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On the Solution of the Petroleum Sup-
ply Planning

7.1 Summary

In this chapter we describe how we solve the petroleum supply planning

problem. Apart from using the results from Chapters 5 and 6, we present others

basic developments that contribute to speed up its solution time. We show all

the reformulations we have made to solve this problem, even though some of

them have already been presented in previous chapters.

This chapter sums up all the contributions presented in this thesis, since

everything that we developed in the course of this work had the solution of the

petroleum supply planning problem as our primary goal. In fact, all previous

chapters paved the way for the solution of this important problem and also

helped us to bridge the gap from the theory to the real application.

Finally, in this chapter we stress the importance of first understanding

the problem at hand, and second not only looking at practical problems in

a holistic way, but examine them in detail in order to identify structures and

subproblems that can be studied to find better formulations and/or algorithms

to solve them.
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7.2 Inventory Balance Reformulation at Pro-

duction Sites

As one may appreciate, it is not obvious what can be done with the

inventory balance inequalities at the production sites in order to strengthen

the LP relaxation of the overall model presented in Chapter 3. However, as

shown in Chapter 6, if we express the inventory at the production sites in an

accumulated way, the following inequalities are obtained:

spp,t = ISPp +
t−1
∑

τ=0

Pp,τ −

t−1
∑

τ=0

∑

cl∈CL

∑

z∈Z

CAPTcl · bpp,cl,z,τ (7.1)

∀p ∈ P, t ∈ T

Where ISPp is the initial inventory at platform p

But the inventory variables at the production sites must be greater than or

equal to zero. Thus,

ISPp +
t−1
∑

τ=0

Pp,τ −

t−1
∑

τ=0

∑

cl∈CL

∑

z∈Z

CAPTcl · bpp,cl,z,τ ≥ 0 ∀p ∈ P, t ∈ T (7.2)

Or,

t−1
∑

τ=0

∑

cl∈CL

∑

z∈Z

CAPTcl · bpp,cl,z,τ ≤ ISPp +
t−1
∑

τ=0

Pp,τ ∀p ∈ P, t ∈ T (7.3)

Furthermore, the inventory variables at the production sites must also be less

than or equal to their maximum storage capacities. Hence,

ISPp +
t−1
∑

τ=0

Pp,τ −

t−1
∑

τ=0

∑

cl∈CL

∑

z∈Z

CAPTcl · bpp,cl,z,τ ≤MSPp (7.4)

∀p ∈ P, t ∈ T

Or,

t−1
∑

τ=0

∑

cl∈CL

∑

z∈Z

CAPTcl · bpp,cl,z,τ ≥ ISPp +
t−1
∑

τ=0

Pp,τ −MSPp (7.5)

∀p ∈ P, t ∈ T
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Although the LP relaxation of our reformulation remains the same, there

is an advantage in using it. As pointed out in Chapter 6, these new inequa-

lities possess an interesting structure that defines cascading sets of knapsack

inequalities which can be reinforced through associated Lifted Minimum Cover

Inequalities (see [Gu98]). Indeed, this is automatically done in most commercial

MILP solvers. To the best of our knowledge, the only work in the literature that

has reported this idea before was the one from Liberatore and Miller [Lib85],

where they presented a model for the production planning of a tile company.

However, at that time they could not take advantage of the algorithms for

presolving and generating cuts that we have at hand nowadays.

7.3 Valid Inequalities

The majority of binary variables used to model the petroleum supply

planning problem are associated with the offloading of platforms and this is

the weakest part of our model due to the economies of scale. Since the cost

per volume decreases as the tanker capacities increase, the linear relaxation

tends to use a fraction of a possible larger tanker available instead of trying a

smaller tanker or an entire larger tanker. Considering the importance of this

subproblem, we will present some inequalities that can tighten the problem

formulation and help to speed up the solution process.

In order to tackle this problem and make our presentation clearer, we

consider a platform p with the following characteristics:

- Set of classes of tankers that can offload the platform: cl1, cl2, cl3

- Capacity of each class of tanker that can offload the platform, in

increasing order: CAPTcl1, CAPTcl2, CAPTcl3

- Set of terminals that the platform can ship crude oil to: z1, z2, z3

Given the information above, it is easy to derive lower and upper bounds

for the number of tankers that can offload platform p during a given time

period. The upper bound can be obtained by the number of times platform p

can completely load the smallest tanker until a given time t. Neglecting the

offloadings, the total accumulated inventory at a given time t at platform p

can then be calculated as:

spp,t = ISPp +
t−1
∑

τ=0

Pp,τ

And hence, an upper bound on the number of tankers that can offload platform

p can be calculated as:
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UBp =

⌊

ISPp +
∑t−1

τ=0
Pp,τ

CAPTcl1

⌋

Following the same reasoning, a lower bound on the number of offloadings

can be obtained by the minimum number of times tankers need to visit

platform p. This is calculated considering that always the largest tanker allowed

to operate in platform p is used and that the platform is offloaded only when

its inventory reaches its maximum storage capacity. A procedure to calculate

the lower bound on the number of tankers used to offload platform p is shown

by Algorithm 5.

Algorithm 5 Lower Bound on number of tankers

spp,0 = ISPp

θ = 0
LBp,θ = 0
for t = 1 to T do
spp,t = spp,t−1 + Pp,t−1

if spp,t ≥MSPp then
LBp,θ+1 = LBp,θ + 1
θ = θ + 1
spp,t = spp,t − CAPTcl3

end if
end for
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Figures 7.1 and 7.2 show more clearly how the lower and upper bounds

are determined.

Figure 7.1: Representation of the algorithm to obtain the upper bound on
the number of tankers that can visit a platform p

Figure 7.2: Representation of the algorithm to obtain the lower bound on
the number of tankers that can visit a platform p
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In algorithmic terms, these valid inequalities can be implemented through

the pseudo-code given by Algorithms 6 and 7.

Algorithm 6 Pseudo-code for generating valid inequalities for the maximum
number of tankers that can offload a given platform p

for p = 1 to P do
θ = 0
UBp,θ = 0
spp,0 = ISPp

if spp,0 ≥ CAPTcl1 then
UBp,θ = UBp,θ + 1
spp,0 = spp,0 − CAPTcl1

end if
for t = 1 to T do
spp,t = spp,t−1 + Pp,t−1

if spp,t ≥ CAPTcl1 then
Insert

(
∑t−1

τ=0

∑

cl∈CL

∑

z∈Z bpp,cl,z,τ ≤ UBp,θ

)

UBp,θ+1 = UBp,θ + 1
θ = θ + 1
spp,t = spp,t − CAPTcl1

end if
end for

end for
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Algorithm 7 Pseudo-code for generating valid inequalities for the minimum
number of tankers that can offload a given platform p

for p = 1 to P do
θ = 0
LBp,θ = 0
spp,0 = ISPp

for t = 1 to T do
spp,t = spp,t−1 + Pp,t−1

if spp,t ≥MSPp then
LBp,θ+1 = LBp,θ + 1
θ = θ + 1
Insert

(
∑t−1

τ=0

∑

cl∈CL

∑

z∈Z bpp,cl,z,τ ≥ LBp,θ

)

spp,t = spp,t − CAPTcl3

end if
end for

end for

(a) Example

In the example below we show that the cuts presented in this subsection

can be obtained by the Chvátal procedure for tightening formulations, and

that they correspond to rank 1 Chvátal inequalities [Chv73].

Consider the following data,

Platform production: 5× 103m3/day

Maximum platform’s storage capacity: 40× 103m3

Classes of tankers:

{

cl1 − capacity : 20× 103m3

cl2 − capacity : 30× 103m3

Set of terminals: z1 and z2

The reformulated inventory balance constraints, according to inequality (7.3)

are given by
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20bpp,cl1,z1,0 + 20bpp,cl1,z2,0 + 30bpp,cl2,z1,0 + 30bpp,cl2,z2,0 ≤ 15 (C1)

20bpp,cl1,z1,0 + 20bpp,cl1,z2,0 + 30bpp,cl2,z1,0 + 30bpp,cl2,z2,0+

+ 20bpp,cl1,z1,1 + 20bpp,cl1,z2,1 + 30bpp,cl2,z1,1 + 30bpp,cl2,z2,1 ≤ 20 (C2)

20bpp,cl1,z1,0 + 20bpp,cl1,z2,0 + 30bpp,cl2,z1,0 + 30bpp,cl2,z2,0+

+ 20bpp,cl1,z1,1 + 20bpp,cl1,z2,1 + 30bpp,cl2,z1,1 + 30bpp,cl2,z2,1+

+ 20bpp,cl1,z1,2 + 20bpp,cl1,z2,2 + 30bpp,cl2,z1,2 + 30bpp,cl2,z2,2 ≤ 25 (C3)

20bpp,cl1,z1,0 + 20bpp,cl1,z2,0 + 30bpp,cl2,z1,0 + 30bpp,cl2,z2,0+

+ 20bpp,cl1,z1,1 + 20bpp,cl1,z2,1 + 30bpp,cl2,z1,1 + 30bpp,cl2,z2,1+

+ 20bpp,cl1,z1,2 + 20bpp,cl1,z2,2 + 30bpp,cl2,z1,2 + 30bpp,cl2,z2,2+

+ 20bpp,cl1,z1,3 + 20bpp,cl1,z2,3 + 30bpp,cl2,z1,3 + 30bpp,cl2,z2,3 ≤ 30 (C4)

20bpp,cl1,z1,0 + 20bpp,cl1,z2,0 + 30bpp,cl2,z1,0 + 30bpp,cl2,z2,0+

+ 20bpp,cl1,z1,1 + 20bpp,cl1,z2,1 + 30bpp,cl2,z1,1 + 30bpp,cl2,z2,1+

+ 20bpp,cl1,z1,2 + 20bpp,cl1,z2,2 + 30bpp,cl2,z1,2 + 30bpp,cl2,z2,2+

+ 20bpp,cl1,z1,3 + 20bpp,cl1,z2,3 + 30bpp,cl2,z1,3 + 30bpp,cl2,z2,3+

+ 20bpp,cl1,z1,4 + 20bpp,cl1,z2,4 + 30bpp,cl2,z1,4 + 30bpp,cl2,z2,4 ≤ 35 (C5)

...

Using Algorithm 6, the cuts for the maximum number of offloadings are given

by,

bpp,cl1,z1,0 + bpp,cl1,z2,0 + bpp,cl2,z1,0 + bpp,cl2,z2,0 ≤ 0 (U1)

bpp,cl1,z1,0 + bpp,cl1,z2,0 + bpp,cl2,z1,0 + bpp,cl2,z2,0+

+ bpp,cl1,z1,1 + bpp,cl1,z2,1 + bpp,cl2,z1,1 + bpp,cl2,z2,1+

+ bpp,cl1,z1,2 + bpp,cl1,z2,2 + bpp,cl2,z1,2 + bpp,cl2,z2,2+

+ bpp,cl1,z1,3 + bpp,cl1,z2,3 + bpp,cl2,z1,3 + bpp,cl2,z2,3+

+ bpp,cl1,z1,4 + bpp,cl1,z2,4 + bpp,cl2,z1,4 + bpp,cl2,z2,4 ≤ 1 (U2)

...

We should notice that,

U1 =

⌊

1

20
C1

⌋

This shows that inequality U1 could also be obtained by applying the

Chvátal procedure with µ1 = 1/20 for inequalities (C1) and µi = 0 for all
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inequalities (Ci) such that i 6= 1. The same can be shown with (U2),

U2 =

⌊

1

20
C5

⌋

This reasoning could also be followed for showing the same results in the

case of cuts for the minimum numbers of offloadings.

One could argue that this procedure with these coefficients could be

applied to all inequalities of the reformulation. However, it is easy to show

that only for some inequalities the Chvátal procedure with these multipliers

can effectively tighten the reformulation. Our procedure to generate valid cuts

works as if the Chvátal procedure with the given multipliers is applied only to

the best inequalities to tighten the reformulation.

7.4 Extended formulation

Rocha [Roc04] and Rocha et al. [Roc09] showed that the petroleum

supply planning problem becomes easier if the classes of tankers to be used and

the offloading times are known a priori for each platform. The basic idea of the

extended formulation is to capitalize on this finding and impose a hierarchy in

the decision variables associated with the platforms offloadings. In the model

from Chapter 3, the variables bpp,cl,z,t define, besides the class of tanker and

the offloading time, the terminal to where the petroleum p will be shipped to.

We propose to split this variable into two, where the new variables bshipp,cl,t

will be in charge of defining the offloading of the production sites, and the

original variables bpp,cl,z,t will simply be used to determine the terminal where

to send this shipment. Moreover we branch first on the bshipp,cl,t variables by

giving them higher priority in the Branch-and-Bound algorithm. The Figure

7.3 clarifies the idea and shows the relation between the variables.
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Figure 7.3: Basic idea of the extended formulation

7.5 Decomposition Algorithm

The decomposition algorithm presented in Chapter 5 was originally pro-

posed to solve the petroleum supply planning problem. As pointed out earlier,

this problem can be faced as several offloading platform subproblems and a

refinery supply master problem (see Figure 7.4), where the challenge is to re-

concile the demands of the refineries with the schedule of platforms offloadings.

The application of this algorithm to this problem brings up an interesting eco-

nomic interpretation of the petroleum supply process. Everything happens as

if the refineries could ask for the best shipment schedules that fit best their

market demands for final products and the platforms would verify whether this

planning is feasible. In case the refineries proposals are infeasible, each platform

has to explain the reasons of its infeasibility, sending back this information to

the refineries through one or more constraints.

The model considered in the decomposition algorithm is the extended

formulation. Furthermore, we use the improved idea of the decomposition al-

gorithm where the local branching in the repairing MIP infeasibility procedure

is only applied to the variables bship. The master problem is not solved to op-

timality at any time. Also, we start setting the integrality gap parameter to a

larger value and we dynamically decrease it based on the progress of the lower

bound as the algorithm proceeds. To check the feasibility of the subproblems

we developed our own algorithm since the subproblems are fairly easy, and in

this way, we can further expedite this process.
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Figure 7.4: Decomposition Scheme

7.6 Computational Results

Experiments were conducted on a Pentium Xeon 3.2GHz 2.0Gb of RAM

and the code was implemented in C++ using the Concert Technology Library

and compiled on Visual Studio 2008 under a Windows Platform. All models

were solved using CPLEX 11.0. Our models and algorithm were tested on real

instances of the problem involving roughly 20 platforms/crude oils, 7 different

classes of tankers, 8 maritime terminals, 11 refineries, and 20 distillation units

over a time horizon of 72 days. The typical instance gives rise to a model

with approximately 40,000 binary variables, 45,000 continuous variables, and

32,000 constraints. We have tested and implemented the following models and

algorithm:

- InitModel: Initial model as described in Chapter 3

- InvRef : Inventory balance reformulation inequalities substituted for the

original inventory balance constraints in the initial model

- CutInvRef : InvRef model with the addition of valid inequalities from

section 7.3

- ExtModel: CutInvRef model reformulated with the extended formu-

lation idea presented in section 7.4

- Decomp: ExtModel solved using the decomposition algorithm and

repairing MIP infeasibility from Chapter 5
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- HullRef : ExtModel reformulated using the results from Chapter 6.

This reformulation is only used for the cases where the number of classes

of tankers offloading platforms is less than three.

The parameters used in all tests are the default from the CPLEX

software, except for the relative gap and time limit that are set to 5%

and 2 hours, respectively. These values were chosen following a tradeoff

between solution quality and computational time. We believe that 2 hours

is a reasonable time for the user to wait to get a solution with a gap at least

5% from the optimum, which is a fairly good solution. Additionally, for the

ExtModel model, we have adopted a branching rule that considers the bship

variables with higher priority, setting first to one the variables related to an

earlier time. To compare the models we use ten real instances for three different

scenarios, namely, scenario 1 where more than two classes of tankers can offload

the platforms, scenario 2 where exactly two classes of tankers can offload the

platforms, and finally, scenario 3 where only one class of tanker can offload

the platforms. Apart from this difference, all the other data for instances in

different scenarios are exactly the same, for instance, all data for instances 01,

11 and 21 are equal except for the number of classes of tankers that can offload

the platforms.

Table 7.1: Comparison of linear relaxations for more than two classes of
tankers

instance
Best known InitModel/InvRef CutInvRef/extModel
solution LP Sol. gap LP Sol. gap

01 34543.9 31132.8 9.9 31881.0 7.7
02 62385.0 55663.0 10.8 57123.1 8.4
03 63646.9 57907.9 9.0 59011.5 7.3
04 53734.3 49288.0 8.3 50493.2 6.0
05 48568.5 45614.2 6.1 46384.3 4.5
06 35546.3 32903.4 7.4 33516.9 5.7
07 83125.9 76430.7 8.1 77665.8 6.6
08 63426.7 60150.4 5.2 61355.3 3.3
09 78955.2 72730.8 7.9 73984.4 6.3
10 20723.6 18698.6 9.8 19072.2 8.0
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Table 7.2: Comparison of linear relaxations for two classes of tankers

instance
Best known InitModel/InvRef CutInvRef/extModel HullRel
solution LP Sol. gap LP Sol. gap LP Sol. gap

11 36485.0 33689.8 7.7 34502.3 5.4 35257.0 3.4
12 65157.4 60602.1 7.0 61422.8 5.7 63081.6 3.2
13 66582.7 61523.9 7.6 62649.0 5.9 64187.4 3.6
14 58297 54414.4 6.7 55535.5 4.7 56367.1 3.3
15 53900.3 46656.6 13.4 48057.5 10.8 48501.3 10.0
16 39449.0 36452.6 7.6 37779.5 4.2 38344.1 2.8
17 91180.0 85110.0 6.7 86326.1 5.3 88039.0 3.4
18 75885.6 72053.1 5.1 73667.6 2.9 74395.5 2.0
19 92853.8 86246.9 7.1 88079.8 5.1 89698.0 3.4
20 25435.1 23966.4 5.8 24668.5 3.0 25082.7 1.4

Table 7.3: Comparison of linear relaxations for one class of tanker

instance
Best Known InitModel/InvRef CutInvRef/extModel HullRel
solution LP Sol. gap LP Sol. gap LP Sol. gap

21 40294.3 38032.2 5.6 39908.9 1.0 39909.5 1.0
22 71681.9 68209.7 4.8 71359.1 0.5 71359.9 0.4
23 72991.1 69148.9 5.3 72673.1 0.4 72747.3 0.3
24 64117.8 60856.2 5.1 63526.8 0.9 63600.7 0.8
25 59009.9 56538.4 4.2 58577.8 0.7 58607.1 0.7
26 46021.5 43462.1 5.6 45600.1 0.9 45637.5 0.8
27 101568.0 95531.6 5.9 99892.9 1.6 100008.0 1.5
28 89145.3 85296.0 4.3 88597.3 0.6 88599.1 0.6
29 103484.0 97020.7 6.2 101830.0 1.6 101963.0 1.5
30 28365.0 26802.4 5.5 28083.2 1.0 28083.2 1.0

Tables 7.1, 7.2 and 7.3 present a comparison of the linear relaxation

for the different proposed models. As we can see, the InitModel and the

InvRef have the same linear relaxation as explained before. The same happens

with the CutInvRef and the extModel since the latter is the former with a

disaggregation of variables. The valid inequalities in the CutInvRef, though

simple, are effective to close the gap of the InitModel. On average the initial

gap for the CutInvRef formulation is 45% smaller than the InitModel. The

HullRel formulation is the tighest model for instances where the number

of classes of tankers available to offoad the platforms is less than three. In

particular, for instance with exactly two classes of tankers to offload the

platforms, the initial gap for the HullRel formulation is 54% and 34% smaller

than the InitModel and the CutInvRef/extModel, respectively. Another

interesting point to observe is the fact that for instances with one class of

tanker to offload the platforms, the CutInvRef/extModel formulations are

approximately equivalent to the HullRel as supported by their initial gaps.

The tigheness of the CutInvRef/extModel and the HullRel are in great

part responsible for the speedup that we achieve solving the petroleum supply

planning problem as reported in the sequel.
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Table 7.4: Comparison of all different models for more than two classes of
tankers

instance
InitModel InvRef CutInvRef extModel

Solution Time(s) Solution Time(s) Solution Time(s) Solution Time(s)

01 34543.9 7200* 34621.5 6530 34826.0 6661 34873.7 6541
02 62385.0 7200* 62453.1 6579 62057.6 6549 62981.4 6610
03 63834.1 6899 63646.9 4156 64815.0 6547 64308.0 1945
04 55836.8 7200* 53734.3 6521 53973.6 6699 54460.0 996
05 48568.5 6997 49194.8 4397 49297.8 2747 48766.5 1385
06 35546.3 7200* 35778.9 1782 35765.0 832 35839.8 6502
07 83125.9 6654 84406.0 6520 84596.6 6778 84291.8 6532
08 63629.5 7006 63426.7 4751 64467.8 1296 64494.0 528
09 78955.2 6927 79537.7 6698 79434.4 2127 80395.2 5902
10 20930.2 7200* 20726.2 6718 20723.6 6964 20755.4 1602

* Reached the time limit without closing the 5 % gap

Table 7.5: Comparison of all different models for two classes of tankers

instance
InitModel InvRef CutInvRef extModel HullRel

Solution Time(s) Solution Time(s) Solution Time(s) Solution Time(s) Solution Time(s)
11 36749.2 6570 36966.7 4010 37077.1 1304 37008.8 168 36485.0 54
12 67206.6 7200* 66580.9 1217 667083.5 6600 65919.9 271 66582.7 66
13 67481.9 6497 67862.5 449 68079.3 1037 67955.8 252 66582.7 65
14 58674.7 6627 58297 5005 59087.3 6504 59104.4 888 58611.4 207
15 54463.1 7200* 53966.2 368 53900.3 371 54182.4 281 54232.2 107
16 39673.5 7200* 39449.0 725 40000.2 3287 40318.3 466 40175.7 101
17 91813.1 6487 91587.4 603 92245.7 726 92693.9 713 91180.0 33
18 75885.6 318 76775.5 59 76929.8 69 76376.3 112 75974.3 23
19 93057.2 6645 94035.1 6489 94399.3 400 93932.9 337 92853.8 31
20 25435.1 7046 25810.2 359 25875.0 308 26035.8 226 26368.1 22

* Reached the time limit without closing the 5 % gap

Table 7.6: Comparison of all different models for one class of tanker

instance
InitModel InvRef CutInvRef ExtModel HullRel

Solution Time(s) Solution Time(s) Solution Time(s) Solution Time(s) Solution Time(s)
21 40858.6 6611 40294.3 9 41908.6 9 41329.7 8 41329.7 8
22 72941.5 5907 72514.0 10 71681.9 9 73067.4 7 73067.4 7
23 74206.6 892 72991.1 7 74182.9 8 73878.3 7 73878.3 7
24 64393.4 1252 64117.8 8 66274 5 64494.1 8 64494.1 8
25 59194.5 104 59511.5 4 59713.3 6 59009.9 11 59009.9 11
26 46028.1 774 46889.8 4 47854.7 5 46021.5 12 46021.5 12
27 101919.0 793 101568.0 5 105058.0 6 103145.0 6 103145.0 6
28 89444.1 102 91998.2 4 91615.3 4 89145.3 8 89145.3 8
29 103484.0 6556 106180.0 5 104555.0 7 103364.0 10 103364 9
30 28365.0 6798 29040.1 9 29285.4 6 28390.3 10 28390.3 10
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Tables 7.4, 7.5 and 7.6 compare the different models in regard to the

computational time to solve the instances for different scenarios. From these

results we can draw the following conclusions:

• More than two classes of tankers - The ExtModel is the fastest

option for almost all instances, while the initModel formulation is the

slowest alternative to solve the problem. In fact, this last formulation

could only close the 5% gap for 5 out of 10 instances. It is impressive

to see that such a practical simple idea implemented in the ExtModel

formulation can make such a big difference in the solution time to solve

this problem.

• Exactly two classes of tankers - In this situation, the model HullRel

is on average twice as fast as the second fastest solution alternative. The

figure is not so clear for the second solution option for this case. The only

model that is out of question to be considered as a solution alternative

is the InitModel as its solution time is always the worse.

• One class of tanker - Apart from the InitModel, all the other models

are a good alternative for the solution of these instances. This test shows

that for these instances all reformulations based on the InvRef model

do not pay off the price and we should stick to this last formulation

if we are to solve this problem for this scenario instances. It should be

noticed that the results for ExtModel andHullRel are exactly the same

since, as mentioned in Chapter 6, the coefficient reduction algorithm from

CPLEX turns the formulation ExtModel precisely into the HullRel.

We see that even for these much easier instances, the InitModel has

some difficult in closing the 5% gap in some instances.

• The number of classes of tankers that can offload the platforms plays

an important role in the complexity of this problem. Indeed, there is a

drastic reduction in the computational time to solve the problem for the

cases where the number of classes of tankers is less than three.
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Table 7.7: Comparison of the Best Formulation and the Novel Decomposition
for more than two classes of tankers

instance
Best Formulation Decomp

Model Solution Time(s) Solution Time(s)
01 InvRef 34621.5 6530 34917.0 543
02 CutInvRef 62057.6 6549 63653.7 6797
03 extModel 64308.0 1945 63989.4 548
04 extModel 54460.0 996 54206.7 1820
05 extModel 48766.5 1385 48611.3 844
06 CutInvRef 35765.0 832 35768.0 592
07 InvRef 84406.0 6520 85227.4 558
08 extModel 64494.0 528 64207.4 562
09 CutInvRef 79434.4 2127 80852.5 1300
10 extModel 20755.4 1602 21336.6 450

Table 7.8: Comparison of the Best Formulation and the Novel Decomposition
for two classes of tankers

instance
Best Formulation Decomp

Model Solution Time(s) Solution Time(s)
11 HullRel 36485.0 54 37249.7 543
12 HullRel 66582.7 66 65157.4 391
13 HullRel 66582.7 65 67983.1 1163
14 HullRel 58611.4 207 58775.5 339
15 HullRel 54232.2 107 54710.0 148
16 HullRel 40175.7 101 39941.6 312
17 HullRel 91180.0 33 93110.8 540
18 HullRel 75974.3 23 76527.0 210
19 HullRel 92853.8 31 93174.3 1108
20 HullRel 26368.1 22 26262.2 73

Table 7.9: Comparison of the Best Formulation and the Novel Decomposition
for one class of tanker

instance
Best Formulation Decomp

Model Best Solution Time(s) Solution Time(s)
21 ExtModel/HullRel 41329.7 8 40353.3 22
22 ExtModel/HullRel 73067.4 7 74243.2 58
23 InvRef/ExtModel/HullRel 72991.1 7 74347.4 16
24 CutInvRef 66274 5 64527.6 54
25 InvRef 59511.5 4 59982.9 12
26 InvRef 46889.8 4 47669.6 10
27 InvRef 101568.0 5 105114.0 8
28 InvRef/CutInvRef 91615.3 4 89347.5 10
29 InvRef 106180.0 5 106999 7
30 CutInvRef 29285.4 6 28906.5 11
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Tables 7.7, 7.8 and 7.9 compare the best formulation to the petroleum

supply planning problem and the novel decomposition algorithm with respect

to the computational time to solve the instances for different scenarios. As

one can see, the Decomp algorithm is better for the hardest instances, i.e.,

where platforms can be offloaded by more than two classes of tankers. For

all other instances that are not so hard to solve, the implementation of the

Decomp does not pay off in terms of computational time, since the proposed

reformulations proved to be very effective to solve these instances.

7.7 Conclusions

In this chapter we presented how we have solved the petroleum supply

planning problem. We showed the effectiveness of simple ideas based on

how this problem is tackled by the people in charge of this activity at

PETROBRAS. In particular, the extended formulation combined with the

branching priority on the offloading variables has proved to be a powerful

scheme to speed up the computation solution time to solve this problem. We

tested all theoretical developments we have made in the previous chapters,

which allowed us to establish the best solution option for different number of

classes of tankers to offload the platforms. We showed that for scenarios where

the number of classes of tankers is greater than two, the new decompostion

algorithm is the best way to go if one is to solve the petroleum supply planning

problem. For cases where the number of classes of tankers is equal to two,

the best solution option is to reformulate the problem using the convex hull

reformulation idea, while for instances with exactly one class of tanker the

InvRef formulation is the fastest alternative. It is interesting to observe that

in practice the petroleum supply planning specialists consider only one class of

tanker to offload each production site. Under this circumstance, the InvRef

formulation is able to solve our problem in less than one minute, while the

initial formulation takes almost two hours in most of the cases.
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