
3
Parallel Techniques for Computer Gra-
phics

This chapter is about parallel techniques for culling and resource sorting.

The literature has few works that concentrate on algorithms for parallel culling

and sorting using multicore systems. This chapter1 presents a new and effective

method for parallel octree culling and sorting for multicore systems, using

counting sort[Cormen01] and based on a new balancing algorithm, called

Adaptive Two-Step Static Balancing (A2SSB). The adaptive nature of the

balancing algorithm is governed by a dynamic split level that can adjust the

algorithm to new camera positions, keeping a well-balanced workload among

the processors. This chapter also introduces the concept of n-dimensional

resource space as a discrete Euclidean space.

3.1 Introduction

The rendering processing can be organized in the following stages: culling

- LOD processing - resource optimization - GPU communication (render calls,

primitive transfers, etc). In the present work, we refer to “parallel rendering”

as being the parallel algorithms for the first two stages.

Octree culling is a classical technique for reducing the amount of data

sent to the GPU for rendering. The technique uses a tree data structure where

each node has eight children. Each tree node represents a 3D axis aligned cube

as shown on figure 3.1. The objects of the world can be stored on the leaves.

Rendering is done by testing the intersection of the view frustum with the

octree nodes and sending to the GPU only the visible objects. In this case,

if a certain node cannot be seen, its entire subtree is pruned from the octree.

Figure 3.1 illustrates the case of a quadtree, where the nodes that are relevant

for the frustum are marked by (*). We should notice that the dashed branches

indicate irrelevant nodes in respect to the frustum and, therefore, must be

pruned from the tree. Only the leaf nodes marked with (*) have their objects

1A preliminary version of this chapter was published by ACM(Journal of Computers in
Entertainment) as one of the top 10 papers in SBGames 2008 [Machado09]

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 26

Figure 3.1: Example of spatial division with quadtree. Nodes that are relevant
for the frustum are marked by (*) and irrelevant ones have dashed branches.

rendered. In the present work, the expression “to render objects at a node”

means to add the objects from a leaf node (which intersects the frustum) to

a data structure used for resource sorting that will be processed in a later

rendering stage. We call “node processing” the process of visiting the tree’s

nodes and rendering the objects from a node when necessary.

Node processing in octree culling can be easily parallelized, but the

balance of the workload is not trivial. The main challenge is to find an efficient

strategy to maintain the workload balanced while the camera moves.

Another aspect of the rendering process is resource sorting. Resources are

data, properties, and shaders used by 3D objects in their rendering process,

such as: textures, meshes, and shaders. There is always a cost associated

to resource changes. Therefore, these changes should be reduced by sorting

and grouping objects with common resources. The process of distributing the

objects amongst several processors according to resource data is not trivial.

Most of the methods for parallel rendering are concentrated on PC

clusters and grids, while the literature on parallel rendering for multicore

systems is scarce. The solution for Parallel Octree Culling on a PC cluster

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 27

is significantly different than the solution on a multicore system because

the hardware architecture has a great influence on how a parallel solution

is implemented. This work presents a new and effective method for parallel

octree culling and sorting for multicore systems using counting sort (which is

O(n) time) and based on a new balancing algorithm, called Adaptive Two-

Step Static Balancing (A2SSB). Tests reveal a performance improvement of

the culling process between three and four times on a quadcore computer

in relation to the classical single threaded octree culling process. However, the

most important performance analysis concerns the capability that the proposed

algorithm has to adapt itself to new camera positions, which are continuously

changing over time. Furthermore, the proposed balancing algorithm is greatly

improved with the use of a cache memory strategy. We cannot find references

on the use of cache memory strategies for parallel rendering in the literature.

As was said before, we think that the reason for this lack of references is

that works on parallel rendering concentrate on PC clusters and/or on global

aspects of parallel rendering, rather than on multicore systems as required by

the videogame industry.

3.2 Related Work

A lot of research on parallel search and sorting algorithms has already

been done, and many techniques are available in the literature [Grama03,

Wilkinson05]. Also, several works have been carried out in the area of

parallel rendering using sorting techniques. Molnar et al. [Molnar94] propose

a classification of parallel rendering system based on a stage of the rendering

pipeline when the sorting is carried out (sort-last, sort-middle, and sort-first).

Humphreys et al. [Humphreys02] present a sort-first method for distributed

rendering using a cluster of common PCs. Abraham et al. [Abraham04] propose

a load-balancing strategy for sort-first distributed rendering using PC-based

clusters. Baxter et al. [Baxter02] present a parallel rendering architecture using

two graphic pipelines and one processor, including occlusion culling, LOD,

and scene graph hierarchy. However, these works concentrate on distributed

rendering using PC clusters and/or on global aspects of parallel rendering; our

focus is on multicore computers.

Octree is a classic data structure used in many computer graphics

applications [Foley95, Dalmau03, Moller08] and a lot of research has been

made to optimize its algorithms, for example, Castro et al. [Castro08] present

a solution that uses Hashed Octrees and Statistical Optimization to improve

the search for a leaf. However, parallel culling algorithms using octrees are

not usual. Greene et al. [Greene93] are the first authors to propose an

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 28

Figure 3.2: A possible work distribution for the quadtree of figure 3.1 at level
1.

octree hierarchy for visibility computation with some potential for parallel

implementation. Their work had a great influence on graphics hardware design.

Xiong et al. [Xiong06] present an algorithm for parallel occlusion culling on

GPU clusters using the occlusion query function provided by current GPUs.

As far as the author of the present work is aware, there is no previous work on

parallel octree culling and sorting for multicore systems based on simple and

efficient static balancing and O(n) time resource sorting algorithm.

3.3 An Adaptative Strategy in Two Steps

One of the main problems in parallel culling using octrees is how to

balance the workload between the processors. The simple strategy of equally

distributing the top level nodes between processors (a type of static balancing)

may result in very long idle times in some processors at certain camera

positions. Figure 3.2 illustrates a possible node distribution at level 1 of the tree

in figure 3.1. As can be seen, this load balancing strategy results in processors

P1 and P4 remaining idle after processing a single node and P2 and P3 doing

most of the work.

An alternative to static balancing is the use of a dynamic balancing

strategy. One example of such strategy is making a processor ask another one

for work when it becomes idle. However, dynamic balancing algorithms have a

serious drawback, which is the increasing communication overheads, especially

for multicore systems with a large number of processors. The area of games

and real-time simulation suffers from the lack of efficient solutions for parallel

rendering in multicore systems. As we have mentioned before, most of the

literature is devoted to PC clusters.

In the present work, we propose a static balancing algorithm for any

number of processors that can be dynamically adjusted according to the

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 29

Figure 3.3: The split level of the A2SSB algorithm for p processors revealing
the two-step nature of the proposed algorithm

camera’s movements. Furthermore, we explore the multicore nature of the

hardware. We call this new algorithm “Adaptive Two-Step Static Balancing”

or A2SSB for short.

In the proposed algorithm, we observe that unbalanced workloads tend to

become worst at deeper levels where nodes are becoming closer to the camera

frustum. This suggests that we can define a special tree level from which we

should adjust our initial balancing strategy. In the present work, this special

level is called “split level”. Therefore, we propose that the octree be divided

into two sections by the “split level” (figure 3.3). In SECTION I, the nodes

at the start level r are equally distributed amongst the p processors, which is

an ordinary static balancing procedure. In this first step of the algorithm, the

processors use the main memory (RAM). When the split level d is reached by

all processors, the following adjustments are performed:

1. the workload is redistributed amongst the p processors;

2. a cache memory strategy is adopted (i.e., RAM is not used).

These adjustments trigger the second step of the proposed algorithm

(SECTION II in figure 3.3b), which is also a static balancing procedure.

Irrelevant nodes are pruned from the octree before the workload is redistributed

amongst the processors. In sections I and II, each processor performs a depth-

first procedure. The solution proposed requires a balanced Octree that has all

the leafs at the same level.

The algorithm is executed each time a new rendered frame is required,

that is, each time the camera moves at time t0, t1, t2, The split level d

changes at each time step looking for an optimal level that reduces the idle

time of the processors. The last task performed by the A2SSB algorithm is to

update the value of the split level based on the history of the total idle time

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 30

- this important feature represents the adaptive nature of the algorithm. In

section 3.6, a very simple method of updating the split level is proposed.

In the “second step” of the algorithm, where the nodes are closer to

the frustum, the algorithm uses a special cache memory strategy, which we

call “cache friendly strategy for octree node computing”. This strategy avoids

memory bottlenecks and permits each processor to run at full speed. The use

of cache memory is not an issue in parallel rendering algorithms using PC

clusters. However, in multicore systems, this is mandatory. The use of a cache

memory strategy in the “first step” of the algorithm is not worthy, because of

the low number of nodes processed at the first levels and the higher cost of

workload redistribution for such strategy.

The start level r is determined by the “start-level condition”, that is, a

condition that ensures an equal distribution of the start level nodes such that

all p processors have at least one node to process. The start-level condition

is an important requirement to guarantee an adequate starting of the static

balance in SECTION I. This condition is easily given by the following equation:

8r ≥ p (1)

On equation 1, p is the number of processors. In the quadtree example

of figure 3.3a, the start level is 1 for the case of a system with 4 processors,

because 4r ≥ 4 gives r = 1. If the situation is a quadtree using 8 processors,

the start level would be level 2, because 4r ≥ 8 gives r = 2. In this latter

case, 16 nodes would be equally distributed amongst 8 processors (2 nodes per

processor).

The values of the split level are calculated at the end of the time intervals

t0, t1, t2, The split level begins with a value that is equal to the start level,

i.e., d(t0) = r. This means that the children of the visible start level nodes

will be redistributed between the cores after the first step of execution. Then

the split level is incremented by 1 at the end of t0.

At the end of the first step (i.e. the end of Section I in the octree)

redistribution is performed. When the entire octree is traversed by all

processors (i.e. the end of Section II is reached), a new split level is calculated.

3.4 Node Processing in Step One

The first step of the algorithm is the parallel depth-first computation

of the octree until the split level is reached. This is done by the following

recursive function StepOneNodeProcessing(Algorithm 1), where nodeList is

a dynamic buffer that stores the nodes of the split level (image 3.4 shows how

nodeList is used by steps one and two of the node processing):

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 31

Algorithm 1 StepOneNodeProcessing(node, level)
1: if frustum intersects node then
2: if node is a leaf then
3: render objects at node
4: else
5: if level is equal to the split level then
6: add children of node to nodeList
7: else
8: for all i from 0 to 7 do
9: StepOneNodeProcessing(node → children[i], level + 1)

10: end for
11: end if
12: end if
13: end if

The function StepOneNodeProcessing is called by each node at the start

level r, that is, the variable level is equal to the start level when this function

is called by the first time.

3.5 Node Processing in Step Two

In Step Two of the algorithm (corresponding to SECTION II in Figure

3.3), we adopt a node processing strategy that uses cache memory only - that

is: the main memory (RAM) is not used. This is not an easy task. Programmers

have very little control over cache memories (even through assembly language)

and must mainly rely on their knowledge about the general characteristics of a

particular multiprocessor architecture to write programs that avoids cash load

misses. If few variables are defined and their values are constantly updated,

there will be a great chance for small algorithms to run on cache memories.

We can control this behavior by tracking the number of cache misses. This is

more a strategy than a precise programming technique and we call it a “cache

friendly strategy for octree node computing”. In the present work, the tests

are made on an Intel Core 2 Extreme Quad-core Processor with dual 4 MB of

L2 Cache. The architecture of this quad-core system is shown in Figure 3.5a

[Intel09].

The nature of the octrees permits the implementation of a cache friendly

strategy. In fact, octrees can be traversed node-by-node with no need for

information concerning the rest of the data structure - in other words, we

can operate locally. This is possible if the following assumption is made: the

octree is built through a uniform partition, as illustrated in Figure 3.6. In this

case, all leaves are at the same level, and any level i has exactly 8i nodes. This

assumption can also be used to simplify calculations concerning the start level

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 32

Figure 3.4: nodeList being used by the Node Processing Step One and Two

r, even before getting into the first and second step of the algorithm. The nodes

at the start level r can be equally distributed amongst p processors, because

8r nodes are divided by an even number (since the number of processors is

normally a power of 2).

In a uniform octree, the implementation of a depth-first strategy is

merely a matter of navigating node-by-node until the last level is reached.

This navigation is reduced to a geometric calculation of the octree cells - called

“boxes” in the present work. The octree nodes are directly represented by their

boxes. At any level, the first child of a box can be reached by simply dividing

the dimensions of the box by 2. Furthermore, the brothers of this first child

can be accessed by an adequate translation of the box dimensions. The parent

of a box (that is, a backtracking operation) can also be easily defined. All these

calculations can be implemented by a constant updating operation on a limited

number of variables, that keeps the node processing within the cache memory

- that is: no repeated query to a RAM data structure is required for navigating

the Octree. Figure 3.7 facilitates the explanation of these calculations. In the

equations below, box.max0, box.max1, and box.max2 mean xmax, ymax, and

zmax of the box respectively. The same type of notation is used for xmin, ymin,

and zmin. In this case, the first child of a box can be defined by:

box.maxi =
box.mini + box.maxi

2
, i = 0, 1, 2 (2)

For the equation 2, the values of i represent the axis x, y, and z. This

calculates the centroid of the box.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 33

Figure 3.5: Intel quad-core processors. In the present work, tests are made on
the Intel Core 2 Extreme Quad-core processor (a) [Intel09]

Figure 3.6: Only an uniform octree partition (a) is allowed by the proposed
algorithm at step two.

Figure 3.7: Octree nodes as boxes. The numbers are the child IDs.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 34

Figure 3.8: The translation matrix that is used for finding all brothers of an
octree node

When we are at child 7 as shown in figure 3.7, the father of a box can be

calculated as follows:

box.mini = box.mini − (box.maxi − box.mini) (3)

The navigation amongst the brothers of a node needs a more creative

implementation. Firstly, we should notice that the first brother in the x

direction (ID = 1, in Figure 3.7) can be defined as a translation in x, that

is:

box.mini = box.mini + deltai, i = 0, 1, 2 (4)

box.maxi = box.maxi + deltai, i = 0, 1, 2 (5)

where:

1. delta0 = box.max0 − box.min0

2. delta1 = 0

3. delta2 = 0

We can generalize the definition of brothers as translations in x, y and z

by using the translation matrix defined in figure 3.8:

For example, if we are the second child (ID=1) and go to the next child

(ID=2), we should translate backwards in x(-1), make no movement in y(0),

and translate fowards in z(1), that is:

1. trans[2][0] = −1

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 35

2. trans[2][1] = 0

3. trans[2][2] = 1

Therefore, we rewrite Eq.4 for the brother ID as:

box.mini = box.mini + deltai, i = 0, 1, 2 (6)

box.maxi = box.maxi + deltai, i = 0, 1, 2 (7)

where:

deltai = (box.maxi − box.mini) × trans[ID][i] (8)

The proposed algorithm reuses the same variable box while navigating

the octree, a part of the strategy that greatly reduces cache misses. In the

Algorithm 2, we should notice the following facts:

1. child stack is a buffer with size equal to the number of levels in the

octree;

2. each element of child stack has a size of a single byte;

3. child id represents the child IDs (0,1,2,3,4,5,6 and 7) in figure 3.7 and

the value of -1 is used as a flag;

4. The last level of the octree is a known value;

5. There are two internal loops inside an infinite loop. The first internal

loop executes until a child is generated that is not intersected by the

frustum or we arrive at a leaf. The second internal loop will keep going

up one level on the octree (i.e. generating fathers), if the child ID is 7;

6. At the end of the infinite loop code, if child id is equal to -1, we are back

to the first node and the function should end. If we are not at the first

node, we generate the next brother, increment child id, and we save the

new child id in child stack at the current octree level.

The only occasion the algorithm escapes from the cache memory and

accesses the RAM is when the objects of a box should be rendered. All the

performance tests are made without this part of the algorithm, because we only

want to evaluate the octree node processing. A further investigation could be

the search for the best strategy to add objects to the rendering data structure.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 36

Algorithm 2 StepTwoNodeProcessing(box, level, child stack)

1: curr level = level {current level is set up}
2: child id = −1
3: child stack[curr level] = child id
4: while true do {infinite loop}
5: while frustum intersects box do
6: if curr level is equal to the last level of the octree then
7: render objects in box {this is the only point where RAM is accessed}

8: break the loop
9: else {generate first child}

10: for each i from 0 to 2 do
11: box.max[i] = (box.min[i] + box.max[i]) × 0.5
12: end for
13: child id = 0
14: increment curr level by 1
15: child stack[curr level] = child id
16: end if
17: end while
18: while child id is equal to the last brother’s ID (i.e. 7) do
19: {generate the father and get the child id of the father}
20: for each i from 0 to 2 do
21: box.min[i]− = (box.max[i] − box.min[i])
22: end for
23: decrease curr level by 1 {that is, go up on level}
24: child id = child stack[curr level]
25: end while
26: if child id is not equal to -1 then
27: for each i from 0 to 2 do {generate next brother}
28: delta = (box.max[i] − box.min[i]) × trans[child id][i]
29: box.min[i]+ = delta
30: box.max[i]+ = delta
31: end for
32: increment child id by 1
33: child stack[curr level] = child id
34: else
35: exit the function
36: end if
37: end while

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 37

Figure 3.9: Examples of trends affecting the split level d and the total idle time.
At first the trend is set as true and is constantly increasing d. This reduces
the total idle time until we arrive at a moment where the increase of d also
increased the total idle time, this results in the trend being set to false and we
repeat the process, but now the trend constantly decreases d.

3.6 Dynamic adaptation of the Split Level

Before presenting the complete algorithm proposed in this work, we

should consider the dynamic adaptation of the split level. The best split level

(d=0, d =1, d =2, ...) is the one that minimizes the sum of the idle times

of all processors. Our algorithm employs an adaptive strategy that constantly

changes the split level according to the tendency of the total idle time. There

is no way of deducing a function relating d and total idle time. Experiments

have suggested that trends (solid lines in Figure 3.9) can exist and eventually

be disturbed by adjustment periods (dashed lines in Figure 3.9).

This behavior stimulates us to propose the function AdaptativeSplitLevel

to dynamically adapt d to changes caused by the travelling camera. Figure

3.9 is a mere illustration of a possible trend being adjusted.

In the proposed AdaptativeSplitLevel function, if an increment on the

split level, at time ti reduces the amount of idle time between the processors, we

repeat the increment for the next time frame ti+1. Otherwise, if the increment

increases the total idle time, we revert the operation decrementing the split

level at each new frame. The pseudocode of splitLevel is presented below,

where trend (initially equal to true) and LastIdleT ime are global variables:

The AdaptativeSplitLevel function never allows the split level to

go before the start level r. The value of idle time is calculated by the

CalculateIdleT ime function shown at algorithm 4:

In algorithm 4, startT ime and endT ime are global variables that store

the time of the execution start and end, from each processor.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 38

Algorithm 3 AdaptativeSplitLevel(f, r, idleTime)
1: if idleT ime is greater than LastIdleT ime then
2: reverse trend {e.g. trend = not(trend)}
3: else if trend is true then
4: if d is less than the last level of the octree then
5: increment d by 1
6: end if
7: else
8: if d is greater than the start level r then
9: decrement d by 1

10: end if
11: end if
12: LastIdleT ime = idleT ime
13: return d

Algorithm 4 CalculateIdleTime()

1: min = startT ime[0] {0 is the main processor}
2: max = endT ime[0]
3: for each secondary processor i do {there are p-1 secondary processors}
4: if startT ime[i] is less than min then
5: min = startT ime[i]
6: end if
7: if endT ime[i] is greater than max then
8: max = endT ime[i]
9: end if

10: end for
11: idleT ime = 0
12: for each processor i do
13: increment idleT ime by (startT ime[i] − min) + (max − endT ime[i])
14: end for
15: return idleT ime

3.7 The full Algorithm

Before the full A2SSB algorithm is invoked, the nodes at the start level r

are distributed and stored in a list belonging to each processor, which we call

“starting node list”. The processors that are different from the main processor

are called secondary processors (therefore, there are one main processor and

p − 1 secondary processors). In the present work, the prefix Main indicates

a node list that belongs to the main processor (MainStartingNodeList and

MainNodeList) and the prefix Second indicates a node lists on a secondary

processor (SecondStartingNodeList and SecondNodeList).

The main processor is always in charge of the entire process and it is part

of its job to request that the other processors start processing their node lists.

In terms of a real code, this request is made by invoking functions defined

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 39

within a Thread Manager. The pseudocode that will be presented does not

mention the usage of these Thread Manager functions neither mention other

tasks of the secondary processors (such as saving their startTime and endTime

values). Also, we should notice that the main processor must wait until all

other processors finish their work. In a well-balanced parallel algorithm, these

waiting states have short durations because the idle time is minimized.

The pseudocode for the Adaptive Two-Step Static Balancing (A2SSB)

can be seen in algorithm 5.

Algorithm 5 A2SSB(frustum)

1: save the current time in startT ime[0] {0 is the main processor}
2: for each secondary processor k do
3: for each i from 0 to the size of SecondStartingNodeList do
4: StepOneNodeProcessing(SecondStartingNodeList[i], r) {r is the

start level}
5: end for
6: end for
7: for each i from 0 to the size of MainStartingNodeList do
8: StepOneNodeProcessing(MainStartingNodeList[i], r)
9: end for

10: wait until secondary processors finish their work
11: {All nodes at split level were stored in the MainNodeList by the Step One

of the algorithm. Now theses nodes should be equally divided amongst the
p processors}

12: np = size of MainNodeList
p

{np = number of nodes for each processor}
13: for each secondary processor k do
14: transfer np nodes from MainNodeList to the SecondNodeList of

processor k
15: for each i from 0 to np − 1 do
16: StepTwoNodeProcessing(SecondNodeList[i]→box,d+1,

child stack[k])
17: end for
18: end for
19: for each i from 0 to np − 1 do
20: StepTwoNodeProcessing(MainNodeList[i]→box,d + 1, child stack[0])
21: end for
22: save the current time in endT ime[0]
23: wait until secondary processors finish their work
24: {update the split level}
25: idleT ime = CalculateIdleT ime()
26: d = AdaptativeSplitLevel(d, r, idleT ime)

As mentioned before, some parts of the pseudocode do not reveal typical

tasks of a thread manager, such as to set specific tasks, trigger working orders,

and initialize/finish time monitoring. Therefore, in the above pseudocode,

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 40

when CalculateIdleT ime() is evoked the vectors startT ime and endT ime are

supposed to be properly set up.

3.8 Performance Results

The performance results are analyzed for the octree node processing only

- that is: no other processing (e.g. rendering processing) is considered. This

performance analysis is carried out for five variants of the algorithm:

1. ALGO1 - Full A2SSB algorithm

2. ALGO2 - A2SSB without Cache Friendly Strategy

In this version of A2SSB, after the nodes at the split level are distributed

amongst the p processors, the Step Two of the algorithm uses an ordinary

depth-first technique, where each processor accesses the octree in the

main memory (RAM) - that is, the cache friendly strategy is not used.

3. ALGO3 - Breadth-first A2SSB without Cache Friendly Strategy

This version is similar to the previous one, except that a breadth-first

technique is used instead of a depth-first one.

4. ALGO4 - Single Processor with a Cache Friendly Strategy

This is a single processor version where the cache friendly strategy is

used from the octree root.

5. ALGO5 - Single Processor with Depth-first Strategy

This is the canonical version of octree navigation in a depth-first way

and using one processor only.

These five variants are used to process 299,593 octree nodes (based on

a octree of 7 levels) with four processors (p = 4) in an Intel Core 2 Extreme

Quad-core computer. The results are presented in the table of figure 3.10.

Although navigating an octree without accessing the RAM seems to be

a good technique for a single processor computer, ALGO4 reveals that the

impact on performance is almost none in relation to the canonical algorithm

(ALGO5). ALGO3 shows that breadth-first strategy in multicore systems is

a bad choice, presenting a performance similar to the canonical algorithm

running on a single processor (ALGO5). The power of a cache friendly strategy

in multicore systems is evident when we compare the results of ALGO1 and

ALGO2.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 41

Figure 3.10: Performance analysis of octree node processing algorithms for an
octree with 299,593 nodes and running on an Intel Core 2 Extreme Quad-core
computer.

Figure 3.11: L2 cache misses for the proposed algorithm A2SSB (ALGO1 in
Table of figure 3.10)

The quality of the cache friendly strategy can be evaluated by inspecting

the following main evaluation parameters: the total amount of cache misses

and the number of functions where cache misses take place. The proposed

algorithm A2SSB (with cache friendly strategy) presents much lower values

for those main evaluation parameters (Table of figure 3.11) than the ones

presented by A2SSB without a cache friendly strategy (Table of figure 3.12).

3.9 Algorithm Analysis

The analysis of the A2SSB algorithm starts by the identification of its

three main stages (see Figure 3.3), which are responsible for the three parts of

the execution time cost:

1. Firstly, the octree is processed by all p processors from the start level r

to the split level d. This causes a time cost we call S1 - the cost of the

Step One of the algorithm.

2. Secondly, the nodes intersecting the view frustum so far are distributed

amongst the p processors. This is the transfer cost T .

3. Thirdly, similarly to the first stage, all p processors compute their

portions of the octree until they arrive at the leaves. This is the cost

of the Step Two of the algorithm: S2.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 42

Figure 3.12: L2 cache misses for the version of A2SSB without a cache friendly
strategy (ALGO2 in Table of figure 3.10)

Therefore, the total cost is given by:

C = (S1 + S2) + T (9)

In the worst case, the whole tree is visible and intersects the frustum.

This means that the whole octree will be visited. Since each node should be

visited only once, this is an O(n) algorithm where n is the number of octree

nodes.

(a) The S1 cost

The cost of the first stage is given by:

S1 =
Sδ

p
(10)

and

Sδ = nd − nr (11)

where nd in the number of nodes up to the split level d and nr is the

number of nodes up to the start level r. These number of nodes nd can be

calculated as follows:

nd = 80 + 81 + ... + 8d (12)

If we multiply Eq.12 by 8 and substitute 81 + 82 + ... + 8d by (nd − 1),

we have:

8nd = (nd − 1) + 8d+1 (13)

and:

nd =
8d+1 − 1

7
(14)

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 43

Eq.14 can also be deduced from Eq.12 using the canonical formula for

the sum of a geometric progression.

Similarly, we have:

nr =
8r+1 − 1

7
(15)

From Eq.10, Eq.14, and Eq.15, we have:

S1 =
8d+1 − 8r+1

7p
(16)

(b) The T cost

The cost of transferring the nodes to the p processors at the second stage

of the algorithm is given by:

T = np(p − 1) (17)

where np is the number of nodes that each processor should compute.

We should notice that np nodes remain on the main processor. The value of

np is calculated by dividing the number of children of the split level (i.e. 8d+1

nodes) by p. Therefore, we have:

np =
8d+1

p
(18)

From Eq.17 and Eq.18, we get:

T =
8d+1

p
(p − 1) (19)

(c) The S2 cost

The third stage is where the bulk of the computation takes place. This

stage computes the lower levels of the octree in parallel. Each node that a

processor has to handle represents an octree with a height hS2 given by:

hS2 = h − (d + 1) (20)

where h is the height of the full octree.

Therefore, the equation for the S2 cost is given by:

S2 = npnS2 (21)

where np is the number of octrees to be processed by each processor

(given by Eq.18) and nS2 is the number of nodes of each octree of height hS2.

The equation of S2 is similar to Eq. 14, that is:

nS2 =
8hS2+1 − 1

7
(22)

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 44

From Eq.20, Eq.22, and Eq.18, we transform the Eq.21 into the final form

of the S2 cost equation. Firstly we get:

S2 = (
8d+1

p
)(

8h−d − 1

7
) (23)

and then, by multiplication, we have:

S2 =
8h+1 − 8d+1

7p
(24)

(d) The total cost C

The total cost of the algorithm in terms of execution time is given by

substituting Eq.16, Eq.19, and Eq.24 into Eq.9:

C =
8h+1 − 8r+1

7p
+ (p − 1)

8d+1

p
(25)

The two terms of Eq.25 have clear interpretations. The first term is the

cost of the parallel octree navigation, which is constant and depends on the

number of processors p and the depth of the whole octree h (since r is calculated

from p by Eq.1). The second term is the transfer cost of the distribution at the

split level d. This second term depends on p and varies over time (because d is

a dynamic value varying over time as the camera moves). However, the value

of the second term is much smaller than the value of the first term, as shown

in the following deduction. Considering that r is usually a small number (e.g.

r = 1 for p = 4 or p = 8, as determined by Eq.1), we can discard the term

8r+1 from Eq.25 and get the following relation between the two terms:

transferCost

navigationCost
= 7(p − 1)8d−h (26)

The relation in Eq.26 is usually very small, because d is much smaller

than h. For example, in a Quad-core computer (p = 4) and the split level being

half of the full height of the octree (i.e. d = h/2), we have:

transferCost

navigationCost
=

21√
8h

, for p = 4 and d =
h

2
(27)

As a numerical reference, for a large octree with h = 8 (corresponding to

19,173,961 nodes), we would have:

transferCost

navigationCost
≈ 0.0051 (28)

that is, the transfer cost is less than 1% of the navigation cost. For

practical purposes, we can discard the transfer cost and say that the total cost

is roughly given by:

C ≈
8h+1

7p
(29)

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 45

and for a fixed computer architecture, we can say that C is proportional

to 8h:

C ∝ 8h (30)

3.10 Parallel Counting Sort

Rendering a scene can be optimized if the rendering is done after sorting

the scene objects by some type of resource such as texture, mesh and shader.

For example, we could render the scene using sorting by texture by using a

code similar to the code below:

set texture 0

render all objects with texture 0

set texture 1

render all objects with texture 1

...

By reducing the amount of graphics device state changes, the rendering

is accelerated [DirectXDocumentation], [ResourceChangeCost].

(a) Sorting Algorithms

The main feature of a sorting algorithm [Cormen01] is the amount of time

required to reorder n given numbers into increasing order 2. However, there are

other features to be considered. A sorting algorithm is called in-place if it uses

no additional array storage (buffer) and is called stable if duplicate elements

remain in the same relative position after sorting. Mergesort is a stable O(n

log n) sorting algorithm but it is not in-place. Heapsort is a in-place O(n log

n) sorting algorithm, but it is not stable. Quicksort is regarded as one of the

fastest sorting algorithm, but it is not stable and, strictly speaking, it is not

in-place 3. It is a well-known theorem that is not possible to sort faster than

O(n log n) time for algorithms based on 2-way comparisons. Sorting numbers

faster than this lower bound must be done without the use of comparisons,

something that is only possible under certain very restrictive circumstances.

Under these special conditions, an entire class of linear time sorting algorithm

arises. For instance, counting sort is a stable O(n) sorting algorithm, but not

in-place, which can only be used in applications that sort small integers. In this

2For instance, bubblesort is a slow algorithm, that has a complexity of O(n2), and
mergesort is a fast algorithm that has a complexity of O(n log n)

3Quicksort may be considered an in-place sorting algorithm, if we consider that it only
needs a small stack of size O(log n) for keeping track of the recursion

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 46

Figure 3.13: Example of counting sort

algorithm, for each integer k found in the input list A, we increment the value

of C[k] by 1 (the size of C is determined by the largest integer in A), as shown

in Figure 3.13. C[k] is called counting array. In the next section, counting sort

is presented as the best algorithm for resource sorting in parallel rendering.

(b) Resource Sorting

Resources are data, properties, components, techniques, and programs

used by the 3D objects in order to be rendered properly. 3D objects are

elements of the scene such as cars, houses, people. Textures, meshes, and pixel

shading techniques are common resources used in the rendering processes of

real-time applications. Each type of resource defines a discrete axis (i.e. an axis

with integer coordinate values) called dimension (e.g. textures are identified by

the integer values 0, 1, 2, ... in the texture axis). Resource space is a discrete

Euclidean space defined by one or more dimensions. Therefore, the texture

dimension and the mesh dimension form a two-dimensional resource space. An

efficient rendering strategy is the one that groups objects sharing the same

resources (i.e. it groups the objects in the same point of the resource space).

This strategy minimizes the costs associated with every resource change during

the rendering process (there is always a great cost associated to jumps within

the resource space). In this thesis, for each point (i,j,k,...) of the resource

space, we define the n-dimensional resource data array R[i,j,k,...] containing

the following data:

– The number c of objects sharing the same set of resources i,j,k, ...;

– A list L of these objects.

We use the following notation to present this n-dimensional array:

R[i, j, k, ...] = [C[i, j, k], L[i, j, k]] (31)

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 47

Figure 3.14: Simple cases of the n-dimensional resource data array R.

Figure 3.14 illustrates the simplest cases for R[i,j,k,...]: one, two, and

three-dimensional resource data arrays. In Figure 3.15 the two dimensions are

texture and mesh. In this 2-dimension example, the rendering process can fix a

mesh and render objects per texture (e.g. it fixes mesh 0 and renders 1 object

with texture 0 and then 3 objects with texture 4). This way, when rendering

the first line of objects we only need a single mesh resource change (setting

the render device to use mesh 0) reducing the total cost of resource changes

for rendering the scene.

In the case of one dimension represented by textures (3.14(a)), we can

easily identify R[i] as being an extended version of the counting array C[k]

in the counting sort algorithm (Figure 3.13). The main job of the functions

StepOneNodeProcessing and StepTwoNodeProcessing on the previous section

is to add objects to the resource data array R of each processor. Therefore, this

job is a counting sort process. As resources can be represented by small integer

numbers (complex 3D scenes hardly go beyond 300 different textures), the most

appropriate sort algorithm for parallel rendering is counting sort. In this way,

we have the fastest and convenient option: a stable O(n) sorting algorithm.

We should notice that the in-place nature of counting sort (presented in the

previous section) is not relevant in the present application, because we need a

storage array to distribute work among the processors anyway.

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

Chapter 3. Parallel Techniques for Computer Graphics 48

Figure 3.15: The merged resource data array M from P1..P4

(c) The Sorting Process

The functions StepOneNodeProcessing(Algorithm 1) and StepTwoNo-

deProcessing(Algorithm 2) builds the resource data array R of each processor

Pi, in such a way that the objects are distributed amongst the processors

and grouped according to the resources they use. In this thesis, the proposed

algorithm merges the arrays R into a single n-dimensional array M, called

merged resource data array, by performing the sum of the corresponding

C[i,j,k,...] and transferring the references to the lists L[i,j,k,...]. Figure 3.15

illustrates the entire merging process for the two dimensional case and four

processors. We should notice that Pi data is not inside each processor (in fact

the sets of Pi data are in a common structure that each processor can freely

access).

Once the merged data array M is completed we can scan it and whenever

c is greater than zero the list of sorted objects L can be rendered using the

resources identified by the integer coordinates (i,j,k,...).

DBD
PUC-Rio - Certificação Digital Nº 0521495/CA

