
4
Decomposition Algorithms

4.1 Summary

Dating back from the start of the Mathematical Programming area,

Decomposition Algorithms have been introduced as a resort to handle large

scale Linear Programs (LP). However, LP codes have evolved enormously, and

together with advances in computer hardware, they are able nowadays to cope

with almost all LP problems found in practice. Thus, the interest in using

decomposition methods in the last two decades has switched to Mixed Integer

Linear Programming (MILP) problems.

Ever since the seminal papers of Dantzig and Wolfe [Dan60] and Benders

[Ben62], the literature has flourished with theoretical extensions and practical

applications of these two basic approaches. In the real scheme of things we

can say that almost every method used to solve MIP problems is based

on a decomposition strategy. And this comes with no surprise since one of

the most basic ideas for solving large problems, that is so well exploited in

Computer Science, is ”Divide and Conquer”. Even traditional methods to solve

MIP problems, such as Branch-and-Bound and Cutting Planes, can be faced

as decomposition algorithms, as they, in fact, split a problem in its linear

relaxation and integrality constraints.

In this chapter we focus on the traditional decomposition methods, i.e.,

Dantzig and Wolfe, Benders decomposition and Lagrangean relaxation. This

will allow us to make a connection with the novel decomposition algorithm

presented in Chapter 5.
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4.2 Dantzig and Wolfe Decomposition

Dantzig and Wolfe decomposition is an algorithm that was designed

originally to solve large LP with special structures [Dan60]. The basic idea

of this technique is to apply the Minkowsky Theorem or the Representation

Theorem for convex polyhedra (see Theorem 4.1) to a subset of constraints of

a given problem, where its extreme points and extreme rays are generated on

the fly.

Suppose for example we have the LP,

min fTx

s.t. Ax ≥ b

Cx ≥ d

x ≥ 0

(4.1)

where fT , x, b and d are vectors, A and B are matrices, all of conformable

dimensions. Let us take the inequalities Cx ≥ d as the subset of constraints to

be considered implicitly.

As mentioned above, one of the key element of this decomposition

algorithm is the Minkowsky Theorem that is stated without proof in the

following.

Theorem 4.1 (Minkowsky) If P is the polyhedron {x | Cx ≥ d}, any x that

satisfies Cx ≥ d is the sum of

a) A convex combination of extreme points of P

b) And a conical combination of extreme rays of P

Using this Theorem, every x that satisfies Cx ≥ d can be written as

x =
∑
k∈K

λky
k +

∑
l∈L

µlw
l

∑
k∈K

λk = 1

λk, µl ≥ 0

(4.2)

Substituting Cx ≥ d for the expressions in (4.2), the problem (4.1) becomes

min fTx

s.t. Ax ≥ b

x =
∑
k∈K

λky
k +

∑
l∈L

µlw
l

∑
k∈K

λk = 1

x ≥ 0, λk ≥ 0, µl ≥ 0, k ∈ K, l ∈ L

(4.3)
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Now substituting out the x variables, we write

min
∑
k∈K

λkf
Tyk +

∑
l∈L

µlf
Twl

(DW ) s.t.
∑
k∈K

λkAy
k +

∑
l∈L

µlAw
l ≥ b (4.4)

∑
k∈K

λk = 1 (4.5)

λk ≥ 0, µl ≥ 0, k ∈ K, l ∈ L

Formulation (DW ) is called the Dantzig and Wolfe Master program,

where constraints (4.4) are the coupling constraints and constraint (4.5) is the

convexity constraint. This formulation alone does not make the problem easier

because (DW ) can have an enormous number of extreme points and extreme

rays. Let us suppose the dimension of matrix A equals to m1 × n and the

dimension of matrix C equals to m2 × n, then the dimension of the original

problem is (m1+m2)×n, while the dimension of (DW ) is (m1+1)×(|K|+|L|).

Thus, although (DW ) has a smaller number of constraints, its number of

variables can be huge since the number of extreme points and extreme rays of

a polyhedron can be very large. To use this idea to effectively solve large scale

LP problems, we need to avoid considering all extreme points and extreme

rays of Cx ≥ d. This is when the idea of column generation comes into play,

i.e., we start by including only a few number of extreme points and extreme

rays in the problem and we add more on the fly in a as needed basis.

(a) Column Generation

To cope with solving (DW ) we borrow the ideas from the revised simplex

algorithm. We know that to find a basic solution to (DW ) we need at

least m1 + 1 linear independent columns. However, to check whether or not

this solution is also optimal we must prove that there is no other nonbasic

variable/column that is worth coming into the basis. Therefore, we start

the algorithm constructing a Restricted Dantzig and Wolfe Master program

(RDW ) with a subset of columns from (DW ) and additional ones are generated

as the algorithm proceeds.
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min
∑
k∈Λ

λkf
Tyk +

∑
l∈Ω

µlf
Twl

(RDW ) s.t.
∑
k∈Λ

λkAy
k +

∑
l∈Ω

µlAw
l ≥ b (4.6)

∑
k∈Λ

λk = 1 (4.7)

λk ≥ 0, µl ≥ 0, k ∈ Λ, l ∈ Ω

where Λ is a small subset of K and Ω a small subset of L.

Let us assume we have solved problem (RDW ). In order to verify whether

the current solution can be improved, we need to check if some variable that

is not yet in the problem has negative reduced cost. To do this we proceed

in two steps. The first step is to try to find some variable associated with an

extreme point. Recalling from Linear Programming Theory that, in general,

the reduced cost of a variable xj is cj − uTAj, where u is the vector of dual

variables, and Aj is the column corresponding to xj. Let (u, α) be the vector of

dual variables relative to (4.6) and (4.7), respectively. Then the reduced cost

of a variable that is not yet in the problem is

fTyk − uTAyk − α (4.8)

Now we can check if some variable λk has a negative reduced cost by minimizing

(4.8) over all points in Cx ≥ d

min fTy − uTAy − α

s.t. Cy ≥ d (4.9)

y ≥ 0

If the solution of (4.9) is negative, then we have found a candidate associated

with an extreme point to be included in (RDW ). Let y∗ be the extreme point

solution of (4.9), we add to (RDW ) a new variable λk with column (Ay∗, 1)

and cost fTy∗.

The next step is to check if some variable µl has negative reduced cost. In

the same way as proceeded above, we need to solve the following subproblem

min fTw − uTAw

s.t. Cw ≥ d (4.10)

w ≥ 0
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Note, however, that the only difference from (4.9) is the constant term −α,

and then we do not need to solve this problem again. In fact, by Linear

Programming, we know that for an extreme ray the term fTwk − uTAwk goes

to −∞. Thus, the way to verify whether or not there is a extreme ray to be

added to the master problem is to check if problem (4.9) is unbounded. If this

is the case, let w∗ be the extreme ray solution of (4.10), we add to (RDW ) a

new variable µl with column (Aw∗, 0) and cost fTw∗.

At this point we solve (RDW ) with the added columns and repeat the

process, until there are no more improving columns, which is to say that the

optimal value of subproblems (4.9) and (4.10) are non-negative. An outline of

this method is presented by Algorithm 1.

In this work we do not go into the details of the computational issues

regarding the implementation of this algorithm. There are many practical

points that need to be addressed if one wants to solve a problem using this

method. Besides, some aspects of its implementation is in most cases problem

dependent, requiring the mathematical programming specialists to use all their

knowledge to effectively solve it.

Finally, we have presented an algorithm to solve LP problems. Neverthe-

less, in the last two decades this algorithm has been used as a powerful tool to

obtain tighter relaxation for Mixed Integer Programming problems. Another

line of research reported in the literature is to combine the key ingredients

of this decomposition algorithm with the Branch-and-Cut method to derive

a new procedure called Branch-and-Cut-and-Price [Bar96]. We can find many

papers in the literature where this idea has proved to be effective in solving

some large scale MIP problems [Bar00, Bor06, Fuk06, Uch08, Rop09].
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Algorithm 1 Dantzig Wolfe Decomposition

Step 0: Find initial sets of columns Λ and Ω and construct the Restricted
Dantzig and Wolfe Master problem (RDW ). Assume the restricted problem
is feasible.
Step 1: Optimize the restricted master problem (RDW ) to obtain an optimal
set of dual variables (u, α).
Step 2: Solve the column generation subproblem (4.9)
if fTyk − uTAyk − α goes to −∞ then
Add the column (Aw∗, 0) and cost fTw∗ to the restricted master problem
(RDW ).
Go to step 1.

else if fTyk − uTAyk − α < 0 then
Add the column (Ay∗, 1) and cost fTy∗ to the restricted master problem
(RDW ).
Go to step 1.

else
Stop.

end if

4.3 Benders Decomposition

Differently from the Dantzig and Wolfe decomposition, Benders decom-

position [Ben62] was introduced in the early sixties as an algorithm to solve

MILP programs. However, it does not mean that we can not apply it to solve

LP programs. In fact, provided that the LP problem is well-structured, it might

even be employed with advantage to solve LP programs over traditional me-

thods. One important distinction from the Dantzig and Wolfe decomposition is

the way in which the problem is decomposed. While Dantzig and Wolfe splits

the set of constraints into two subsets, the Benders decomposition divides the

variable set into two subsets. This characteristic suggests some connections

between these two methods, and as matter of fact, in the literature Benders

decomposition is often described as Dantzig and Wolfe decomposition applied

to the dual of a problem. In reality, it can be shown that in the context of

LP programs they are dual of each other. In the sequel we explain how this

method is used in the case of MILP problems.

Let us consider the following MILP

min fTx+ gTy

s.t. Ax+ By ≥ c

x ≥ 0, y ∈ Z

(4.11)

where x and y are vectors of continuous and integer variables, respectively,

with dimensions p and q. Again, f , g, c are vectors and A, B are matrices of

appropriate dimensions.
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Suppose we have an oracle to determine a trial value for y. Let us fix the value

y to this initial guess ȳ, so we obtain the following subproblem

min fTx+ gT ȳ

s.t. Ax ≥ c−Bȳ

x ≥ 0

(4.12)

The dual of subproblem (4.12), ignoring the constant term gT ȳ, is written as

max uT (c−Bȳ)

s.t. uTA ≤ f

u ≥ 0

(4.13)

Now, let us suppose that the optimal solution value of (4.12) is z∗ and the

optimal solution of its dual (4.13) is u∗. Thus, by strong LP duality

z∗ − gT ȳ = (u∗)T (c−Bȳ) (4.14)

Furthermore, observe that the feasible region of the dual problem (4.13) does

not depend on the value of ȳ. Therefore, u∗ is always a feasible solution to

(4.13) disregarding the value of ȳ in its objective function. Hence, by weak LP

duality

z ≥ gTy + (u∗)T (c−By) (4.15)

The inequality (4.15) is a lower bound on the objective function of the original

problem (4.11). This is the key element used in Benders decomposition to

generate valid Benders cuts to the master problem (to be defined later). It

should be noted that the cut (4.15) says that if we set y = ȳ again, the

resulting objective function value will be at least the value z̄ we just obtained

in the subproblem, since z ≥ gT ȳ+(u)T (c−Bȳ). It also gives us a lower bound

for other values of y we might try.

Now let us consider the case where the dual subproblem (4.13) is

unbounded. In this situation the following inequality holds

(u∗)T (c−By) > 0 (4.16)

where now (u∗)T is an extreme ray solution.

Our goal is to eliminate this extreme ray from future solutions. To do so, we

have to ensure that the term (u∗)T (c − By) is less than or equal to zero in

all future steps. Thus, the Benders feasibility cut to be added to the master

problem must be

(u∗)T (c−By) ≤ 0 (4.17)

To calculate the next trial value of y, we solve the following master problem

(4.18) obtained by appending all Benders and infeasibility cuts generated so
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far

min z

s.t. z ≥ gTy + (uk)T (c−By), k ∈ K

(uk)T (c− By) ≤ 0, k ∈ L

y ∈ Z

(4.18)

where K is the set of extreme points and L the set of extreme rays for the

subproblem.

We should notice that the subproblem (4.12) is a restriction on the

original problem (4.11), hence its optimum solution value z∗ is a upper bound

on the original problem objective function. Also, the master problem (4.18)

is a relaxation of the original problem (4.12) since we do not consider all

constraints from every extreme points and extreme rays of the subproblem.

Thus, the optimum solution value of the master problem provides a lower

bound on the original problem objective function. This is an interesting feature

of this algorithm because one can terminate it prematurely if the lower and

upper bounds found are close enough. An outline of this method is presented

by Algorithm 2.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA



Chapter 4. Decomposition Algorithms 47

Algorithm 2 Benders Decomposition

Step 0: Find an initial guess ȳ ∈ Z and set the upper bound UB = ∞ and

the lower bound LB = −∞.

Step 1: Solve the Benders’ subproblem,

max uT (c−Bȳ)

s.t. uTA ≤ fT

u ≥ 0

if The subproblem is infeasible then

Terminate.

else if The subproblem has an optimum solution then

Set UB ← min(UB, gTy + (uk)T (c−By))

Generate a Benders cut z ≥ gTy+(uk)T (c−By) and add it to the master

problem.

else if The subproblem is unbounded then

Generate a Benders feasibility cut (uk)T (c − By) ≤ 0 and add it to the

master problem.

end if

Step 3: Solve the Benders’ master problem,

min z

s.t. z ≥ gTy + (uk)T (c− By), k ∈ K

(uk)T (c−By) ≤ 0, k ∈ L

y ∈ Z

to find a new value ȳ and a solution value z∗.

Set LB ← max(LB, z∗)

if UB − LB < ǫ then

Stop, otherwise go to Step 1.

end if
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4.4 Lagrangean Relaxation

The idea behind Lagrangean relaxation was first introduced by Held

and Karp [Hel70, Hel71] in the context of finding better relaxations for the

Traveling Salesman Problem, however the term Lagrangean relaxation was

only coined by Geoffrion [Geo74] in a paper four years later. This method was

specially designed to provide strong relaxations for some large scale integer

programming problems [Geo74, Fis81], but it is not limited to this kind of

applications. In this section we explain the basic ideas of the Lagrangean

relaxation and show its most important properties.

Consider the linear integer programming

max fTx

(IP ) s.t. Ax ≤ b (4.19)

Cx ≤ d (4.20)

x ∈ {0, 1}n

where, fT , x, b and d are vectors, A and B are matrices, all of conformable

dimensions.

Let us suppose that the set of constraint Ax ≤ b is complicating, in the

sense that if one removes it from (IP ), the problem becomes easier to solve.

One can take advantage of this information to construct the following problem

max fTx+ λ(b− Ax)

(LRλ) s.t. Cx ≤ d (4.21)

x ∈ {0, 1}n

The problem (LRλ) is called the Lagrangean relaxation of (IP ) and λ ≥ 0 is the

vector of lagrangean multipliers relative to the constraints Ax ≤ b. It is clear

that (LRλ) is a relaxation of (IP ) since its objective function fTx+λ(b−Ax)

is always greater than fTx for every feasible solution of (IP ), moreover the

feasible region of (IP ) is contained in the feasible region of (LRλ).

We should note that the optimum solution of (LRλ), v(LRλ), is de-

pendent on the value of λ. Then, we can try to find a λ that provides the

best upper bound possible. The problem of finding the best relaxation (LRλ)

of (IP ) is called the lagrangean dual and it is defined as
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(LD) minλ≥0v(LRλ) (4.22)

Observe that v(LRλ) is a convex piece-wise function and the problem (4.22)

is usually solved using a subgradient algorithm (see, for instance, [Gui03]). A

complete overview on algorithms to solve this lagrangean dual problem can be

found in Guta [Gut03].

In the following, we will state and prove a theorem that brings up

important properties of the Langragean relaxation.

Theorem 4.2 The Lagrangean dual (LD) is equivalent to the primal relaxa-

tion

max fTx

(PR) s.t. Ax ≤ b

x ∈ Co {x ∈ {0, 1}n |Cx ≤ d}

in the sense that v(LD) = v(PR), where Co {S} stands for the convex hull of

points of S.

Proof :

Let us call Co {x ∈ {0, 1}n |Cx ≤ d} = C̃x ≤ d̃, then (PR) can be written

as

max fTx

(P̃R) s.t. Ax ≤ b

C̃x ≤ d̃

x ≥ 0

By linear duality,

min λT b+ βT d̃

(P̃R) s.t. λTA+ βT C̃ ≥ f

λ, β ≥ 0

Which is equivalent to

min
λ≥0

{
λT b+min

β≥0

{
βT d̃ : βT C̃ ≥ f − λTA

}}
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Then, applying linear duality to the inner problem, we obtain

min
λ≥0

{
λT b+max

x≥0

{
(f − λTA)x : C̃x ≤ d̃

}}

or

min
λ≥0

{
max
x≥0

{
fx+ (b− Ax)λT : C̃x ≤ d̃

}}
= v(LD)

�

This Theorem deals with the strength of the Lagrangean relaxation and it

allows us to draw the following conclusions. The Lagrangean relaxation value,

v(LD), is at least as strong as the traditional linear programming relaxation,

v(LP ). In fact, they have the same value when Co {x ∈ {0, 1}n |Cx ≤ d} ={
x ∈ R

n
+|Cx ≤ d, 0 ≤ x ≤ 1

}
, i.e., the vertices of the linear relaxation are all

integer, as in the case of total unimodular problems. Thus, if one wants to

get advantage of the Lagrangean relaxation, they have to keep a subset of

constraints {x ∈ {0, 1}n |Cx ≤ d} such that the resulting problem is easy to

solve, but at the same time does not have the integrality property. Figure 4.1

summarizes this discussion.

Figure 4.1: Comparison between Relaxations and the (IP ) optimum solution
v(IP )

(a) Lagrangean Decomposition

An interesting extension of the Lagrangean relaxation is the Lagrangean

decomposition (see Guignard and Kim [Gui87]). It amounts at rewriting (IP )
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in its equivalent form, where its variables are duplicated.

max fT (x+ y)

(IP ) s.t. Ax ≤ b (4.23)

Cy ≤ d (4.24)

x = y (4.25)

x, y ∈ {0, 1}n

Dualizing the constraint x = y, the problem decomposes naturally into two

Lagrangean relaxation problems:

(LR1λ)

max (fT/2 + λ)x

s.t. Ax ≥ b

x ∈ {0, 1}n

and (LR2λ)

max (fT/2− λ)y

s.t. Cy ≥ d

y ∈ {0, 1}n

Then the Lagrangean dual bound is obtained by solving minλ(LR1λ +LR2λ).

It is important to notice that when one dualizes equality constraints,

the associated lagrangean multipliers are unrestricted in sign. Also, a feasible

lagrangean solution, i.e., one such that x = y, is automatically optimal to

the original integer solution. Additionally, one can easily show using a similar

reasoning as in the proof of Theorem 4.2 that the Lagrangean decomposition

bounds are at least as strong as the Lagrangean relaxation ones.
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