
6
Cascading Knapsack Inequalities: Hid-
den Structure in some Inventory-
Production-Distribution Problems

6.1 Summary

In the last decade Mixed Integer Programming solvers have evolved

enormously contributing to the widespread application of optimization in real

world problems in industry. Nonetheless, it is paramount for practitioners to

have basic knowledge on how these solvers work and to be able to identify

model structures, so one can take full advantage of the machinery at hand. In

this work we present a reformulation to a simple problem that appears as sub-

problem in a vast majority of supply chain models, and we show the advantage

of using suitable mathematical structures in the form of cascading knapsack

inequalities to solve it. Moreover, we introduce new reformulations to some

special cases, producing tighter linear relaxation and faster solution times.
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6.2 Introduction

In order to solve real problems using Mixed Integer Programming it

is essential for the specialist to have skills not only in modeling techniques

but also in the algorithms used to solve them. Therefore, the best way to

approach a problem is to propose a model close to the basic structures that

are implemented in the current solvers. This is not an easy task, and frequently

the most straightforward model is not the most appropriate to solve a problem

in terms of computational time. Additionally, there is no simple guideline

to determine the best formulation for a problem, and often this is found by

experimentation.

In this work we present a reformulation of inventory balance constraints

of a particular problem that leads to a formulation with a special structure

identified in this thesis as Cascading Knapsack Inequalities. This structure is of

great value as the knapsack inequalities have been studied since the beginning

of the integer programming area [Par69, Gui72, Bal75] and nowadays all solvers

have implemented very sophisticated techniques to exploit such structures

[Ata05, Ash07, Bix07]. Besides, the cascading form allows us to derive tighter

reformulations for some special cases.

To motivate the discussion of the reformulation using cascading knapsack

inequalities, we present a simple problem that usually arises as a subproblem

in a vast majority of supply chain models, namely, the inventory-production-

distribution problem [Lej08, Che03, Cha94]. The problem described in this

work is related to the petroleum supply planning activity at PETROBRAS.

As shown by Rocha [Roc04] and Rocha et al. [Roc09] this is an important

subproblem if one is to solve the petroleum supply planning problem. It is

worth mentioning that this problem is also a subproblem of the practical

application studied by Lejeune and Margot [Lej08] in their paper.

A petroleum company has several platforms producing crude oils that

are shipped to its terminals to supply its refineries (see Figure 6.1). The daily

petroleum production of each platform is a given data, being estimated by

the company’s Exploration and Production Department for the entire time

horizon. The company wants to determine the best shipment schedule in order

to satisfy the refineries demand and avoid the platforms shutdown due to

maximum inventory capacity, as well as inventory shortfalls at the terminals

in the planning horizon. The refineries demand is known in advance, and due

to the company shipping policy, the tankers must be loaded to full capacity.

The full capacity loading restriction is a common assumption in the petroleum

industry due to the tanker size and cost, and it is adopted to optimize this
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expensive asset. Additionally, we assume that the number of shipments per

time period between each pair of platform-terminal is limited to at most one,

and that the number of tankers in each class of tanker is unlimited. The

simplification on the number of shipments allows us to define the shipment

variables as binary. However, all ideas presented in this work apply without

any modification to the case of more than one shipment, i.e., integer shipment

variables.

Figure 6.1: Schematic representation of the problem

The problem can be described by the following data.

Platform Data

- Number of petroleum platforms: NP

- Initial inventory of crude oil at platform p: ISPp

- Daily production of crude oil at platform p: PRp,t

- Maximum storage capacity at platform p and time t: CAPp,t

- Set of terminals z that can be supplied by platform p: Sz(p)

- Set of classes of tankers that can offload platform p: Scl(p)

Tanker Fleet Data

- Number of classes of tankers: NCL

- Transportation capacity of tankers in class of tanker cl: CPcl

- Transportation cost per time period for tankers in class of tanker cl: Ccl

Terminal Data

DBD
PUC-Rio - Certificação Digital Nº 0611954/CA



Chapter 6. Cascading Knapsack Inequalities: Hidden Structure in some

Inventory-Production-Distribution Problems 75

- Number of terminals: NZ

- Initial inventory of crude oil p at terminal z: ISZz,p

- Maximum storage capacity at terminal z and time t: CAPz,t

- Refineries demand of crude oil p at terminal z and time period t: DM z
p,t

- Transportation time from platform p to terminal z: V Tp,z

Planning Horizon: T

(a) Initial Mathematical Formulation

The mathematical representation describing the problem presented above

consists of inventory balance equations for the platforms as well as for the

terminals. One of the most straightforward way to formulate these equations

is to perform the material balance for consecutive times as shown below.

Nomenclature

Indices

p: Platform or Crude oil. As each platform produces only

one crude oil, we can refer to platform as well as crude

oil by the same index

z: Terminal

cl: Class of tanker

t: Time period

Variables

xp,z
cl,t ∈ {0, 1}: binary variable indicating if a tanker of class cl is

assigned to offload platform p and deliver its crude

oil to terminal z at time period t

spp,t ∈ R+: inventory level at platform p at time period t

szzp,t ∈ R+: inventory level at terminal z of crude oil p at time

period t
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Min
NP
∑

p=1

∑

z∈Sz(p)

∑

cl∈Scl(p)

T
∑

t=1

2CclV Tp,zx
p,z
cl,t (6.1)

s.t.

spp,1 = ISPp ∀p ∈ {1, ..., NP} (6.2)

spp,t = spp,t−1 + PRp,t−1 −
∑

z∈Sz(p)

∑

cl∈Scl(p)

CPclx
p,z
cl,t−1 (6.3)

∀p ∈ {1, ..., NP}, ∀t ∈ {2, ..., T + 1}

szzp,1 = ISZz,p ∀z ∈ Szp ∀p ∈ {1, ..., NP} (6.4)

szzp,t = szzp,t−1 −DM z
p,t−1 +

∑

cl∈Scl(p)∧t>V Tp,z

CPclx
p,z
cl,t−V Tp,z

(6.5)

∀z ∈ Szp, ∀p ∈ {1, ..., NP}, ∀t ∈ {2, ..., T + 1}

0 ≤ spp,t ≤ CAPp,t ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T + 1} (6.6)

0 ≤
NP
∑

p=1/

z∈Sz(p)

szzp,t ≤ CAPz,t (6.7)

∀z ∈ {1, ..., NZ}, ∀t ∈ {1, ..., T + 1}

xp,z
cl,t ∈ {0, 1} ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), ∀cl ∈ Scl(p), ∀t ∈ {1, ..., T}

The objective function is to minimize the transportation cost from

platform p to the associated terminals, as given by the set Sz(p), for the

planning horizon T . Note that we multiply this cost by 2 to account for the

return trip, i.e., we are assuming that the tankers will go back to the same

platform offloaded in the previous time period. This simplification is justified

since the number of tankers is considered unlimited for each class of tanker.

The equations (6.3) and (6.5) are the inventory balance at the platforms and

terminals, respectively. In this work we will refer to this formulation as the

Initial Formulation since subsequently reformulations will be presented having

this formulation as a starting point.

(b) Inventory balance Reformulation

The previous model can be reformulated by projecting out the platforms

and terminals inventory variables in the following way. First, writing down the
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accumulated inventory at platforms and terminals for each time period t, we

obtain

spp,t = ISPp +
t−1
∑

τ=1

PRp,τ −
∑

z∈Sz(p)

∑

cl∈Scl(p)

CPcl

t−1
∑

τ=1

xp,z
cl,τ (6.8)

∀p ∈ {1, ..., P}, ∀t ∈ {2, ..., T + 1}

szzp,t = ISZz,p −

t−1
∑

τ=1

DM z
p,τ +

∑

cl∈Scl(p)

CPcl

t−V Tp,z
∑

τ=1

xp,z
cl,τ (6.9)

∀z ∈ {1, ..., NZ}, ∀p/z ∈ Sz(p), ∀t ∈ {2, ..., T + 1}

Substituting the equations (6.8) and (6.9) into (6.6) and (6.7), respectively,

the initial formulation can be rewritten as

Min
NP
∑

p=1

∑

z∈Sz(p)

∑

cl∈Scl(p)

T
∑

t=1

2CclV Tp,zx
p,z
cl,t (6.10)

s.t.

∑

z∈Sz(p)

∑

cl∈Scl(p)

CPcl

t
∑

τ=1

xp,z
cl,τ ≤ ISPp +

t
∑

τ=1

PRp,τ (6.11)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

∑

z∈Sz(p)

∑

cl∈Scl(p)

CPcl

t
∑

τ=1

xp,z
cl,τ ≥ ISPp +

t
∑

τ=1

PRp,τ − CAPp,t (6.12)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

NP
∑

p=1/
z∈Sz(p)∧
t>V Tp,z

∑

cl∈Scl(p)

CPcl

t−V Tp,z
∑

τ=1

xp,z
cl,τ ≥

t
∑

τ=1

DM z
p,τ − ISZz,p (6.13)

∀z ∈ {1, ..., NZ}, ∀t ∈ {1, ..., T}

NP
∑

p=1/
z∈Sz(p)∧
t≥V Tp,z

∑

cl∈Scl(p)

CPcl

t−V Tp,z
∑

τ=1

xp,z
cl,τ ≤

t
∑

τ=1

DM z
p,τ + CAPz,t − ISZz (6.14)

∀z ∈ {1, ..., NZ}, ∀t ∈ {1, ..., T}

xp,z
cl,t ∈ {0, 1}∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), ∀cl ∈ Scl(p), t ∈ {1, ..., T}

Note that the inequalities (6.11), (6.12), (6.13), and (6.14) are knapsack

inequalities. Furthermore, they have a special cascading structure since the left-
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hand side of the inequality at time t + 1 is equal to the left-hand side of the

inequality at time t plus the corresponding term associated with the variables

xp,z
cl,t+1, depending on whether we are referring to the inventory balance at the

platforms or at the terminals. We should also notice that this new formulation

is exactly as tight as the preceding one since we have just projected the initial

formulation into the binary variable space and all extreme points of the former

reformulation can be obtained by lifting the extreme points of the new one.

Nevertheless, we will show in the following sections that this new structure is

advantageous from the perspective of solving this problem using an off-the-shelf

MILP solver as well as providing a basis for deriving stronger reformulations,

for some special cases. In the sequel we will study some special cases of the

model in (6.10) to (6.14), and show that under some circumstances we can

obtain either a closed description of the convex hull for the platforms/terminals

balance constraints or a tighter formulation for their relaxation.

6.3 Simplified Case: Only one class of tanker

In this section we consider a simplified version of the problem described

in section 6.2. We assume that the oil company has only one class of tanker

cl servicing all platforms and terminals. In this case, we can derive a closed

and polynomial formulation of the convex hull of the inventory balance at the

platforms as well as at the terminals. Although this new description of the

problem is much stronger than the previous ones, we should note that it does

not correspond to the convex hull of the integer points to this problem since

the intersection of the convex hull of subsets of constraints does not necessarily

yield the convex hull of the entire problem. The model formulation under the

assumption of one class of tanker cl is as follows,
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Min
NP
∑

p=1

∑

z∈Sz(p)

T
∑

t=1

2CclV Tp,zx
p,z
cl,t (6.15)

s.t.

∑

z∈Sz(p)

t
∑

τ=1

CPclx
p,z
cl,τ ≤ ISPp +

t
∑

τ=1

PRp,τ (6.16)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

∑

z∈Sz(p)

t
∑

τ=1

CPclx
p,z
cl,τ ≥ ISPp +

t
∑

τ=1

PRp,τ − CAPp,t (6.17)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

NP
∑

p=1/
z∈Sz(p)∧
t≥V Tp,z

t−V Tp,z
∑

τ=1

CPclx
p,z
cl,τ ≥

t
∑

τ=1

DM z
p,τ − ISZz,p (6.18)

∀z ∈ {1, ..., NZ}, ∀t ∈ {1, ..., T}

NP
∑

p=1/
z∈Sz(p)∧
t≥V Tp,z

t−V Tp,z
∑

τ=1

CPclx
p,z
cl,τ ≤

t
∑

τ=1

DM z
z,τ + CAPz,t − ISZz,p (6.19)

∀z ∈ {1, ..., NZ}, ∀t ∈ {1, ..., T}

xp,z
cl,t ∈ {0, 1} ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), t ∈ {1, ..., T} (6.20)

where,

CPcl is the capacity of the class of tanker cl.

xp,z
cl,t are binary variables indicating if crude oil are offloaded in platform

p and shipped to the terminal z at time t.

Theorem 6.1 The convex hull of the set of inequalities (6.16), (6.17), and

(6.20) is:

∑

z∈Sz(p)

t
∑

τ=1

xp,z
cl,τ ≤

⌊

ISPp +
∑t

τ=1 PRp,τ

CPcl

⌋

(6.21)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

∑

z∈Sz(p)

t
∑

τ=1

xp,z
cl,τ ≥

⌈

ISPp +
∑t

τ=1 PRp,τ − CAPp,t

CPcl

⌉

(6.22)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

0 ≤ xp,z
cl,t ≤ 1 ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), t ∈ {1, ..., T} (6.23)
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Proof : First, by the Gomory-Chvátal procedure we know that these inequa-

lities are valid for the convex hull of integer points of the set defined by the

inequalities (6.16), (6.17), and (6.20). Also, defining the variables wp,t as the

total number of tankers in class cl leaving the platform p from time period 1

to t, i.e., wp,t =
∑t

τ=1

∑

z∈Sz(p)
xp,z
cl,τ , we can rewrite (6.21), (6.22), and (6.23)

as follows:

wp,1 −
∑

z∈Sz(p)

xp,z
cl,1 = 0 ∀p ∈ {1, ..., NP} (6.24)

wp,t − wp,t−1 −
∑

z∈Sz(p)

xp,z
cl,t = 0 ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T} (6.25)

⌈

ISPp +
∑t

τ=1 PRp,τ − CAPp,t

CPcl

⌉

≤ wp,t ≤

⌊

ISPp +
∑t

τ=1 PRp,τ

CPcl

⌋

(6.26)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

0 ≤ xp,z
cl,t ≤ 1 ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), t ∈ {1, ..., T} (6.27)

But this is the formulation of the Capacitated Network Flow shown in Figure

6.2, and thus all its vertices are integers [Ahu93]. �

Observe that, under the assumption of one class of tanker to attend all

platforms and terminals, an analogous theorem and proof can be stated for

the terminals (inequalities (6.18), (6.19)), and (6.20). We should also mention

that a similar idea was presented by Wolsey and Pochet (see [Poc06] chap. 12)

in the context of the Discrete Lot Sizing with Constant Capacities.

One could wonder if the same procedure could be used to find the convex

hull of integer points for cases with more than one class of tanker. In the

next section we answer this question negatively. Nonetheless, we propose a

polynomial method to reformulate the problem for the case with two classes

of tankers that is proven to be tighter than the original reformulation.

6.4 Two classes of tankers

In this case we consider that the platforms can use two different

classes of tankers to ship crude oil to the terminals. For the sake of sim-

plicity, let A and B be the transportation capacities CPcl1 and CPcl2, res-

pectively. Moreover, we substitute Cp,t and Dp,t for ISPp +
∑t−1

τ=1 PRτ and

ISPp +
∑t−1

τ=1 PRτ − CAPp,t, respectively. Additionally, we define the variables

xp,z
t if the platform p ships crude oil to terminal z at time t using tankers with

capacity A and yp,zt if tankers with capacity B are used instead. In this way,
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Figure 6.2: Network Flow representation of the reformulation

the sub-model associated with platforms can be rewritten as,

∑

z∈Sz(p)

t
∑

τ=1

Axp,z
τ +

∑

z∈Sz(p)

t
∑

τ=1

Byp,zτ ≤ Cp,t (6.28)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

∑

z∈Sz(p)

t
∑

τ=1

Axp,z
τ +

∑

z∈Sz(p)

t
∑

τ=1

Byp,zτ ≥ Dp,t (6.29)

∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

xp,z
t , yp,zt ∈ {0, 1} ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), t ∈ {1, ..., T} (6.30)

Proposition 6.2 The Minimization of the function

NP
∑

p=1

∑

z∈Sz(p)

T
∑

t=1

(2Ccl1V Tp,zx
p,z
t + 2Ccl2V Tp,zy

p,z
t )

over the constraints defined by (6.28),(6.29) and (6.30) is NP-hard.
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Proof : First, we reformulate the problem by defining the variables wp,t =
∑

z∈Sz(p)

∑t
τ=1 x

p,z
τ and vt =

∑

z∈Sz(p)

∑t
τ=1 y

p,z
τ . Thus the problem becomes,

wp,t =
∑

z∈Sz(p)

t
∑

τ=1

xp,z
τ ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T} (6.31)

vp,t =
∑

z∈Sz(p)

t
∑

τ=1

yp,zτ ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T} (6.32)

Awp,t + Bvp,t ≤ Cp,t ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T} (6.33)

Awp,t + Bvp,t ≥ Dp,t ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T} (6.34)

xp,z
t , yp,zt ∈ {0, 1} ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), ∀t ∈ {1, ..., T} (6.35)

wp,t, vp,t ∈ Z+, ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T} (6.36)

However, interpreting the variables xp,z
τ and wp,t as associated to the flow of

one class of tanker and yp,zτ and vp,t as the flow of the other class of tanker, this

formulation corresponds to an Integer 2-Commodity Network Flow problem

over time for each platform p, as depicted in Figure 6.3. In [Hal07], Hall et al.

proved that this problem is NP-hard even for the case where A = B = 1. �

In the sequel we capitalize on the reasoning behind the proof of the

proposition (6.2) to develop a new reformulation for the problem with two

classes of tankers. Observe that inequalities (6.33) and (6.34) are 2-integer

knapsack inequalities. Moreover, in [Hir76], Hirschberg and Wong proposed

a polynomial algorithm to solve this problem, being adapted by Agra and

Constantino [Agr07] to find its convex hull of integer points in the context

of lifting two-integer knapsack inequalities to obtain strong valid inequalities

for integer knapsack sets. We make use of these results to state the following

lemma.
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Figure 6.3: Integer 2-Commodity Network Flow representation of the refor-
mulation

Lemma 6.3 The convex hull of the integer points of the sub-model defined by

inequalities (6.33), (6.34), and (6.36) is described by,

(gip,t − gi−1p,t )wp,t + (f i
p,t − f i−1

p,t )vp,t ≤ gi−1p,t (f
i−1
p,t − f i

p,t) + f i−1
p,t (gip,t − gi−1p,t )

∀i ∈ {1, ..., nt}, ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

(jip,t − ji−1p,t )wp,t + (hi
p,t − hi−1

p,t )vp,t ≥ ji−1p,t (h
i−1
p,t − hi

p,t) + hi−1
p,t (j

i
p,t − ji−1p,t )

∀i ∈ {1, ...,mt}, ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

wp,t, vp,t ∈ R+, ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

where the points (f i
p,t,g

i
p,t) and (hi

p,t,j
i
p,t) are calculated by the algorithm (4)

proposed initially by Hirschberg and Wong [Hir76] to solve the Knapsack
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problem with two integer variables and adapted here to exhibit all points of

the convex hull of a given knapsack inequality with two integer variables.

Proof : First, we need to prove that the intersection of the convex hull of

the inequalities (6.33) and (6.34) for each platform p and time t is equal to

the convex hull of the entire sub-model. This clearly follows since there are

no linking variables between any pair of constraints for different platform p

and/or time t, i.e., the subspaces where the constraints for each platform p

and time t are defined are disjoint. Defining Qp,t as the convex hull of integer

points satisfying the inequalities (6.33) and (6.34) for each platform p and

time t, the convex hull of integer points for the sub-model is
∑P

p=1

∑T
t=1 Qp,t in

the sense of Minkowski sum [Zie98]. To conclude this proof, we need to show

that the convex hull of the set of inequalities (6.33) and (6.34) is equal to the

intersection of the convex hull of each inequality individually since Algorithm

4 calculates the convex of hull for each inequality separately. From Figure 6.4

this assertion is always true, provided that conditions ⌊Cp,t

A
⌋ − ⌈Dp,t

A
⌉ ≥ 0

and ⌊Cp,t

B
⌋ − ⌈Dp,t

B
⌉ ≥ 0 hold. But this is the case in our problem since

Dp,t = Cp,t−CAPp,t and
CAPp

A
≥ 1 (the problem is assumed to be feasible), thus

⌊Cp,t

A
⌋ − ⌈Dp,t

A
⌉ ≥ ⌊Cp,t

A
⌋ − ⌈Cp,t

A
− 1⌉ = 0, and hence the condition follows. The

same argument can be applied to verify the condition for the B denominator.

�

Figure 6.4: Convex hull of the pair of Knapsack inequalities
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Algorithm 4 Calculate the convex hull of the knapsack with two variables

Step 0:(Initialization)
if ineqSign is ≤ then
j ← 1, (aj , bj)← (⌊D

A
⌋, 0)

k ← 1, (ck, dk)← (⌊B
A
⌋, 1)

l ← 1, (el, f l)← (⌈B
A
⌉, 1)

else if ineqSign is ≥ then
j ← 1, (aj , bj)← (⌈D

A
⌉, 0)

k ← 1, (ck, dk)← (⌈B
A
⌉, 1)

l ← 1, (el, f l)← (⌊B
A
⌋, 1)

end if
Step 1:
while (aj − ck) ≥ 0 do
if ineqSign is ≤ then
δB ← D − ajA− bjB
δD ← −ckA+ dkB
δF ← elA− f lB

else if ineqSign is ≥ then
δB ← ajA+ bjB −D
δD ← ckA− dkB
δF ← −elA+ f lB

end if
if δB ≥ δD then
j ← j + 1
γ ← min{⌊ δB

δD
⌋, ⌊a

j

ck
⌋}

(aj, bj)← (aj−1, bj−1) + γ(−ck, dk)
else if δB < δD and δD ≥ δF then
k ← k + 1
γ ← min{⌊ δD

δF
⌋, ⌈ δD−δB

δF
⌉}

(ck, dk)← (ck−1, dk−1) + γ(el, f l)
else if δB < δD and δD < δF then
l← l + 1
γ ← ⌊ δF

δD
⌋

(el, f l)← (el−1, f l−1) + γ(ck, dk)
end if

end while
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Remark 6.4 Algorithm 4 was initially designed to find the optimal solution of

the problem maxf1x+f2y s.t. P≤ = {(x, y) ∈ Z
2
+ : Ax+ By ≤ D with f2

f1
> B

A
.

It does that by calculating in sequence all extreme points of the facets of the

convex hull of P≤ having slope less than or equal to B
A
. In order to obtain the

extremes points of facets having slope greater than or equal to B
A
, it suffices

to exchange A with B. Then, to find all the extreme points of the convex hull

of the Knapsack with two integer variables we need to run Algorithm 4 twice

and take the union of the calculated points. In the case of greater than or equal

to inequalities, we only need to change the initialization and the δ′s update

parts. Figure 6.5 illustrates how this algorithm works. This algorithm is based

on the well known Euclidean algorithm to find the greatest common divisor of

two integer numbers and applied to approximate a given real number within a

required accuracy with a fraction of minimal denominator (see [Mes82] chap.

2 and [Sch86] chap. 6).

Figure 6.5: Illustration of the algorithm to calculate the convex hull of a 2
integer knapsack
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(a) Hull Relaxation Formulation

A tight reformulation to the petroleum supply planning subproblem with

two classes of tankers can be obtained by using the inequalities given in Lemma

6.3 and eliminating the w′s and v′s variables.

(gip,t − gi−1p,t )
∑

z∈Sz(p)

t
∑

τ=1

xp,z
τ + (f i

p,t − f i−1
p,t )

∑

z∈Sz(p)

t
∑

τ=1

yp,zτ ≤ gi−1p,t (f
i−1
p,t − f i

p,t)+

+ f i−1
p,t (gip,t − gi−1p,t ) (6.37)

∀i ∈ {1, ..., nt}, ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

(jit − ji−1t )
∑

z∈Sz(p)

t
∑

τ=1

xp,z
τ + (hi

t − hi−1
t )

∑

z∈Sz(p)

t
∑

τ=1

yp,zτ ≥ ji−1p,t (h
i−1
p,t − hi

p,t)+

+ hi−1
p,t (j

i
p,t − ji−1p,t ) (6.38)

∀i ∈ {1, ...,mt}, ∀p ∈ {1, ..., NP}, ∀t ∈ {1, ..., T}

xp,z
t , yp,zt ∈ {0, 1}, ∀p ∈ {1, ..., NP}, ∀z ∈ Sz(p), ∀t ∈ {1, ..., T} (6.39)

It is clear that this formulation is tighter than the formulation (6.28),

(6.29), and (6.30) since it is obtained by the convex hull of the knapsack

inequalities with two integer variables, and hence its name.

Example:

In order to provide some insights about this new reformulation and

compare it with the first reformulation proposed for this problem, we consider

the following example data,

Platform Data

- Platform: p

- Initial inventory: 27× 103 m3

- Daily crude oil production: 23× 103 m3/day

- Maximum storage capacity: 67× 103 m3

Tanker Fleet Data

- cl1: capacity 27× 103 m3

- cl2: capacity 43× 103 m3

Planning horizon: 3 days
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For simplicity, we consider one terminal. Moreover, only the submodel

representing the inventory management at platform p is studied. Thus, the

first reformulation is as follows,

27xp,z
cl1,1 + 43xp,z

cl2,1 ≤ 50

27xp,z
cl1,1 + 27xp,z

cl1,2 + 43xp,z
cl2,1 + 43xp,z

cl2,2 ≤ 73

27xp,z
cl1,1 + 27xp,z

cl1,2 + 27xp,z
cl1,3 + 43xp,z

cl2,1 + 43xp,z
cl2,2 + 43xp,z

cl2,3 ≤ 96

27xp,z
cl1,1 + 27xp,z

cl1,2 + 43xp,z
cl2,1 + 43xp,z

cl2,2 ≥ 6

27xp,z
cl1,1 + 27xp,z

cl1,2 + 27xp,z
cl1,3 + 43xp,z

cl2,1 + 43xp,z
cl2,2 + 43xp,z

cl2,3 ≥ 29

xp,z
cl1,1, x

p,z
cl1,2, x

p,z
cl1,3, x

p,z
cl2,1, x

p,z
cl2,2, x

p,z
cl2,3 ∈ {0, 1}

In the same way, using Algorithm 4, the new reformulation can be written as,

xp,z
cl1,1 + xp,z

cl2,1 ≤ 1

xp,z
cl2,1 + xp,z

cl2,2 ≤ 1

xp,z
cl1,1 + xp,z

cl1,2 + xp,z
cl2,1 + xp,z

cl2,2 ≤ 2

2xp,z
cl1,1 + 2xp,z

cl1,2 + 2xp,z
cl1,3 + 3xp,z

cl2,1 + 3xp,z
cl2,2 + 3xp,z

cl2,3 ≤ 6

xp,z
cl1,1 + xp,z

cl1,2 + xp,z
cl2,1 + xp,z

cl2,2 ≥ 1

xp,z
cl1,1 + xp,z

cl1,2 + xp,z
cl1,3 + 2xp,z

cl2,1 + 2xp,z
cl2,2 + 2xp,z

cl2,3 ≥ 2

xcl1
0 , xcl1

1 , xcl1
2 , xcl2

0 , xcl2
1 , xcl2

2 ∈ {0, 1}

It can be shown that the Hull Relaxation formulation is the intersection

of the first Chvátal closure of each inequality in the first reformulation, and it is

easy to verify that its inequalities dominate the ones in the first reformulation.

Also it is important to note that not all facets could be obtained by simple cover

cuts inequalities as shown by Balas [Bal75]. However, possibly after applying

a lifting procedure we might find all facets but at a higher computational

expense. We compare in Table 6.1 the convex hull of the relaxations using

the two reformulation to shed some light on how different they can be. The

extremes points in Table 6.1 were obtained using PORTA [Por99].
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Notice that the Inventory Balance Reformulation has 147 extreme points.

In contrast, the Hull Relaxation Reformulation has only 49. This result

is somewhat surprising, because usually the number of extreme points in

tighter reformulation tends to stay approximately the same, or increases due

to the number of faces introduced. However, this was not the case here.

Besides, the reduction in the number of extreme points in the Hull Relaxation

Reformulation was also observed in all tests we conducted that are not reported

in this thesis.

Another interesting fact is the integer extreme points. The Hull Relaxa-

tion Reformulation has exactly the same integer points as the Inventory Ba-

lance Reformulation, i.e., 15 integer extreme points, illustrating that in this

example 98 fractional extreme points were cut off from the Inventory Refor-

mulation and no integer extreme points were added by making use of a tighter

formulation.

6.5 Computational Study

To evaluate the effectiveness of each formulation, we implemented them

in Visual C++ on Windows using ILOG Concert Technology and solved

them using CPLEX 11.0 [Ilo07] with default parameters as provided by the

Vendor, and where the presolve was used in all cases. All instances were

run on a personal computer Pentium 4 3.2GHz and 4Gb of RAM. The first

implementation is the initial formulation and we refer to it in this work

as InitModel. The second implementation is the one using the inventory

balance reformulation presented in section 6.2(b), and it is named InvRef.

The third implementation corresponds to the model applying the tighter

reformulations for the platforms/terminals submodels with one and two classes

of tankers. Basically, this last implementation checks if the platforms and/or

the terminals have one or two classes of tankers associated to them and

generates automatically the best reformulation for that submodel. This last

implementation is referred to as HullRel.

We randomly generated 75 instances consisting of 9 platforms, 2 termi-

nals and up to 5 classes of tankers. For the sake of simplification, we assume

that all platforms produce crude oils with approximately the same quality,

allowing us to satisfy the demand of a crude oil with another one. This simpli-

fication is a fact that occur in real world practice and allows us to aggregate

the inventories at terminals as well as the refineries demand. The objective in

all instances is to minimize the transportation cost over a horizon of 30 days. In

the first 25 instances, we consider just one class of tanker for all platforms. In

these cases, we attempt to solve the instances to optimality, i.e., 0% optimality
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gap. In the instances from 26 to 50, each platform has also one class of tanker.

However, they can be different from platform to platform. This implies that

the reformulations presented in sections 6.3 and 6.4 cannot be applied to the

terminals since, in general, they will be supplied by more than two classes of

tankers. For these instances, we set a 0.1% optimality gap since they are harder

to solve and we want to further evidence the differences between formulations.

Finally, for instances numbered from 51 to 75, the platforms can ship crude

oil to the terminals with two different classes of tankers. These are the hardest

instances, and as none of the models could solve them to optimality for a time

limit of 20 minutes, we set a 1% optimality gap to accept the best solution as

optimal. Data for all instances are available from the authors upon request.

Table 6.2: Comparison of LP relaxation

instance
Best InitModel & InvRef HullRel gap2

gap1
(%)

Solution LP value abs gap1 gap1 LP value abs gap2 gap2

1 66880 65687 1193 1.8 66474 406 0.6 33.3

2 78672 77351.1 1320.9 1.7 78505.1 166.9 0.2 11.8

3 167200 165210 1990 1.2 167200 0 0.0 0.0

4 102376 100491 1885 1.8 101590 786 0.8 44.4

5 152760 151009 1751 1.1 151840 920 0.6 54.5

6 117920 113614 4306 3.7 116294 1626 1.4 37.8

7 123280 120234 3046 2.5 122717 563 0.5 20.0

8 226480 221116 5364 2.4 225199 1281 0.6 25.0

9 187740 182883 4857 2.6 186727 1013 0.5 19.2

10 282472 278470 4002 1.4 281400 1072 0.4 28.6

11 108770 105894 2876 2.6 107630 1140 1.0 38.5

12 104880 103300 1580 1.5 104220 660 0.6 40.0

13 100426 99003.1 1422.9 1.4 99561.8 864.2 0.9 64.3

14 67646 66528.5 1117.5 1.7 67020.2 625.8 0.9 52.9

15 117384 115830 1554 1.3 116750 634 0.5 38.5

16 143338 141841 1497 1.0 142824 514 0.4 40.0

17 178868 176753 2115 1.2 178868 0 0.0 0.0

18 227856 226753 1103 0.5 227004 852 0.4 80.0

19 117710 115438 2272 1.9 117069 641 0.5 26.3

20 118560 116800 1760 1.5 117600 960 0.8 53.3

21 112346 110066 2280 2.0 111527 819 0.7 35.0

22 51708 49825.1 1882.9 3.6 51376.1 331.9 0.6 16.7

23 70030 68495.3 1534.7 2.2 69784.2 245.8 0.4 18.2

24 96254 94659.7 1594.3 1.7 95874.1 379.9 0.4 23.5

25 108996 107840 1156 1.1 108721 275 0.3 27.3

26 55314 54165.3 1148.7 2.1 55071.6 242.4 0.4 19.0

27 83540 81541.3 1998.7 2.4 83406.3 133.7 0.2 8.3

28 148668 146703 1965 1.3 148668 0 0.0 0.0

29 98254 96970.1 1283.9 1.3 97968.6 285.4 0.3 23.1

30 133718 132906 812 0.6 133590 128 0.1 16.7

31 117384 114404 2980 2.5 116842 542 0.5 20.0

32 121042 120340 702 0.6 120767 275 0.2 33.3

33 298556 286628 11928 4.0 293247 5309 1.8 45.0

34 220736 218189 2547 1.2 220066 670 0.3 25.0

35 275380 271362 4018 1.5 274893 487 0.2 13.3

36 120286 119005 1281 1.1 119778 508 0.4 36.4

37 86296 85530.3 765.7 0.9 86156 140 0.2 22.2
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Table 6.2: (Continued)

instance
Best InitModel & InvRef HullRel gap2

gap1
(%)

Solution LP value abs gap1 gap1 LP value abs gap2 gap2

38 118084 117439 645 0.5 117979 105 0.1 20.0

39 67810 67238.3 571.7 0.8 67728.7 81.3 0.1 12.5

40 110058 108338 1720 1.6 109497 561 0.5 31.3

41 135022 133629 1393 1.0 134568 454 0.3 30.0

42 198060 196180 1880 0.9 197619 441 0.2 22.2

43 186144 183404 2740 1.5 185355 789 0.4 26.7

44 135900 133918 1982 1.5 135089 811 0.6 40.0

45 107044 106120 924 0.9 106756 288 0.3 33.3

46 121298 120009 1289 1.1 121003 295 0.2 18.2

47 79292 77516.3 1775.7 2.2 78594.2 697.8 0.9 40.9

48 107976 106622 1354 1.3 107886 90 0.1 7.7

49 144550 141641 2909 2.0 143592 958 0.7 35.0

50 102472 100036 2436 2.4 102285 187 0.2 8.3

51 50486 49323.5 1162.5 2.3 50168.6 317.4 0.6 26.1

52 67522 65812.9 1709.1 2.5 66981.7 540.3 0.8 31.6

53 123850 121625 2225.0 1.8 123136 714.0 0.6 32.1

54 82906 81053 1853 2.2 82077.4 828.6 1.0 45.5

55 117606 95789.1 21816.9 18.6 96834.4 20771.6 17.7 95.2

56 99018 75697 23321 23.6 77811.7 21206.3 21.4 90.7

57 89020 87313.2 1706.8 1.9 88508.1 511.9 0.6 31.6

58 205196 195439 9757 4.8 199831 5365 2.6 54.2

59 188028 175264 12764 6.8 180467 7561 4.0 58.8

60 200524 193213 7311.0 3.6 197915 2609.0 1.3 35.7

61 93886 91788.6 2097.4 2.2 93305.8 580.2 0.6 27.3

62 65870 63683.4 2186.6 3.3 65257.1 612.9 0.9 27.3

63 75904 74329.6 1574.4 2.1 75145.2 758.8 1.0 47.6

64 53158 52116.8 1041.2 2.0 52877.2 280.8 0.5 25.0

65 80162 77877.3 2284.7 2.9 79208.7 953.3 1.2 41.4

66 115182 112243 2939.0 2.6 113996 1186.0 1.0 40.4

67 176536 172571 3965 2.2 176117 419 0.2 9.1

68 170230 160974 9256 5.4 164380 5850 3.4 63.0

69 101072 99192.9 1879.1 1.9 100861 211 0.2 10.5

70 72762 68900.2 3861.8 5.3 71483.9 1278.1 1.8 34.0

71 99322 97787.3 1534.7 1.5 98664.7 657.3 0.7 46.7

72 54724 53430.3 1293.7 2.4 54223.9 500.1 0.9 37.5

73 65418 63027.6 2390.4 3.7 64860.1 557.9 0.9 24.3

74 81666 80187 1479.0 1.8 81009 657.0 0.8 44.4

75 139990 137795 2195 1.6 138953 1037 0.7 43.8
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Table 6.3: Results for one class of tanker for all platforms and terminals

instance bin. var.
InitModel InvRef HullRel

constr. cont. var. Best Obj. time(s) constr. Best Obj. time(s) constr. Best Obj. time(s)
1 360 330 341 66880 720.00 660 66880 0.08 660 66880 0.08
2 360 330 341 78672 720.00 660 78672 0.09 660 78672 0.09
3 540 330 341 167200 720.00 660 167200 0.09 660 167200 0.09
4 330 330 341 – 720.00 660 102376 0.09 660 102376 0.09
5 540 330 341 – 720.00 660 152760 0.14 660 152760 0.13
6 540 330 341 – 720.00 660 117920 0.13 660 117920 0.11
7 450 330 341 123280 720.00 660 123280 0.11 660 123280 0.09
8 540 330 341 – 720.00 660 226480 0.13 660 226480 0.13
9 480 330 341 – 720.00 660 187740 0.14 660 187740 0.14
10 540 330 341 282472 720.00 660 282472 0.13 660 282472 0.13
11 480 330 341 – 720.00 660 108770 0.11 660 108770 0.11
12 510 330 341 – 720.00 660 104880 0.11 660 104880 0.11
13 480 330 341 – 720.00 660 100426 0.13 660 100426 0.11
14 450 330 341 67646 720.00 660 67646 0.11 660 67646 0.11
15 510 330 341 117652 720.00 660 117384 0.11 660 117384 0.09
16 540 330 341 143338 720.00 660 143338 0.13 660 143338 0.11
17 480 330 341 – 720.00 660 178868 0.13 660 178868 0.11
18 480 330 341 – 720.00 660 227856 0.11 660 227856 0.09
19 450 330 341 117710 720.00 660 117710 0.13 660 117710 0.13
20 540 330 341 118560 720.00 660 118560 0.11 660 118560 0.11
21 510 330 341 – 720.00 660 112346 0.14 660 112346 0.14
22 390 330 341 – 720.00 660 51708 0.11 660 51708 0.11
23 360 330 341 – 720.00 660 70030 0.09 660 70030 0.09
24 540 330 341 96254 720.00 660 96254 0.13 660 96254 0.11
25 480 330 341 108996 720.00 660 108996 0.13 660 108996 0.11

Table 6.4: Results for one class of tanker for each platform, however it can
be different from platform to platform

instance bin. var.
InitModel InvRef HullRel

constr. cont. var. Best Obj. time(s) constr. Best Obj. time(s) constr. Best Obj. time(s)
26 360 330 341 55314 720.00 660 55314 1.06 660 55314 1.02
27 360 330 341 83540 720.00 660 83540 0.13 660 83540 0.13
28 540 330 341 148668 720.00 660 148668 0.16 660 148668 0.16
29 480 330 341 98254 720.00 660 98254 720.00 660 98254 720.00
30 540 330 341 – 720.00 660 133718 33.09 660 133718 33.03
31 600 330 341 – 720.00 660 117384 3.08 660 117384 3.08
32 540 330 341 121042 720.00 660 121042 720.00 660 121042 720.00
33 540 330 341 – 720.00 660 298556 720.00 660 298556 720.00
34 480 330 341 220736 720.00 660 220736 2.45 660 220736 2.44
35 510 330 341 275380 720.00 660 275380 720.00 660 275380 720.00
36 480 330 341 120286 720.00 660 120286 720.00 660 120286 720.00
37 510 330 341 86296 720.00 660 86296 1.70 660 86296 1.67
38 480 330 341 118084 720.00 660 118084 0.69 660 118084 0.69
39 450 330 341 67810 720.00 660 67810 1.13 660 67810 1.13
40 510 330 341 110088 720.00 660 110058 720.00 660 110058 720.00
41 540 330 341 – 720.00 660 135022 0.91 660 135022 0.88
42 480 330 341 – 720.00 660 198060 2.22 660 198060 2.19
43 540 330 341 186144 720.00 660 186144 720.00 660 186144 720.00
44 450 330 341 135900 720.00 660 135900 1.61 660 135900 1.58
45 540 330 341 107044 720.00 660 107044 2.16 660 107044 2.09
46 480 330 341 121616 720.00 660 121298 720.00 660 121298 720.00
47 390 330 341 79292 720.00 660 79292 720.00 660 79292 720.00
48 540 330 341 107976 720.00 660 107976 1.83 660 107976 1.80
49 450 330 341 146054 720.00 660 144550 720.00 660 144550 720.00
50 540 330 341 102472 720.00 660 102472 1.86 660 102472 1.86
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Table 6.5: Results for two classes of tankers

instance bin. var.
InitModel InvRef HullRel

constr. cont. var. Best Obj. time(s) constr. Best Obj. time(s) constr. Best Obj. time(s)
51 720 330 341 50486 720.00 660 50486 2.89 1023 50486 1.24
52 720 330 341 68026 720.00 660 67586 1.69 1294 67522 1.58
53 720 330 341 – 720.00 660 124186 4.28 1427 123850 2.13
54 660 330 341 – 720.00 660 82906 145.67 1287 83184 5.13
55 1080 330 341 – 720.00 660 120692 720.00 1410 117606 720.00
56 1140 330 341 – 720.00 660 115428 720.00 1267 99018 720.00
57 900 330 341 89580 663.80 660 89100 1.73 1283 89020 1.55
58 1080 330 341 – 720.00 660 205612 720.00 1400 205196 156.53
59 960 330 341 – 720.00 660 188724 31.56 1264 188028 3.53
60 900 330 341 – 720.00 660 200524 134.39 1337 200732 31.64
61 960 330 341 – 720.00 660 93886 35.72 1388 94136 5.00
62 1020 330 341 – 720.00 660 65870 260.78 1082 66038 28.95
63 960 330 341 – 720.00 660 76144 12.00 1228 75904 9.63
64 900 330 341 53158 23.89 660 53344 1.42 1047 53314 1.06
65 1020 330 341 – 720.00 660 80162 20.88 1304 80216 4.53
66 960 330 341 – 720.00 660 115348 33.09 1459 115182 15.74
67 870 330 341 – 720.00 660 176536 8.89 1446 176760 1.20
68 960 330 341 – 720.00 660 171290 43.16 1399 170230 16.64
69 900 330 341 102778 720.00 660 101072 1.44 1365 101594 1.39
70 1080 330 341 – 720.00 660 72762 49.27 1268 72762 6.94
71 960 330 341 99370 338.53 660 99322 2.59 1365 99628 1.09
72 780 330 341 54844 720.00 660 54724 5.59 1061 54724 3.22
73 720 330 341 – 720.00 660 65418 37.34 1087 65440 4.38
74 1080 330 341 – 720.00 660 81666 22.49 1305 81678 6.30
75 960 330 341 140226 656.83 660 140218 20.69 1475 139990 8.98

(a) Discussion of Results

Table 6.2 shows a comparison for the LP relaxation at the root node of

the search tree against the best known solution for each instance. First, as

mentioned previously, the relaxation of the InvRef reformulation is exactly

the same as the InitModel formulation. Second, the initial gaps for all

formulations are surprisingly small. In fact, looking at the objective function

of the problem, i.e., minimization of the transportation costs, we should expect

this to happen since a relaxation solution that uses a fraction of a tanker in

different times summing up to one, has the same cost of an integer solution

using an entire tanker at some point in time. We believe that the initial gaps for

instances 55 and 56 are large, not due to the linear relaxation value, but because

the best known solutions are likely to be far from the optimum. This brings up

an important theoretical question on how to compare different formulations

of a given problem since the initial gap can be made as small or as big as

one wants just by changing the objective function. In this work we adopt the

relation between gaps of formulations. In this case, we see that the HullRel

is on average three times better than the other two formulations.

Regarding the solution results in Tables 6.3, 6.4 and 6.5, the differences

between the InitModel and the reformulations InvRef and HullRel are

much more pronounced. With the InitModel, feasible solutions were found in

41 out of 75 instances, while with both reformulations InvRef and HullRel,

feasible solutions were found in all instances confirming the importance of a

good formulation to finding feasible solutions to a problem. Concerning the
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structural differences of formulations, we notice that the number of binary

variables are the same for all models and the continuous variables are not

present in the InvRef and HullRel. Besides, the number of constraints for

the InvRef is twice the number for the InitModel, whereas the number of

constraints for the HullRel compared to the InitModel is at least twice

as large depending on the number of classes of tankers that can offload the

platforms.

Tables 6.3 and 6.4 present the results for one class of tanker. As we

can see, even for the easiest instances in Table 6.3, the InitModel was only

capable of finding feasible solutions to 12 out of 25 instances, whereas the

InvRef and HullRel models were solved in all instances at the root node of

the Branch-and-Bound tree. We note that the instances in Table 6.4, where

the tankers can be different from platform to platform, are harder to solve.

Moreover, we cannot apply the convex hull reformulation to the terminals,

as mentioned earlier. In this case, although the InvRef and HullRel could

not close the 0.1% gap in 20 minutes time limit in all instances, they are by

far more efficient than the InitModel, solving 15 out of 25 instances. We

can observe the fact that for one class of tanker, i.e., instances 1 to 50, the

results for InvRef and HullRel are identical. This was expected because the

coefficient reduction algorithm applied by CPLEX during the presolve steps

turns the InvRef precisely into the reformulation presented in section 6.3.

Table 6.5 shows results for two classes of tankers for different formu-

lations. One interesting remark is that with a time limit of 20 minutes, the

InitModel was only solved in 4 out of 25 instances, while the InvRef was

solved in 22 out of 25 instances and the HullRel was solved in 23 instances.

Regarding the computation time, we verify that although the HullRel is the

largest reformulation in terms of number of constraints, it is also the fastest

one, showing that it pays off having a tighter formulation in order to expedite

the solution of the problem. On average, the HullRel is 4.7 times faster than

the InvRef for instances with two classes of tankers.

From these results, we can safely assert the following conclusions:

– The reformulations InvRef and HullRel are by far superior to the

InitModel if one is to solve problems with the characteristics of the one

presented in this chapter, i.e., full load capacity transportation policy.

– For subsets of constraints, where the two classes of tankers assumption

holds, the HullRel is the reformulation of choice due to its computatio-

nal efficiency.
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6.6 Conclusions

In this chapter we have presented and tested reformulations to a sub-

problem of the petroleum supply planning problem that arises frequently in

petroleum supply chain models. Through an inventory reformulation, the spe-

cial structure of Cascading Knapsack Inequalities, hidden in the Initial For-

mulation, was identified. This allowed us to use an off-the-shelf MIP solver to

solve instances that were out of reach with the Initial Model. Furthermore,

capitalizing on this special structure, we have proposed tighter reformulations

for some special cases of this problem, reducing further the solution times for

a large number of instances. Finally, we have pointed out that although we

have nowadays sophisticated MIP solvers capable of solving problems never

envisaged before, it is still paramount for the users of MIP solvers to have an

understanding not only on the modeling but also on how the MIP solvers work

if they are to approach more challenging problems.
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