
5
A Novel Decomposition Algorithm

5.1 Summary

The structure of the Petroleum Supply Planning problem calls naturally

for some kind of decomposition. In fact, we can face this problem as two

subproblems: a platform offload planning and a refinery supply problems.

However, as described in Chapter 3, both of these subproblems have discrete

variables in their models which excludes the application of the traditional

Benders as well as the Dantzig and Wolfe decomposition as a solution method.

Based on general duality ([Tin81, Wol81, Fli93]), logic theory [Hoo03, Hoo07,

Faz09] and disjunctive programming [Chu04], several authors have extended

the Benders decomposition method to apply to the case where the subproblems

are integer programs. On the Dantzig and Wolfe decomposition side, much

work has been done on using it in a branch-and-cut-and-price scheme with

very positive results on some classes of problems [Bar96, Uch08, Fuk06, Rop09].

We have not tried any of this extension to our problem to find that some of

these ideas cannot yet be used to solve real large scale problems or because

we did not recognize a structure that could fit into the framework of these

methods. Regarding the Lagrangean decomposition, we applied it to our

problem without any success. The convergence of the Lagrangean multipliers

has shown to be a hard task for this problem, even after testing other more

sophisticated subgradient types of algorithms. Motivated by these facts, we

propose a novel decomposition algorithm that borrows some ideas from the

methods presented in Chapter 4 and at the same time manages to circumvent

their drawback to solve our problem. It turns out that the idea of this new

algorithm is not limited to the structure of our specific problem, but can

also be applied to a wide range of problems. In this chapter we present some

computational results on the generalized assignment and the parallel machine

scheduling problems and in Chapter 7 we show how we use this algorithm to

solve the Petroleum Supply Planning problem.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 53

5.2 The Basic Idea

For ease of exposition, we consider only pure Integer Programming pro-

blems. However, everything developed in this chapter applies in a straightfor-

ward way to more general settings, as Mixed Integer programming problems.

Let an Integer Program (IP) be defined as

min fTx

(IP) s.t. Ax ≥ b (5.1)

Cx ≥ d (5.2)

x ∈ {0, 1}n

where, as usual, fT , x, b and d are vectors, A and B are matrices, all of

conformable dimensions.

Let us suppose (IP) is easily solved if one of the set of constraints (5.1) or

(5.2) is removed. In the spirit of the Lagrangean decomposition, we can rewrite

(IP) as follows

min fTx

(IP ′) s.t. Ax ≥ b (5.3)

Cy ≥ d (5.4)

x = y (5.5)

x ∈ {0, 1}n, y ∈ {0, 1}n

Which can be decomposed into

(IP1)

min fTx

s.t. Ax ≥ b

x ∈ {0, 1}n

︸ ︷︷ ︸
Master problem

Optimization problem

and (IP2)

min 0y

s.t. Cy ≥ d

y = x̄

y ∈ {0, 1}n

︸ ︷︷ ︸
Subproblem

Feasibility problem

In this way, an algorithm to solve (IP) would be to optimize (IP1) and check

whether or not this solution is feasible to (IP2). In case this solution is feasible,

we have found the optimum solution to (IP), otherwise we need to cut off at

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 54

least this infeasible solution and keep on doing these basic steps. We should

notice that after introducing these cuts the easy structure of (IP) can be

broken and become harder to solve, however this is rarely a problem as we will

show in the Computational Experiments Section. As we can see, this algorithm

is pretty general since no assumption was made in its description. Moreover,

as the subproblem is a feasibility problem, it opens up a range of possibility to

apply hybrid methods, such as combination of mixed integer programming

with constraint programming. In this work we stick to the framework of

mathematical programming and we show a very effective scheme to generate

cuts.

(a) Cut Generation

The goal of the cut generation procedure is to cut off at least the solution

that is proved not to belong to the feasible region of the problem. In the

proposed decomposition algorithm, the trial solution turns out to be always

integer. Thus, an easy scheme to cut off this solution is just to logically negate

it, as shown in the sequel.

Let x be an optimum solution to the Master problem (IP1), but infeasible

to the subproblem (IP2). Defining S = {i ∈ N |xi = 1}, in order to cut off this

solution we can build the following logical constraint:

¬
(
∧i∈S(xi)∧i∈N\S(¬xi)

)

Using De Morgan’s Law, we can rewrite it as

∨i∈S(¬xi)∨i∈N\S(xi) (5.6)

Which is equivalent to

∑

i∈S

(1− xi) +
∑

i∈N\S

xi ≥ 1 or
∑

i∈S

xi −
∑

i∈N\S

xi ≤ |S| − 1

To the best of our knowledge, these cuts were first proposed by Balas and Jeros-

low [Bal72], where they were called Canonical cuts. They are also known in the

constraint programming community under the name of No-good constraints

[Hoo00]. It is well known in the literature that these cuts are very weak in

practice and this is not surprising since they do not use any information about

the feasible region of the problem they are cutting the solution from. In this

work, we explore a better way to use the information provided by the sub-

problem, trying to explain why a given solution to the master problem is not

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 55

feasible to the subproblem. For this purpose, we add the logical expression

(5.6) to the subproblem formulation (IP2), as shown by (5.7), and through a

separation scheme we look for the best cut possible.

∨i∈S

Cy ≥ d

yi = 0

y ∈ {0, 1}n

∨i∈N\S

Cy ≥ d

yi = 1

y ∈ {0, 1}n

 (5.7)

The resulting cut generation problem is a formulation of a disjunctive program.

This is the key element of our proposed separation procedure as described in

the following.

Definition 5.1 (Separation Problem) Given x ∈ R
n, the problem of separa-

ting x from P is that of deciding whether x ∈ P and if not, determining α ∈ R
n

and β ∈ R such that αy ≥ β, ∀y ∈ P but αx < β

We denote by SEP (x, P) the procedure that separates an arbitrary x

from a polyhedron P , returning either a set of valid inequalities for P or an

empty set. In practice, we solve the optimization version of SEP (x, P) that

consists in finding the most violated inequality or the deepest cut.

Separation problem

Let a Disjunctive program be defined as

∨k∈K

(
Akx ≥ b

)
(5.8)

where vectors x ∈ R
n
+, b ∈ R

n and matrices Ak ∈ R
m×n. Note that here the

matrices Ak also include the bounds on variables x.

The question we want to answer is how to find valid inequalities for

(5.8). But this question can be posed in a slightly different way, i.e., how to

find inequalities αx ≥ β dominated by (5.8). According to a classical result on

linear inequalities (see Theorem 22.3 of [Roc70]) this is equivalent to

∨k∈K

α− θkAk ≥ 0

β − θkb ≤ 0

α ∈ R
n, β ∈ R, θk ∈ R

m
+

 (5.9)

Besides, as we want to find the best possible cut separating a given solution

x̄, one common objective function to this end is to look for the most violated

cut αx ≥ β, i.e., the objective function that maximizes the difference β − αx̄,

as shown in (5.10).

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 56

max β − αx̄

SEP (x̄, P) : ∨k∈K

α− θkAk ≥ 0

β − θkb ≤ 0

α ∈ R
n, β ∈ R, θk ∈ R

m
+

(5.10)

Unfortunately, as one can observe, this separation problem is a polyhedral

cone. Therefore, its objective function is unbounded. To circumvent this issue

we need to truncate SEP (x̄, P) to obtain some meaningful results. This is

performed in practice by some normalization inequalities as discussed in the

sequence.

Normalization

Two important factors that influence the solution of the cut generation

procedure is the objective function and the normalization used in the separa-

tion problem. In his seminal work on Disjunctive programming, Balas [Bal98]

has shown that an inequality αx ≥ β defines a facet of a disjunctive pro-

gram if and only if the pair (α, β) is an extreme ray of the separation problem

SEP (x̄, P). This implies that, if we want to obtain facets of a disjunctive pro-

gram using the separation problem stated earlier, the normalization has to be

such that the solution of the truncated problem still lies on an extreme ray

of the original separation problem. Nevertheless, this is obtained only if we

intersect the separation problem with a unique hyperplane, otherwise we can

get a solution that is not associated with facets, as depicted by Figure 5.1.

Figure 5.1: Possible outcome of different normalizations

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 57

Normalization is still a topic that should deserve some attention in the

mathematical programming community. Up to now we yet do not have a

normalization that guarantees, in general, to truncate the cone in (5.10) with

a single hyperplane and bounds its solution. The most used normalizations

found in the literature are as follows:

(i) β ∈ {0, 1}

(ii)
∑

i |αi| ≤ 1

(iii)
∑

k

∑
i θ

k
i = 1

Surprisingly enough, the only normalization that guarantees intersecting

the separation problem with a unique hyperplane is (i), however, it comes

with no assurance that the truncated separation problem will have a bounded

solution. Balas [Bal98] has shown that if this normalization is used, the

truncated separation problem has a finite maximum if and only if λx̄ is a

point of the feasible region of (5.8) for some λ ∈ R+. This condition is satisfied

by some classes of problems, such as set covering (β = 1) and set packing

(β = −1), or more generally, for any combinatorial optimization problem

that can be solved by replacing the polyhedron of feasible points either by its

dominant or by its submissive. Regarding normalizations (ii) and (iii), they do

not guarantee intersection with the separation problem by a unique hyperplane.

It can be shown that the normalization (ii) corresponds to an n-dimensional

octahedron, and therefore the solution of the truncated separation problem

will not necessarily lie on an extreme ray of the original separation problem.

In the same way, the normalization (iii) do not intersect with the separation

problem by a single hyperplane either. Although its expression corresponds to

a hyperplane, it does not define a hyperplane in the (α, β) space. In this work

we use normalization (iii) because it performs better in practice as reported

by Balas et al. [Bal96].

Upshot of the algorithm

After explaining the main points of our proposed algorithm we can make

the following comments:

- If the original problem is a polytope, the proposed algorithm terminates

in a finite number of steps. This is a consequence of the cut generation

procedure that guarantees to cut at least the integer solutions previously

found and the fact that a polytope has only a finite number of integer

points.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 58

- The optimal solution of the master problem provides a lower bound on

the original problem objective function. This is clear since the master

problem is a relaxation of the original problem.

- The optimal solution of the master problem in each step of the algorithm

is nondecreasing for a minimization problem. In fact, at each step at least

the previous solution is cut off from the master problem region. In case

this solution is not unique, the solution value of the master problem in the

next step may be the same, otherwise we can be sure that its optimum

value would be greater than the solution value found in the previous step

of the algorithm.

- The proposed cut is at least as strong as the canonical cut and frequently

it is much better than it, as depicted by Figure 5.2. This observation

comes with no surprise since it can be shown that the canonical cut

corresponds exactly to our cut generation procedure applied to the unit

hypercube, which is equivalent to completely ignore the information

provided by the subproblem.

Figure 5.2: Comparison between the proposed cut and the canonical cut

5.3 Improved Idea

In real problems, one is not necessarily interested in finding the true

optimal solution to a model. On the contrary, in practice one is looking for a

good solution to a model guaranteed to be close enough to its true optimal

solution. As mentioned earlier, the proposed algorithm provides only a lower

bound on the optimal solution to a problem, and therefore the absence of

upper bound information prevents the implementation of a scheme to stop

our algorithm prematurely in case these bounds are close. Moreover, one

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 59

common problem of cutting plane based algorithms is the lack of progress

on the lower bound value after a number of cut generation steps. In our

algorithm, we observed that after a number of steps, the lower bounds obtained

are often close to the optimal solution, but it suffers from the curse of multiple

solutions to the master problem, as shown in Figure 5.3. As we can see in

Figure 5.3, points 1, 2 and 3 in the master problem feasible region have the

same objective function value, however, only point 2 is feasible and hence

optimal to the original problem. From the cut shown in Figure 5.3, we can

conclude that the lower bound found has exactly the same value as the optimal

solution, but it can happen that we will need to cut off points 1 and 3 before

reaching the optimal solution (point 2). To overcome this issue, we propose

an extension of the basic algorithm using an idea from Fischetti and Lodi to

repairing Mixed Integer Program (MIP) infeasibility through local branching

[Fis08]. The improved algorithm consists of generating cuts until the lower

bounds obtained do not have any significant improvement, and at this moment

switching to the repairing MIP infeasibility method using as input the feasible

solution to the master problem, which is infeasible to the subproblem and

consequently to the complete problem. We claim that, in general, at this point

the optimal or a very good solution is not far from the optimum solution to

the master problem, as presented in Figure 5.3. In chapter VII, we show that

this is the case for the petroleum supply planning problem.

In the following sections we present the Local Branching and the Re-

pairing MIP Infeasibility ideas, and we give an outline of the whole method

presented by Algorithm 3.

(a) Local Branching

The Local Branching procedure was first proposed by Fischetti and

Lodi [Fis03] with the aim of improving the efficiency of an exact algorithm

like Branch-and-Bound. It consists of reducing the solution search space by

introducing to the model some inequalities called ”Local Branching cuts”, i.e.,

given a new incumbent solution x̄ and a nonnegative integer parameter k (the

neighborhood size), the space solution is reduced by means of the following

inequalities:

∆(x, x̄) =
∑

j∈S

(1− x̄j) +
∑

j∈B\S

x̄j ≤ k (5.11)

where, B is the set of binary variables and S is the index set of binary variables

that take value of one in the solution x̄.

The basic idea of Local Branching is to optimize over a small neighbo-

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 60

Figure 5.3: Possible limitation of the proposed algorithm

rhood, given by inequality (5.11), in an attempt to finding better solutions

faster. It should be noticed that the Local Branching cuts embody the idea of

a neighborhood search, similar to the idea present in most of metaheuristics, as

they express that the solution at hand can be changed by at most k elements.

One parameter of this procedure that needs to be determined is the neighbo-

rhood size k. There is a trade-off in choosing the value for k, as we want it to

be as small as possible to make the problem easy to solve, but large enough

to contain solutions better than the given one. Fischetti and Lodi suggested

that a value of k in the interval [10, 20] works best in the majority of cases.

Besides, in the implementation of the procedure, this parameter can be dyna-

mically modified as the algorithm proceeds. Nowadays, the Local Branching

procedure is implemented by almost all commercial solvers, and in particular,

it is provided by CPLEX disguised by the name of polishing algorithm. The

question one could raise is why bother implementing this algorithm. This is

justified by the fact that many solvers do not provide sufficient control over

their algorithms and they usually apply Local Branching to all integer va-

riables of a given problem. Nonetheless, the experience has shown that it is

sometimes advantageous to use this algorithm only with a subset of integer

variables, leaving more room for the solver to find better solutions. In this

work we implement a version of the Local Branching, called asymmetric, that

counts only the number of variables changing from 1 to 0, as given by the

expression (5.12). ∑

j∈S

(1− x̄j) ≤ k′ (5.12)

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 61

where k′ ≈ ⌊k/θ⌋ and θ is a parameter problem dependent.

We can better understand how this procedure works by its basic tree

representation as given in Figure 5.4. The upshot of this method is that we

build a search tree where only the nodes appended by triangles with an S (for

Solver) are explored by an off-the-shelf MIP solver. We start out with an initial

feasible solution x̄1 , and we add to the model the Local Branching constraint

∆(x, x̄1) ≤ k, that corresponds to the node 2 in the tree. We solve the problem

represented by node 2, and find the optimum solution x̄2 which is better than

x̄1. At this point, we delete from our model the constraint ∆(x, x̄1) ≤ k, adding

simultaneously the constraints ∆(x, x̄1) ≥ k + 1 and ∆(x, x̄2) ≤ k (these

steps lead us to node 4). We keep on doing these basic steps until we reach

a stopping criteria. As shown in the figure, at this point we simply delete the

last constraint ∆(x, x̄3) ≤ k and add ∆(x, x̄3) ≥ k + 1, abandoning the Local

Branching procedure and proceed solving the problem represented by node 7

using an MIP solver. This is the most basic description of the implementation

of the Local Branching procedure. A more elaborated algorithm can be found

in the paper of Fischetti and Lodi [Fis03], where they borrowed some ideas from

the metaheuristic community to improve the efficiency of this implementation.

Figure 5.4: Basic Tree representation of the Local Branching procedure

In summary, the key points of this method are:

- The search is concentrated on a reduced part of the search space defined

by the left nodes in the tree in Figure 5.4

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 62

- The neighborhood of a given solution is explored with an MIP solver.

(b) Repairing MIP infeasibility

This idea is a natural extension of the Local Branching procedure to

deal with infeasible initial solutions. Proposed by Fischetti and Lodi [Fis08],

this procedure is at the same time a very simple and powerful algorithm. We

can compare it with the phase I algorithm in the Simplex scheme because

it basically tries to drive an infeasible MIP solution to the feasible region

by means of minimizing the sum of artificial variables corresponding to

infeasibility in each constraint.

For the sake of simplicity, we consider a (IP) problem

min fTx

(IP) s.t. Ax ≥ b (5.13)

xi ∈ {0, 1} ∀i ∈ B

Let x̄ be an infeasible solution to (IP). Defining T = {i | aix̄ < bi i ∈ B} as

the subset of constraints of (IP) that is violated by x̄ and δi = bi − aix̄ the

amount of its violations. We attempt to repairing the solution x̄ by applying

the Local Branching to the following problem

min
∑

i∈T yi

(ĨP) s.t. aix ≥ bi ∀i ∈ B \ T (5.14)

aix+ δiyi ≥ bi ∀i ∈ T (5.15)

xi ∈ {0, 1} ∀i ∈ B, yi ∈ {0, 1} ∀i ∈ T

Note that now we have readily a feasible solution to (ĨP) by setting all yi to

1. One could argue why not define yi variables as continuous instead of binary.

Fischetti and Lodi [Fis08] has shown that the Local Branching algorithm works

much better with yi binary. Similar to the phase I algorithm in Simplex, the

algorithm terminates as soon as the objective function becomes zero, i.e., after

all yi are driven to zero.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 63

Algorithm 3 A Novel Decomposition algorithm

Step 0: Set the best upper bound bestUB = ∞, the best lower bound

bestLB = −∞

while
∣∣ bestUB−bestLB

bestUB

∣∣ > gap do

Step 1: Solve the Master problem (IP1),

min fTx

(IP1) s.t. Ax ≥ b

x ∈ {0, 1}n

if the (IP1) infeasible then

Terminate.

else

Let x̄ be the master problem solution.

Set LBk = fT x̄

Check whether or not x̄ is feasible to the subproblem (IP2)

min 0y

(IP2(x̄)) s.t. Cx ≥ b

y = x̄

x ∈ {0, 1}n

if the (IP2) is feasible then

Stop. Optimum solution found

else

if bestLB ≤ LBk then

Set BestLB ← LBk

end if

Solve the cut generation problem SEP (x̄, P) with normalization (iii)

Add row (α, β) to the Master problem [A, b]

end if

end if

Step 2: Obtaining feasible solutions

if
∣∣ bestLB−LBk

bestLB

∣∣ < ǫ after η number of iterations then

Run Repairing MIP infeasibility with x̄

if
∑

i∈T yi = 0 then

Run Local Branching with the new x̄

UBk = fT x̄

if bestUB ≥ UBk then

Set BestUB ← UBk

end if

end if

end if

end while

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 64

5.4 Computational Experiments

In this section we present some results for the Parallel Machine Schedu-

ling and the Generalized Assignment Problems. We implemented these models

on C++ using ILOG Concert Technology compiled on Visual Studio 2008.

All tests were run on CPLEX 11.2 using an Intel Centrino 2.8 GHz 4GB of

RAM. The objective of these tests were to compare the efficiency in terms of

computational time of the proposed algorithm in solving these problems to

optimality in a 2 hours time limit, and therefore only the basic algorithm was

applied.

(a) Generalized Assignment problem

The Generalized Assignment is an important theoretical problem in the

Mathematical Programming area because it appears as subproblem in a large

number of real applications. It concerns the maximum satisfaction assignment

of jobs to machines, such that each job is assigned to exactly one machine

with limited processing capacity. This problem is known to be NP-hard and

although it has been around for more than four decades, it still recently attracts

interest in the literature [Nau03, Yag04]. The formulation of this problem goes

as follows.

Sets

- I = 1, ...,m: set of jobs

- J = 1, ..., n: set of machines

Indices

- i ∈ I: Jobs

- j ∈ J : Machines

Data

- Satisfaction level of assigning job i to machine j: ci,j

- Capacity of machine j: bj

- Resource consumed by assigning job i to machine j: ai,j

Decision Variables

- xi,j : 1 if job i is assigned to machine j; 0 otherwise.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 65

max
∑
i∈I

∑
j∈J

ci,jxi,j

(IP) s.t.
∑
j∈J

xi,j = 1 ∀i ∈ I (5.16)

∑
i∈I

ai,jxi,j ≤ bj ∀j ∈ J (5.17)

xi,j ∈ {0, 1} ∀i ∈ I, ∀j ∈ J

where (5.16) are assignment constraints of jobs to machines and (5.17) are the

capacity constraints on the machines.

To test the efficiency of our decomposition algorithm in solving the Ge-

neralized Assignment, we have considered the following alternative solutions:

- CPLEX: Model solved using CPLEX with default parameters

- Decomp.: Model solved by the decomposition algorithm, where the

master problem is the Assignment subproblem (inequality (5.16)) and

the subproblems are the |J | knapsack subproblems (capacity inequality

(5.17))

- MRoc B&P: A Branch-and-Price algorithm implemented by Medeiros

Rocha [Med09], specially designed to solve the GAP.

The instances we use in our computational tests are from Yagiura Website

[Yag10], however, we only consider a subset of the groups C, D and E that at

least one of the alternative solutions can find its optimum in the 2 hours

time limit. The nomenclature of the problem data is as follows: The first

letter corresponds to the instance group, the two first digits are the number of

machines and finally the last three digits are the number of jobs.

In Table 5.1 we present a comparison of the alternative solutions to solve

the Generalized Assignment problem. From these results, we cannot declare a

clear winner since each method is the fastest approximately the same number

of times. Nevertheless, we can draw the following conclusions:

- The algorithm MRoc B&P is the fastest for the easiest instances, while

the algorithm Decomp is the fastest for the hardest ones.

- The algorithm MRoc B&P could not solve to optimality 6 out of 18

instances. The same happens with CPLEX in 2 out of 18 instances,

while algorithm Decomp solves all 18 instances in the given time limit.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 66

Table 5.1: Computational results for the Generalized Assignment

Problem Objective CPU(s)
Data Function CPLEX Decomp MRoc B&P
c05100 1931 0.95 1.51 0.56
c05200 3456 2.71 8.30 1.89
c10100 1402 2.32 5.04 2.01
c10200 2806 31.64 98.14 68.20
c20100 1243 2.40 7.05 1.77
c20200 2931 63.14 63.14 23.21
c10400 5597 27.05 65.01 34.39
c20400 4782 2130.75 1039.57 7200.00*

c40400 4244 207.70 603.41 129.72
c60900 9328 7200.00* 490.99 7200.00*

d05100 6353 798.60 1033.09 7200.00*

d10100 6350 7200.00* 479.72 7200.00*

e05100 12681 7.88 17.40 19.47
e05200 24930 7.35 11.20 3.09
e10100 11577 111.17 101.02 1219.70
e10200 23307 165.70 134.04 7200.00 *

e20200 22379 239.90 143.53 4619.51
e20400 44878 555.16 2018.83 7200.00 *

* Did not find the optimal solution after 7200 seconds

(b) Parallel Machine Scheduling problem

We consider a simple scheduling problem described in the paper of

Jain and Grossmann [Jai01]. This problem involves finding a minimum cost

scheduling to process a set of orders using a set of dissimilar parallel machines.

Processing of an order can only begin after its release date and must be

completed at latest by its due date. All orders can be processed on any

machines. In the following, we describe the MIP model proposed by Jain and

Grossmann [Jai01].

Sets

- I: set of orders

- M : set of machines

Indices

- i, i′ ∈ I: Orders

- m ∈M : Machines

Data

- Cost of processing order i on machine m: ci,m

- Processing time of order i on machine m: pi,m

- Release date of order i: ri

- Due date of order i: di

Decision Variables

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 67

- xi,m: 1 if order i is processed on machine m; 0 otherwise.

- yi,i′ : 1 if order i is processed before i′ on a given machine; 0 otherwise.

- tsi ∈ R+: Start time of order i on a given machine.

min
∑
i∈I

∑
m∈M

ci,mxi,m (5.18)

s.t. tsi ≥ ri ∀i ∈ I (5.19)

tsi ≤ di −
∑

m∈M

pi,mxi,m ∀i ∈ I (5.20)

∑
m∈M

xi,m = 1 ∀i ∈ I (5.21)

∑
i∈I

pi,mxi,m ≤ maxi∈I di −mini∈I ri ∀m ∈M (5.22)

yi,i′ + yi′,i ≥ xi,m + xi′,m − 1 ∀i, i′ ∈ I, i′ > i, ∀m ∈M (5.23)

tsi′ ≥ tsi +
∑

m∈M

(maxi∈I di)xi,m −
∑
i∈I

maxm∈M pi,m(1− yi,i′)(5.24)

∀i, i′ ∈ I, i′ 6= i

yi,i′ + yi′,i ≤ 1 ∀i, i′ ∈ I, i′ > i (5.25)

yi,i′ + yi′,i + xi,m + xi′,m ≤ 2 (5.26)

∀i, i′ ∈ I, i′ > i, m,m′ ∈M, m 6= m′

tsi ∈ R+

xi,m ∈ {0, 1} ∀i ∈ I, ∀m ∈M

yi,i′ ∈ {0, 1} ∀i, i
′ ∈ I, i 6= i′

The objective function (5.18) of this problem is to minimize the pro-

cessing cost of all orders. Constraints (5.19) and (5.20) ensure that all orders

start processing after their release dates and are completed before their due

dates. Constraint (5.21) is an assignment constraint ensuring that one order

will be processed by exactly one machine. Inequality (5.22) is a valid cut that

helps tighten the LP relaxation of the problem. It is based on the fact that

the total processing time of all orders that are assigned to the same machine

should be less than the difference of their latest due dates and earliest release

dates. Constraint (5.23) is a logical inequality that makes the connection bet-

ween the assignment and the sequence variables. The underlying logic behind

this constraint is that if order i and i′ are assigned to machine m, then either

i is processed before or after i′ on machine m. Constraint (5.24) is a Big-M

constraint and ensures that if the sequencing variable yi,i′ is one, then order

i′ is processed after order i. The logical constraints (5.25) ensures that either

i is processed before i′ and vice versa. Constraint (5.26) is a logical cut that

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 68

sets yi,i′ and yi′,i to zero whenever orders i and i′ are processed in different

machines.

To test the efficiency of our approach, we have implemented the following

alternative solutions:

- CPLEX: Model solved using CPLEX with default parameters.

- Decomp. Assign: Model solved by the decomposition algorithm, where

the master problem is the sequence subproblem (inequalities from (5.23)

to (5.26)) and the subproblems are the m machine assignment subpro-

blems (inequalities from (5.19) to (5.22).

- Decomp. Seq.: Model solved by the decomposition algorithm, where

the master problem is the machine assignment subproblem (inequalities

inequalities from (5.19) to (5.22)) and the subproblems are the m

instances of sequence subproblems (inequalities from (5.23) to (5.26)),

one for each time we fix the x variables to its master solution value in a

given machine.

- Harjunkoski: Model solved by the decomposition algorithm presented

in the paper by Harjunkoski and Grossmann [Har02]. They decompose

the problem in the same way as in Decomp. Seq., however, the cuts

are generated through the canonical cut idea.

The test instances used are from [Har02], however, we changed instances

(1,2), (2,2) and (3,2) to make them harder because they were so easy before

that the decomposition algorithm could solve them without the addition of

any cut. Table 5.2 gives an idea of the size of each instance. We do not show

the whole data of these instances in this work, but the authors will be happy

to provide them upon request.

Table 5.2: Characteristic of the instances
Problem Number of Machines Number of Orders

1,1 2 3
1,2 2 3
2,1 3 7
2,2 3 7
3,1 3 12
3,2 3 12
4,1 5 15
4,2 5 15
5,1 5 20
5,2 5 20

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 69

Table 5.3: Computational results for the Parallel Machine Scheduling

Problem Objective CPLEX Decomp. Assign Decomp. Seq. Harjunkoski
Data Function CPU(s) CPU(s) Nb Cuts CPU(s) Nb Cuts CPU(s) Nb Cuts
1,1 26 0.02 0.13 1 0.13 1 0.08 1
1,2 25 0.09 0.359 2 0.28 2 0.20 2
2,1 60 0.22 1.70 16 2.95 16 1.27 16
2,2 52 0.19 1.16 6 1.01 3 1.41 8
3,1 104 15.79 13.56 45 9.81 18 9.10 40
3,2 91 3.33 8.38 24 1.80 2 4.02 12
4,1 116 15.49 5.31 12 - - 3.27 14
4,2 105 2.50 2.45 6 - - 1.36 4
5,1 159 * 16.36 69 - - 9.64 68
5,2 144 * 20.28 35 - - 6.95 19
* Did not find the optimal solution after 7200 seconds
- Cut off the optimal solution due to numerical instability

Table 5.3 shows the computation times for all implementations to solve

the problem as well as the number of cuts generated by the decomposition

algorithms. As we can see, the time spent to solve the instances shows mixed

results, where CPLEX is faster for small instances while the Harjunkoski

decomposition algorithm is faster for large instances. Regarding the number

of cuts, our decomposition algorithm Decomp. Seq. generates the smallest

number of cuts to solve the problem as far as the numerical instability does

not become a problem. This is an important fact since the cuts generated

by our algorithm are more time consuming than Harjunkoski, and to beat

the latter in terms of computational time we need to add fewer cuts. We

believe that this would happen for the large instances if it were not by the

numerical instability issue of our cut generation procedure. Concerning the

decomposition algorithm Decomp. Assign, although it did not present the

numerical instability problem of the Decomp. Seq., its computational time

and its number of cuts generated are always worse than the best method

in each criterion. This shows the importance of choosing the best way to

decompose a problem. In the case of the Decomp. Assign, the subproblem

sets apart to generate cuts is an assignment problem that has the integrality

property and consequently leads to weaker cuts. This is similar to what

happens with others decomposition algorithms, in which the problem kept

after dualizing (Lagrangean relaxation) or the problem convexified (Dantzig

and Wolfe) cannot be so easy in order to get stronger results.

An interesting comparison that can be made is related to the cuts

generated by each decomposition algorithm. Table 5.4 shows an example for

instance (2,2). We can see that, for this small example, the Decomp. Seq.

and Harjunkoski decompositions have generated two identical cuts, however,

one can also observe that cut (S2) is stronger than (H2), and in fact, the former

can be obtained by lifting the latter. As a matter of fact, in solving instance

(2,2), the cut (S2) generated by Decomp. Seq. is equivalent to (H2, H4, H5

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 70

and H6) altogether. As for the cuts generated by Decomp. Assign, they

are not related to the other methods and this is not surprising since they are

generated by a different subproblem. Nonetheless, it also shows how general

our cut generation procedure is, since there is no restriction on the signs of the

coefficients as well as the type of inequalities that can be obtained.

Table 5.4: Comparison of cuts generated from different decomposition algo-
rithm

Decomp. Assign Decomp. Seq. Harjunkoski
(A1) : x0,0 + x0,2 + x2,0+ (S1) : x0,1 + x2,1 + x6,1 ≤ 2 (H1) : x0,1 + x2,1 + x6,1 ≤ 2
x2,2 + x6,0 + x6,2 ≥ 1

(A2) : x0,0 + x0,1 + x1,0+ (S2) : x1,2 + x2,2 + x3,2 + x5,2 + x6,2 ≤ 2 (H2) : x1,2 + x3,2 + x4,2 + x5,2 ≤ 3
x1,1 + x3,0 + x3,1 ≥ 1

(A3) : x0,0 + x0,2 + x5,0+ (S3) : x0,2 + x1,2 + x3,2 ≤ 2 (H3) : x0,2 + x1,2 + x3,2 ≤ 2
x5,2 + x6,0 + x6,2 ≥ 1

(A4) : x0,0 + x0,1 + x3,0+ (H4) : x0,2 + x3,2 + x4,2 ≤ 2
x3,1 + x4,0 + x4,1 ≥ 1

(A5) : x0,0 + x0,1 + x3,0+ (H5) : x0,2 + x1,2 + x5,2 ≤ 2
x3,1 + x4,0 + x4,1 ≥ 1

(A6) : x0,0 + x0,1 + x1,0+ (H6) : x0,2 + x1,2 + x3,2 ≤ 2
x1,1 + x4,0 + x4,1 ≥ 1

(H7) : x0,2 + x1,2 + x4,2 ≤ 2
(H8) : x0,1 + x4,1 + x6,1 ≤ 2

Regarding the numerical instability issue of the Decomp. Seq. decom-

position, we have tracked all the steps of the algorithm and have found out that

the problem matrix of the separation problems turned out to be ill-conditioned.

To cope with this problem, every time we solve the separation problem, we

start by scaling its coefficient matrix in the attempt to bring down its condi-

tion number. This has allowed us to tackle instances (3,1) and (3,2), but it was

not enough to cover all instances, and we believe that a more in-depth study

needs to be done in order to definitely solve this problem. It should be noted

that this is not an uncommon problem, as shown by the example in Figure 5.5

solved using CPLEX. The original problem has an optimum solution equal to

3, however due to the rounded data, CPLEX ends up finding an incorrect and

infeasible optimum solution equal to 2.

Figure 5.5: Effect of the problem matrix condition number on the optimum
solution found

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

Chapter 5. A Novel Decomposition Algorithm 71

5.5 Conclusions

In this chapter we presented a new decomposition algorithm based on

the idea of decomposing a problem through copying variables and generating

cuts via disjunctive programming. Our main goal was to propose a method

that could overcome the difficulties of traditional decomposition methods in

dealing with pure integer programming problems. The proposed decomposition

method turned out to be quite general and we proved this feature by applying

it to two problems from the literature, namely, the Generalized Assignment

and the Parallel Machine Scheduling problems. As mentioned, our focus was

to show how the proposed algorithm could be used to solve other problems than

the petroleum supply planning problem. However, the performance results also

showed that this method can be a viable option to solve some hard instances of

the problems tested. It is important to observe that these results were obtained

by a first implementation of this decomposition algorithm and we believe that

we can further improve its performance if a great care in its coding is exercised.

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA

