
2
Parallel Game Engine Architectures

This chapter presents different forms of organizing the computation of

a game on a multicore system. Most of the architectures presented in this

chapter can be found in the work by Monkkonen [Monkkonen06] and Dawson

[Dawson06]. We use a simplified set of game engine tasks to make easier the

comparison between the different architectures. This simplified set does not

consider tasks that are related to streaming, audio and networking.

2.1 A Single Threaded Game Loop

Current mainstream game consoles, Xbox 360 and Playstation 3, are

both multicore systems allowing parallel computing to be performed. In order

to make proper use of such systems, it is necessary to go beyond the simplicity

of the single thread main game loop. An example of such simple main game

loop is presented in figure 2.1.

The Culling & Sorting task executes algorithms for scene graphics culling

and resource sorting. Scene graphics culling removes parts of the virtual

environment not seen by the camera. Resource sorting optimizes rendering by

allowing reduced resource changes. The Rendering task renders the scene by

configuring the render device and making render calls. The Input task detects

the input devices states. The AI & Scripting task execute AI algorithms (such

as path finding) and general scripts. Scripts may be used for implementing

object behaviour and special procedural sequences. The Animation task

animates the objects of the game based on an animation sequence. The Physics

& Collision Detection task executes the physics simulation and also the collision

detection of a game. The Present Back Buffer task simply shows the contents

of the back buffer where the scene has been rendered. This task is at the end of

the loop in order to increase the parallelism between the CPU and the GPU.

By processing others tasks on the CPU before presenting the back buffer, time

is given to the GPU to finish the rendering of the scene so that when this task

is reached, no stall is necessary [DirectXDocumentation].

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 18

Figure 2.1: A Single Thread Game Loop

2.2 Synchronous Parallel Function Architec-

ture

This architecture takes the tasks from the single threaded game loop

presented in figure 2.1 and sets the ones that can run in parallel in different

processors, as shown in figure 2.2. The Animation and Physics & Collision

Detection tasks are dependent on the Input and AI & Scripting tasks. The

benefit of this architecture is that it is easy to incorporate legacy single

threaded technology into this architecture, making it an inexpensive technology

upgrade. The drawback is that this is not a scalable solution. Generally, there

is a limit to the amount of processor usage that can be achieved by dividing

the game technology tasks in this way. So, this architecture is a fine solution

for the current generation of multicore processors, such as the Intel Core 2

CPU family and the Xbox 360. However, CPUs with a higher amount of cores

will probably not be used in an optimal way.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 19

Figure 2.2: A Synchronous Parallel Function Architecture running on 3 cores

2.3 Asynchronous Parallel Function Architec-

ture

The asynchronous parallel function architecture also divides the tasks

of the main game loop between the multiple cores. The difference is that the

tasks on each core are allowed to run without needing to wait for tasks on

other cores to finish (figure 2.3).

In this architecture, each task uses the latest data available in order to

make its own processing. For example, the Culling & Sorting task gets the latest

data on the scene objects, their position, orientation, etc, even if the Physics

& Collision Detection is changing the scene objects information. This could be

accomplished by having both tasks accessing the same data in a synchronized

way. An alternative solution is to make the Culling & Sorting task use a buffer

to read the data with the latest scene object information, while the Physics &

Collision Detection task writes on a different buffer. When finished, the buffers

are swapped and the Culling & Sorting starts reading from the new scene data

buffer.

This architecture shares the same benefit with the synchronous approach;

That is: the ease of implementation for current single thread technologies.

Another benefit is that, since the tasks are mostly asynchronous, information

will be more up to date as time passes. For example, if the Graphics tasks

(Culling & Sorting, Rendering, Present Back Buffer) take a long time, the AI

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 20

Figure 2.3: An Asynchronous Parallel Function Architecture running on 3 cores

and the Physics Tasks could run another time and give a more up-to-date

information for the next frame based on the previous time step.

This architecture also shares the drawback with the synchronous ap-

proach of not scaling well for a higher amounts of cores. Another drawback

is the wasting of processor resources. When a task executes a second time on

the same frame and uses the same input with nothing being changed from the

previous processing, the task is making bad use of processor resources. For

example: a scripted AI for an enemy tests visibility of the player a second time

and sets the enemy to a combat state again. The resources could be allocated

for additional processing of another task, such as physics, that would allow a

more realistic physical simulation on the game.

2.4 Data Parallel Architecture

In the data parallel architecture, instead of dividing the processing based

on the tasks, the processing is divided based on the data and the same tasks

execute on each processor on different parts of the data. For example, the

scene objects could be equally divided between the processors as shown on

figure 2.4. Each thread in figure 2.4 would take an equal amount of scene

objects to process.

The main benefit of this architecture is the scalability, as it scales well for

any number of processors. The drawback is that not all game technology will

be easily or efficiently implemented this way. For example, if a game engine

uses an octree to process culling in a game, it is not simple to divide the culling

process of the scene objects among cores. The problem is that this architecture,

as the previous ones, is still based on executing single threaded algorithms, a

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 21

Figure 2.4: A Data Parallel Architecture running on 3 cores

feature that brings difficulties when we try to implement game technologies on

multicore systems.

2.5 Pipeline Architecture

In the pipeline architecture, each core takes a specific task from the main

game loop to process and, after finishing its computation, passes the results

to the next core in the pipeline. After delivering the results, the core starts

computing the same task, but for the next frame, as presented in figure 2.5.

This architecture can offer a good frame rate being only limited by the

task with the longest time to be completed. This task is the bottleneck of the

pipeline and optimizing it will increase the frame rate.

The main drawback of this architecture is that the input results take a

long time to be displayed on the screen. This is because the computation of

each particular frame still takes a long time to be completed. As computers

increase in number of processors and the frame computation time increases,

this architecture will probably become a poor solution for a game engine

architecture.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 22

Figure 2.5: A Pipeline Architecture

2.6 Fully Parallel Architecture

Whenever possible, the fully parallel architecture makes use of fully

parallel algorithms for processing the main game loop tasks. For example, this

architecture can use a parallel octree search algorithm for culling processing.

It also mixes ideas from the parallel function and data parallel architectures

in order to maximize scalability. Figure 2.6 shows this architecture.

The amount of tasks on each core is generally different, mainly because

some tasks are single core in nature (e.g. rendering and input). Therefore, the

technology underlying the fully parallel architecture should have a complete

control over the process of how the workload of a task will be distributed

among the cores. For example, the first column in figure 2.6 has less tasks to

process than the third column. The third column has a lesser amount of tasks

to process than the second column, but the Rendering task usually takes much

more time to process than the Input task. Because of this task organization,

it would be interesting if we could give to the core responsible for processing

the first column, a greater amount of work for the AI & Scripting task than

the amount given to the other cores. For example, we could divide the AI

& Scripting workload in 60/30/10 percent of work on each core. So the core

responsible for the first column takes 60% of the task to process, the core

responsible for the second column takes 30%, and the final core takes 10%.

This would allow a more balanced workload among each core.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 23

Figure 2.6: A Fully Parallel Architecture running on 3 cores

Some barriers are added to the architecture because some tasks need

synchronization. One example is the Rendering task and the Culling & Sorting

Tasks. Only after the culling and resource sorting tasks are finished that the

rendering can proceed. So the Rendering task only executes after all cores

reach the Culling & Sorting Barrier.

As in the case of the Data Parallel Architecture, the main benefit of

this architecture is the scalability. However, in comparison to the data parallel

architecture, the fully parallel architecture has the advantage of having no

obligation of developing a technology based on scene objects. The drawback is

that the technology used for implementing this architecture is considerably

different from any legacy single threaded technology, what makes it more

expensive to develop.

2.7 Some Final Conclusions

The next generation of processors and game consoles will come with more

cores to handle the execution of the game tasks than those found in current

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA



Chapter 2. Parallel Game Engine Architectures 24

machines. Therefore, it is important to use scalable architectures, in order to

have optimal use of the processor resources. In this aspect, the Data Parallel

Architecture and the Fully Parallel Architecture are good options.

However, we recommend the fully parallel architecture, because it is

the only architecure that fully embraces parallel execution by using parallel

versions of classic algorithms (such as octree culling). The fully parallel

architecture is also flexible in the sense that it allows parallel execution of

scene objects as in the data parallel architecture.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA




