform O(n2) tests on all objects of the

scene. By using the broad phase, the complexity of O(n2) occurs only for the

groups of objects that are close to each other.

One way to efficiently find objects that are close to each other is to

divide the world into a grid of equal sized cells. Chapter 4 provides algorithms

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 1. Introduction 15

Figure 1.3: An octree

for implementing a parallel hierarchical grid. This chapter also provides

information on how to balance the workload of O(n2) tests from a group of

objects that need to be tested for collision.

Chapter 5 presents conclusions, contributions and future works. This

thesis brings contributions on three areas:

1. On chapter 2, it proposes a game engine architecture called Fully Parallel

Architecture that has greater scalability that the other architectures

found in the literature.

2. On chapter 3, it proposes a parallel version of the classical Octree

Frustum Culling algorithm. The thesis also proposes, on this chapter,

a method for parallel resource sorting.

3. On chapter 4, it proposes a parallel method for computing Broad Phase

Collision Detection using Uniform Hierarquical Grids. It is also proposed,

on this chapter, a balanced method for Parallel Narrow Phase Collision

Detection.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 1. Introduction 16

1.3 Programming Aspects

The present thesis has a greater focus on algorithms and programming

than realistic scenes rendered in real time. Therefore, it is necessary that we

clarify codes and programming techniques formats before we start presenting

the next chapters.

The pseudocodes presented in this thesis adopt the following conventions

to become more readable and concise:

1. standard constructs and keywords are marked in bold face, such as if,

else, for, while, true, ... .

2. Blocks of statements are delimited by the word end (end if,end for, ...)

3. variable names are in italics (to avoid confusion with free text).

4. comments appear between symbols { and } such as {this is a comment}

5. Attributes are denoted by a dot (.) and indirections are indicated by an

arrow (→). For example: box.min and node → children[i].

6. Shorthand operators are used (+=, -=, ...).

The task of writing algorithms for multicore systems is complex and

requires complete domain on the programming language being used. Pseudo-

codes cannot present most of the details and complex solutions used in the

real code. For the sake of comprehensibility, all the source code written for

this thesis can be examined in the following Web page:

www.icad.puc-rio.br/projects/~multicoregames

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA




