
7

Surfaces invariant by one-parameter group of parabolic isome-

tries having constant mean curvature in P̃SL2(R, τ)

On (3) Ricardo Sa Earp gave explicit formulas for parabolic and hyper-

bolic screw motions surfaces immersed in H2 × R. There, they gave several

examples.

In this chapter we only consider surfaces invariant by one-parameter

group of parabolic isometries having constant mean curvature immersed in

P̃ SL2(R, τ). Since for τ ≡ 0 we are in H2 × R then we have generalized the

result obtained by Ricardo Sa Earp when the surface is invariant by one-

parameter group of parabolic isometries having constant mean curvature. In

this chapter we also give explicit formulas and we give the geometric behavior

for surfaces invariant by one-parameter group of parabolic isometries having

constant mean curvature immersed in P̃ SL2(R, τ).

In this chapter we focus our attention on surfaces invariant by one-

parameter group of parabolic isometries. To study this kind of surface we take

the half space model for the hyperbolic space, that is, M2 = H2.

By Proposition 5.1.1, we know that, to obtain a parabolic motions on

P̃ SL2(R, τ), it is necessary consider a parabolic isometry on H2.

7.1

Surfaces invariant by one-parameter group of parabolic isometries main

lemma

The idea to obtain surfaces invariant by one-parameter group of parabolic

isometries is simple. We will take a curve in the yt plane and we will apply

one-parameter group Γ of parabolic isometries on P̃ SL2(R, τ). We denote by

α(y) = (0, y, u(y)) the curve in the yt plane and by S = Γ(α), the surfaces

invariant by one-parameter group of parabolic isometries generated by α.

Since the most simple parabolic isometry on H2 is the horizontal trans-

lation, then our surface S is parameterized by,

ϕ(x, y) = (x, y, u(y))
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Lemma 7.1.1. With the notations above, and denoting by H the mean

curvature of S, then the function u satisfies

u(y) =

∫
(dy − 2H)

√
1 + 4τ 2

y
√

1 − (dy − 2H)2
dy

where d is a real number.

Proof. The proof is analogous to the case of rotational surfaces. By complete-

ness we give it. Since S has mean curvature H , then by lemma 5.2.1 the

function u satisfies the equation

2H = divH2

(
α

W
e1 +

β

W
e2

)
, (7-1)

where W =
√

1 + α2 + β2, α = −2τ , and β =
uy

λ
.

Making:

Xu =
α

W
e1 +

β

W
e2

And let x0, x1 ∈ R with x0 < x1 and 0 < y0, y1 ∈ R with y0 < y1 and consider

the domain Ω = [x0, x1] × [y0, y1] in the plane xy.
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By integrating the equation (7-1), we obtain

∫

∂(Ω)

〈Xu, η〉 = 2HArea([x0, x1] × [y0, y1])

where η is the outer co-normal.

Since

∫

∂Ω

〈Xu, η〉 =

∫

γ1

〈Xu, η1〉 +

∫

γ2

〈Xu, η2〉 +

∫

γ3

〈Xu, η3〉 +

∫

γ4

〈Xu, η4〉

DBD
PUC-Rio - Certificação Digital Nº 0621213/CA



Surfaces of Constant Mean Curvature in Homogeneous Three Manifolds with

Emphasis in P̃SL2(R, τ) 111

we compute each integral.

For the fist integral: Observe that,

γ1(s) = (s, y0), x0 ≤ s ≤ x1.

This implies,

γ′1 = ∂x,

thus

|γ′1| = λ,

and

η1 = −e2.

Furthermore

〈Xu, η1〉 =
−β(y0)

W
,

hence ∫

γ1

〈Xu, η1〉 =

∫ x1

x0

−βλ
W

(x0)dx

For the third integral: Observe that,

γ3(s) = (x1 − s, y1), 0 ≤ s ≤ x1 − x0.

This implies,

γ′3 = −∂x,

thus

|γ′3| = λ,

and

η3 = e2.

Furthermore

〈Xu, η3〉 =
β(y1)

W
,

hence ∫

γ3

〈Xu, η3〉 =

∫ x1−x0

0

βλ

W
(y1)ds =

∫ x1

x0

βλ

W
(y1)dx
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For the second integral: Observe that,

γ2(s) = (x1, s), y0 ≤ s ≤ y1.

This implies,

γ′2 = ∂y,

thus

|γ′2| = λ,

and

η2 = e1.

Furthermore

〈Xu, η2〉 =
α

W
,

hence ∫

γ2

〈Xu, η2〉 =

∫ y1

y0

αλ

W
dy

For the four integral: Observe that,

γ4(s) = (x0, x1 − s), 0 ≤ s ≤ x1 − x0.

This implies,

γ′4 = ∂y,

thus

|γ′4| = λ,

and

η4 = −e1.

Furthermore

〈Xu, η4〉 = − α

W
,

hence ∫

γ4

〈Xu, η4〉 =

∫ y1−y0

0

−αλ(y1 − s)

W
ds =

∫ y1

x0

−αλ
W
dy

Taking into account this four integrals, we obtain:

∫

∂Ω

〈Xu, η〉 =

∫ x1

x0

βλ

W
(y1)dx−

∫ x1

x0

βλ

W
(y0)dx
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Observe that,

Area(Ω) =

∫ x1

x0

∫ y1

y0

√
det(gij)dydx

=

∫ x1

x0

∫ y1

y0

1

y2
dydx

Thus, we conclude that,

∫ x1

x0

βλ

W
(y1)dx−

∫ x1

x0

βλ

W
(y0)dx = 2H

∫ x1

x0

∫ y1

y0

λ2dydx

which we can write in the form,

∫ y1

y0

∂y

(
βλ

W
(y)

)
dy = 2H

∫ y1

y0

λ2dy

As Ω is any domain in the plane xy, and taking the derivative with respect to

y we obtain:

∂y

(
λβ

W

)
= 2Hλ2

by integrating this expression,

λ2β√
λ2 + 4τ 2λ2 + u2

y

= −2Hλ+ d

where d ∈ R. This implies,

u2
y[1 − (dy − 2H)2] = (dy − 2H)2[λ2 + 4τ 2λ2]

thus the function u satisfies,

u(ρ) =

∫
λ

(dy − 2H)
√

1 + 4τ 2

√
1 − (dy − 2H)2

dy

7.2

Examples of surfaces invariant by one-parameter group of parabolic

isometries in P̃SL2(R, τ)

After a straightforward computation we obtain the next lemma.

Lemma 7.2.1. The solution of the integral is given by

– If H ≡ 0, then

u(y) =
√

1 + 4τ 2 arcsin(dy)
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– If H =
1

2
, then

u(y) =
√

1 + 4τ 2 arcsin(dy − 1) +
2
√

1 + 4τ 2

tan(arcsin(cy−1)
2

) + 1

– If H >
1

2
, then

u(y) =
√

1 + 4τ 2 arcsin(dy − 2H) +

−4
√

1 + 4τ 2H√
4H2 − 1

arctan

(
2H tan(arcsin(dy−2H)

2
) + 1√

4H2 − 1

)

where d ∈ R.

Proof. We integrate each expression.

1. First, we consider the case H ≡ 0, then the integral

h(y) =
√

1 + 4τ 2

∫
dy − 2H

y

1√
1 − (dy − 2H)2

dy

becomes

h(y) =
√

1 + 4τ 2

∫
d

1√
1 − d2y2

dy

that is

h(y) =
√

1 + 4τ 2 arcsin(dy)

2. Second, we consider the case H = 1/2, but we are doing the same

computation to the case H 6= 0, then the integral

h(y) =
√

1 + 4τ 2

∫
dy − 2H

y

1√
1 − (dy − 2H)2

dy

we can write as

h(y) =
√

1 + 4τ 2

∫
1

y

dy − 2H√
1 − (dy − 2H)2

dy

now, we integrate by part, set

– u =
1

y
, then du = − 1

y2

– dv =
dy − 2H√

1 − (dy − 2H)2
, then v = −

√
1 − (dy − 2H)2

d
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so, the integral becomes,

h(y) =
√

1 + 4τ 2

[
−
√

1 − (dy − 2H)2

dy
− 1

d

∫ √
1 − (dy − 2H)2

y2
dy

]

now, we are going to integrate the integral

∫ √
1 − (dy − 2H)2

y2
dy

by substitution, making s = dy − 2H then ds = d.dy, and
1

y2
=

(
d

s+ 2H

)2

, thus

∫ √
1 − (dy − 2H)2

y2
dy = d

∫ √
1 − s2

(s+ 2H)2
ds

this least integral, we integrate by parts

– m =
√

1 − s2, then dm =
−s√
1 − s2

ds

– dn =
ds

(s+ 2H)2
, then n =

−1

s+ 2H

so, ∫ √
1 − s2

(s+ 2H)2
ds = −

√
1 − s2

s+ 2H
−
∫

s

(s+ 2H)

ds√
1 − s2

thus, we obtain,

h =
√

1 + 4τ 2

∫
s

(s+ 2H)

ds√
1 − s2

we make

h =
√

1 + 4τ 2

∫
s

(s+ 2H)

ds√
1 − s2

=
√

1 + 4τ 2

∫
s+ 2H − 2H

(s+ 2H)

ds√
1 − s2

=
√

1 + 4τ 2

∫
ds√

1 − s2
−
√

1 + 4τ 2

∫
2H

(s+ 2H)

ds√
1 − s2

=
√

1 + 4τ 2 arcsin(s) − 2
√

1 + 4τ 2H

∫
1

s+ 2H

ds√
1 − s2

that is

h =
√

1 + 4τ 2 arcsin(dy − 2H) − 2
√

1 + 4τ 2H

∫
1

s+ 2H

ds√
1 − s2
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to integrate the least integral, we set s = sin(p), then ds = cos(p)dp, so

h =
√

1 + 4τ 2 arcsin(dy − 2H) − 2
√

1 + 4τ 2H

∫
1

sin(p) + 2H
dp (7-2)

here, we consider that H = 1/2, then

h(y) =
√

1 + 4τ 2 arcsin(dy − 1) +
2
√

1 + 4τ 2

tan(arcsin(dy−1)
2

) + 1

3. Third, we consider H 6= 0, we follow the proof in the second case, thus

by using the equation (7-2), we obtain

h(y) =
√

1 + 4τ 2 arcsin(dy − 2H) +

−4
√

1 + 4τ 2H√
4H2 − 1

arctan

(
2H tan(arcsin(dy−2H)

2
) + 1√

4H2 − 1

)

This Lemma gives an immediate examples:

Example 7.2.1. Considering H ≡ 0, τ = −1/2 and d = 1, we obtain

a minimal surface invariant by one-parameter group of parabolic isometries

which is a vertical graph, by considering the rotation by π around the y axis we

obtain a complete embedded minimal surfaces invariant by parabolic isometries

in P̃ SL2(R, τ).

-6,5

1,51,251,0

-4,0

y

0,75
x

0,5
-1,5

0,250,0
0

1,0

1

2

3,5

3

6,0

4

Minimal Surfaces Invariant 
by Parabolic Isometries

Example 7.2.2. Considering H = 1/2, τ = −1/2 and d = 1/2, we obtain

u(y) =
√

2 arcsin(dy − 1) +
2
√

2

tan(arcsin(dy−1)
2

) + 1

with Maple’s help:
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Example 7.2.3. Finally, we plot a H = 2 surfaces invariant by parabolic

isometries. Putting d = 8, τ = −1/2 and H = 2, we obtain:

u(y) =
√

2 arcsin(8y − 2H) − 4
√

2H√
4H2 − 1

arctan

(
2H tan(arcsin(8y−2H)

2
) + 1√

4H2 − 1

)

By considering the rotation around the y axes we have a complete surface, here

we give part of this surface.
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1,0

-1,02

0,5

-0,82

-0,62

-0,42

0,00,0 0,25-0,5 0,5

x y

0,75-1,0 1,0

Parabolic Surface

7.3

Surfaces invariant by parabolic isometries in P̃SL2(R, τ) having constant

mean curvature H 6= 0

In this section we describe the behavior of surfaces invariant by parabolic

isometries, which have constant mean curvature H 6= 0. For later use we define

the function g(y) = dy − 2H .

Taking into account Formula (7.1.1), we obtain the next Lemma.

Lemma 7.3.1. Let H be the mean curvature of a surface invariant by parabolic

isometries. Then from the Formula (7.1.1) we obtain,

1. If d > 0, we have

– If 1/2 < H, then y1 < y < y2 where y1 =
2H − 1

d
and y2 =

2H + 1

d

and there exist a unique number y0 =
2H

d
∈ (y1, y2) satisfying

g(y0)=0. Furthermore g ≤ 0 on [y1, y0) and g ≥ 0 on (y0, y1].

Consequently, the function h(y) is defined on [y1, y2], has a nonfinite

derivative at y1 and y2, is strictly decreasing on (y1, y0) and strictly

creasing on (y0, y2).

– If 0 < H < 1/2, then 0 < y < y2 and there exist a unique number

y0 =
2H

d
∈ (0, y2) satisfying g(y0)=0. Furthermore g ≤ 0 on (0, y0)

and g ≥ 0 on (y0, y1]. Consequently, the function u(y) is defined on

(0, y2]. The function u has a nonfinite derivative at y2, is strictly

decreasing on (0, y0) and strictly creasing on (y0, y2).

2. If d < 0, we have
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– Here, necessarily 0 < H < 1/2. Setting d = −c, we have that,

0 < y < y2, where y2 =
1 − 2H

c
. Consequently, the function u(y) is

defined on (0, y2], has a nonfinite derivative y2, is strictly decreasing

on (0, y2).

Proof. Setting f(y) = 1 − (dy − 2H)2, then f(y) = 0 ⇐⇒ y =
2Hd± |d|

d2
. So

1. If d > 0, then y =
2H ± 1

d
, thus we consider two cases,

– If 2H−1 > 0, then f(y) > 0 ⇐⇒ y1 =
2H − 1

d
< y < y2 =

2H + 1

d
,

and this is clear that y1 < y0 =
2H

d
< y2. So the affirmation holds.

– If 2H − 1 < 0, then f(y) > 0 ⇐⇒ 0 < y < y2 =
2H + 1

d
, and this

is clear that 0 < y0 =
2H

d
< y2. So the affirmation holds.

2. If d < 0. Setting d = −c, with c > 0, then y =
−2Hc∓ c

c2
=

−2H ∓ 1

c
, since that y > 0, this implies that 1 − 2H > 0. So u′(y) =

−
√

2
cy + 2H

y
√

1 − (cy + 2H)2
, and 0 < y < y2 =

1 − 2H

c
, thus the function

u(y) is strictly decreasing and has a nonfinite derivative at y2. So the

affirmation holds.

Lemma 7.3.2. Letting y −→ y1, y2, we infer by a computation that the

curvature

k(ρ) =
u′′

(1 + (u′)2)3/2

goes to

– If d > 0 and H > 1/2,

k(y1) = − y2
1f

′(y1)

(1 + 4τ 2)g(y1)

k(y2) = − y2
2f

′(y2)

(1 + 4τ 2)g(y2)

– If d > 0 and 0 < H < 1/2

k(y2) = − 2dy2
2

1 + 4τ 2
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– If d < 0, this is d = −c, c > 0,

k(y2) =
2cy2

2

1 + 4τ 2

Proof. The proof is analogous to this one on Lemma (6.5.3). By considering

k(y) =
y
√

1 + 4τ 2

[y2f + (1 + 4τ 2)g2]3/2
[2yfg′ − 2gf − ygf ′]

As a consequence of Lemma (7.3.1), we have the next results.

Theorem 7.3.1. Let S be the H surface invariant by parabolic isometries

immersed into P̃ SL2(R, τ). Then, there exist a one-parameter family Pd,

d ∈ R of complete H-surfaces invariant by one-parameter group of parabolic

isometries such that,

1. For d > 0, and H > 1/2 the surface Pd is immersed (and nonembedded)

annulus, invariant by vertical translation, and is contained in the closed

region bounded by the vertical cylinders y = y1 and y = y2. See Fig. 3.a

2. For d > 0, and 0 < H < 1/2 the surface Pd is a properly immersed (and

nonembedded) annulus, it is symmetric with respect to slice t = 0, the

maximum value of y is y = y2. See Fig. 3.b

3. For d = −c < 0 and 0 < H < 1/2 the surface Pd is a properly embedded

annulus symmetric with respect to the slice t = 0, and the maximum

value of y is y = y2. See Fig. 3.c

4. When d tends to 0, then the surface Pd tends toward the surface

F (y) =
−2

√
1 + 4τ 2H ln(y)√

1 − 4H2
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a b c

Figure 3.− Generating curve for surfaces invariant by one-parameter group of

parabolic isometries with H 6= 1/2

Now, we consider the case H ≡ 1/2. In this case the function u from the

Lemma 7.1.1 become

u(y) =
√

1 + 4τ 2

∫
dy − 1

y

1√
1 − (dy − 1)2

dy (7-3)

We denote by f(y) = 1 − (dy − 1)2 and g(y) = dy − 1, so we obtain the next

lemma.

Lemma 7.3.3. By considering the surface S invariant by one-parameter group

of parabolic isometries with constant mean curvature H = 1/2, we obtain that

d > 0 and the function h(y) is defined for 0 < y < y2 =
2

d
. Furthermore,

there exist a number y0 =
1

d
with 0 < y0 < y2 such that g(y) is positive for

0 < y < y0, g(y0) = 0 and g(y) is negative for y0 < y < y2. Consequently the

function h(y) is strictly decreasing for 0 < y < y0, has a horizontal tangent at

y = y0 and is strictly increasing for y0 < y < y2.

Proof. The function f(y) > 0 ⇔ (dy − 1)2 < 1 ⇔ −1 < dy − 1 < 1 ⇔
0 < dy < 2, since y > 0 this implies that d > 0, so 0 < y < y2 =

2

d
, observe

that f(y) = 0 ⇔ either y = 0 or y =
2

d
. Observe that 0 < y0 =

1

d
<

2

d
, then

g(y) is positive for 0 < y < y0, g(y0) = 0 and g(y) is negative for y0 < y < y2.

Consequently the function h(y) is strictly decreasing for 0 < y < y0, has a

horizontal tangent at y = y0 and is strictly increasing for y0 < y < y2.

Considering H = 1/2, we have the next Lemma.
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Lemma 7.3.4. Letting y −→ y2, we infer by a computation that the curvature

k(ρ) =
u′′

(1 + (u′)2)3/2

goes to

k(y2) = − 2dy2
2

1 + 4τ 2

Proof. The proof is analogous to this one on Lemma (6.5.3).

As a consequence of Lemma 7.3.3 we have the next result.

Theorem 7.3.2. Let S be the H = 1/2 surface invariant by parabolic

isometries immersed into P̃ SL2(R, τ). Then, there exist a one-parameter

family Jd, d ∈ R+ of complete H-surfaces invariant by one-parameter group of

parabolic isometries such that the surface Jd is a properly immersed (and non-

embedded) annulus, it is symmetric with respect to slice t = 0, the maximum

value of y is y = y2. See Fig. 4

Figure 4..- Generating curve for surfaces invariant by one-parameter group of

parabolic isometries with H ≡ 1/2
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