

Lincoln da Cunha Lopes

Controle metrológico da cor aplicado à Estamparia digital de materiais têxteis

Dissertação de Mestrado

Dissertação apresentada ao Programa de Pós-Graduação em Metrologia da PUC-Rio como requisito parcial para obtenção do título de Mestre em Metrologia. Área de Concentração: Metrologia para Qualidade e Inovação.

> Orientadores: Prof. Robert Hirschler, PhD Prof. Maurício Nogueira Frota, PhD

Lincoln da Cunha Lopes

Controle metrológico da cor aplicado à estamparia digital de materiais têxteis

Dissertação apresentada como requisito parcial para obtenção do título de Mestre pelo Programa de Pós-Graduação em Metrologia para Qualidade Industrial da PUC-Rio. Aprovada pela Comissão Examinadora abaixo assinada.

> Prof. Robert Hirschler, PhD Orientador SENAI

Antonio José Junqueira Botelho PUC-Rio

> Carlos Roberto Hall Barbosa PUC-Rio

José leonardo Ribeiro Macrini Instituto de Estudos em Saúde Coletiva

José Eugênio Leal Coordenador(a) Setorial do Centro Técnico Científico - PUC-Rio

Rio de Janeiro, 11 de setembro de 2009

Todos os direitos reservados. É proibida a reprodução total ou parcial do trabalho sem autorização da universidade, do autor e do orientador.

Lincoln da Cunha Lopes

Graduou-se em Engenharia Industrial Têxtil pela Universidade do Estado do Rio de Janeiro – UERJ – Faculdade SENAI-CETIQT, em 1980. Engenheiro do Laboratório de Colorimetria e Professor do SENAI-CETIQT desde 1985.

Ficha Catalográfica

Lincoln da Cunha Lopes

Controle metrológico da cor aplicado à estamparia digital de materiais têxteis / Lincoln da Cunha Lopes; Orientador: Robert Hirshler, PhD; Co-orientador: Mauricio Nogueira Frota, PhD-2009.

142 f.: il. (color); 30 cm

Dissertação (Mestrado em Metrologia para a Qualidade e Inovação) – Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, 2009. Inclui bibliografia e anexos.

Teses. 1. Metrologia 2. Medicão. 4. Colorimetria. 5. 3.Espectrofotometria de Refletância. Estamparia Digital Têxtil. 6. Uniformidade. 7. Repetitividade. 8. Reprodutibilidade. I Robert Hirshler. II. Mauricio Nogueira Frota. III. Pontifícia Universidade Católica do Rio de Janeiro, rio de Janeiro. Programa de Pós-Graduação em Metrologia. IV. Titulo.

CDD: 389.1

Dedico este trabalho ao Diretor Geral do SENAI-CETIQT

Professor Alexandre Figueira Rodrigues.

Agradecimentos

A DEUS, meu fôlego de vida.

A minha esposa Vera Lucia Leal Duarte, pelo apoio constante e compreensão.

Aos Organizadores do convênio entre as instituições, Senai-Cetiqt e PUC-Rio, que assim fomentam o crescimento científico em nosso País.

Aos Professores Orientadores, Robert Hirschler e Maurício Nogueira Frota, pelo conhecimento transmitido e incansável dedicação.

Aos membros da Comissão Examinadora por aceitarem revisar o trabalho e pelas valiosas sugestões.

A todo corpo Docente e Funcionários da Pós-Graduação em Metrologia da PUC-Rio.

Aos colegas do Laboratório de Colorimetria pelo do SENAI-CETIQT, pelo apoio e incentivo.

A todos que de alguma forma colaboraram com este trabalho.

Resumo

Lopes, Lincoln da Cunha; Frota, Maurício Nogueira **Controle metrológico** da cor aplicado à estamparia digital de materiais têxteis. Rio de Janeiro, 2009. 142p. Dissertação de Mestrado – Programa de Pós-Graduação em Metrologia, Qualidade e Inovação, Pontifícia Universidade Católica do Rio de Janeiro.

O objetivo da presente Dissertação é identificar carências na gestão do perfil de cor em processos de estamparia digital têxtil. Em particular na compatibilização do input de cor submetido à impressora e a resposta desejada. Assim, constituíram motivação para o desenvolvimento desta pesquisa (i) analisar a reprodução de cor a partir do desenho no programa do computador até a estampa final; (ii) melhorar a qualidade dos produtos têxteis em função da maior uniformidade de cor; (iii) diminuir custo com artigos fora de especificação; (iv) minimizar erro no processamento das informações do cliente. No contexto de uma iniciativa pró-ativa do SENAI-CETIQT de se antecipar a uma necessidade mercadológica para identificar carências na preparação de perfis de cor para impressão em estamparia têxtil digital, foi aplicada a seguinte metodologia: (i) identificação dos parâmetros interdependentes por meio de séries de medições espectrofotométricas de estampas produzidas digitalmente; (ii) avaliação do desvio de cor em relação à largura do tecido, (iii) avaliação do desvio de cor em relação ao comprimento do tecido; (iv) avaliação do desvio de cor de impressoras digitais jato de tinta, jato de cera e laser; (v) avaliação metrológica e estatística das medições. Dentre os resultados da pesquisa destacam-se (i) o cálculo da uniformidade em áreas em tecido estampados digitalmente; (ii) determinação da variação de cor na largura do tecido; (iii) repetitividade de cor no comprimento do tecido; (iv) repetitividade de cor sobre papel, utilizando tecnologias jato de tinta, cera e laser; (iv) reprodutibilidade entre os valores nominais e os obtidos por espectrofotometria de refletância. Como conclusão tem-se que a impressora digital têxtil foi validada para a aplicação a que se destina, com base em sua boa uniformidade e boa repetitividade. O software do equipamento não permite muitas variações de parâmetros de cor, conseqüentemente não foram observadas mudanças significativas na qualidade do substrato têxtil estampado.

Palavras-chave

Metrologia, Estamparia Têxtil Digital, Colorimetria, Espectrofotômetro de

Abstract

Lopes, Lincoln da Cunha; Frota, Maurício Nogueira. **Metrological control** of color in digital textile printing. Rio de Janeiro, 2009. 142p. MSc. Dissertation – Programa de Pós Graduação em Metrologia, Qualidade e inovação, Pontifícia Universidade Católica do Rio de Janeiro.

The objective of this dissertation is to identify deficiencies in the management of the color profile in cases of digital textile printing. In particular the compatibility of the input color printer and submitted to the desired response. So, were motivation for the development of this research (i) analyze the color reproduction from the drawing in the computer program until the final pattern, (ii) improve the quality of textiles due to the greater color uniformity, and (iii) lower cost items out of specification (iv) minimize error in the processing of customer information. In the **context** of a proactive initiative of SENAI-CETIQT to anticipate a need to identify marketable shortcomings in the preparation of color profiles for printing in digital textile printing. It was applied the following methodology: (i) identification of interdependent parameters through series of а spectrophotometer measurements of digitally produced prints, (ii) evaluation of the color shifting in the width of the fabric, (iii) assessment of the color shifting in relation to length of tissue, (iv) assessing the deviation of color digital printers inkjet, laser and wax, (v) evaluation measurements and statistical measurements. Among the search **results** are (i) the calculation of uniformity in areas digitally printed fabric, (ii) determining the color variation in the width of fabric, (iii) repeatability of color in the length of the tissue, (iv) repeatability color on paper, using ink jet technology, wax and laser (iv) reproducibility between nominal values and those obtained by reflectance spectrophotometer. As a **conclusion**, that the copier has been validated for the intended application on the basis of their good uniformity, good repeatability and good reproducibility. The product software does not allow many variations of color parameters, therefore there were no significant changes in the quality of the printed textile substrate.

Keyword

Metrology, Digital textile printing, Colorimetric, Reflectance, Spectrophotometer.

Sumário

1 Introdução	20
1.1. Contexto e definição do problema	20
1.2. Objetivos	20
1.3. Motivação	21
1.4. Metodologia	21
1.5. Estrutura da dissertação	21
2 Fundamentos da colorimetria	24
2.1. A cor ao nível físico	25
2.1.1. Composição da luz	25
2.1.2. Curvas de distribuições de refletância espectrais	35
2.2. A cor ao nível psicofísico	41
2.2.1. O Sistema visual humano e a percepção de cor	41
2.2.2. O observador padrão	43
2.2.3. Mistura aditiva de cores	45
2.2.4. Mistura partitivas de cores	47
2.3. A cor ao nível psicométrico	48
2.3.1. O experimento de MacAdam	48
2.3.2. O espaço colorimétrico CIELAB	50
2.4. A cor ao nível perceptual	53
2.4.1. O sistema Munsell	53
2.4.2. Outros sistemas	56
2.5. Métodos de avaliação por colorimetria	58
2.5.1. Métodos Visuais	59
2.5.2. Métodos Instrumentais	59
2.5.3. Potencial do método espectrofotométrico	63
3 Fundamentos da Estamparia Digital	67
3.1. O sistema jato de tinta na estamparia digital	70
3.1.1. O sistema jato de tinta contínuo	73
3.1.2. O sistema jato de tinta Intermitente	76
3.2. Equipamentos para estamparia digital têxtil	84
3.2.1. Impressoras digitais	85

3.2.2. Equipamentos para pré e pós-tratamento	91
3.3. Processos químico têxteis	95
3.3.1. Processos no pré-tratamento	96
3.3.2. Tintas têxteis	102
3.3.3. Processos no pós-tratamento	106
4 Controle metrológico da cor pelo método espectrofotométrico	109
4.1. A caracterização do trabalho experimental	109
4.2. Avaliação da regularidade	118
4.2.1. Uniformidade	119
4.2.2. Repetitividade têxtil	121
4.2.3. Repetitividade no papel	123
4.2.4. Reprodutibilidade entre valores nominais e reais	125
4.2.5. Reprodutibilidade entre os três processos papel	127
4.2.6. Reprodutibilidade entre os processos têxtil e papel	128
5 Conclusões e recomendações	131

5 Conclusões e recomendações

√° 0621484/CA
io Digital N
 Certificaçã
PUC-Rio -

Figura 1. — O espectro eletromagnético. (Fonte: modificado de
www.outreach.atnf.csiro.au Acesso em 2009)25
Figura 2. — A decomposição da luz branca, surgindo o espectro visível26
Figura 3 A decomposição do espectro. (a) luz branca, (b) luz azul, (c) luz
verde, (d) luz vermelha, (e) luz ciano, (f) luz amarela e (g) luz magenta26
Figura 4. — Distribuição espectral (SPD) de alguns iluminantes27
Figura 5. — Figura 2.5: Localização do radiador de Planck no plano de
cromaticidade28
Figura 6. — Figura 2.6: Distribuição espectral de um iluminante A, lâmpada de
Tungstênio de 100W29
Figura 7. — Figura 2.7: Distribuição espectral da luz natural
Figura 8 Figura 2.8: Distribuição espectral do iluminante D6530
Figura 9 Figura 2.9: Representação esquemática da re-emissão de UV na
faixa visível (o fenômeno da fluorescência)30
Figura 10 Figura 2.10: Uma mesma amostra exposta a diferentes fontes de
luz31
Figura 11.— Figura 2.11: Formas como um material pode modificar a luz31
Figura 12.—Figura 2.12: Reflexão difusa e especular em uma superfície opaca32
Figura 13.— Figura 2.13: Transmitância regular e absorção não-seletiva. Fonte:
experimentos realizados nos laboratórios do SENAI-Cetiqt32
Figura 14.— Figura 2.14: Transmitância difusa não-seletiva, sem absorção.
Fonte: experimentos realizados nos laboratórios do SENAI-Cetiqt32
Figura 15.—Figura 2.15: Transmitância regular e absorção seletiva com filtro
azul. Fonte: experimentos realizados nos laboratórios do SENAI-Cetiqt34
Figura 16.— Figura 2.16: Transmitância regular e absorção seletiva com filtro
vermelho. Fonte: experimentos realizados nos laboratórios do SENAI-
Cetiqt34
Figura 17.— Figura 2.17: Transmitância regular e absorção seletiva com filtro
verde. Fonte: experimentos realizados nos laboratórios do SENAI-Cetiqt35
Figura 18.— Figura 2.18: Transmitância regular e absorção seletiva com filtro
amarelo. Fonte: experimentos realizados nos laboratórios do SENAI-Cetiqt.
Figura 19. — Figura 2.19 Exemplo de curva de refletância de um substrato
colorido35
Figura 20. — Curva de refletância de um objeto branco REAL
Figura 21. — Figura 2.21: Curva de refletância de um objeto preto REAL36

Figura 22. — Figura 2.22: Curva de refletância de um objeto cinza IDEAL36
Figura 23. — Figura 2.23: Metamerismos de Iluminação
Figura 24. — Figura 2.24: Cores primárias subtrativas nas bordas (ciano,
magenta e amarelo) e primárias aditivas nas intercessões (vermelho, verde
e azul)
Figura 25. — Figura 2.25: Representação do sistema subtrativo obtida quando
os espectro azul e vermelho são filtrados38
Figura 26. — 2.26: Curvas de refletância do amarelo, do ciano e do verde39
Figura 27. — Figura 2.27: Representação do sistema subtrativo filtrando o
espectro azul e o verde
Figura 28. — Figura 2.28: Curvas de refletância do amarelo, do magenta e do
vermelho
Figura 29. — Figura 2.29: Representação do sistema subtrativo filtrando o
vermelho e o verde40
Figura 30. — Figura 2.30: Curvas de refletância do amarelo, do magenta e do
vermelho40
Figura 31. — Figura 2.31: Reflexão em um pigmento ideal (a) e no pigmento real
(b)41
Figura 32. — Figura 2.32: Representação do olho humano, mostrando os cones
e bastonetes. Fonte: modificado de www.vision.ime.usp.br. Acesso em
2009)
Figura 33. — Figura 2.33: Distribuição do nível de sensibilidade dos três tipos de
cones da retina42
Figura 34. — Figura 2.34 a e b: Esquema de envio de sinais ao cérebro43
Figura 35. — Figura 2.35: A visão normal e as formas de daltonismo
Figura 36. — Figura 2.36: Experimentação do triestímulo
Figura 37. — Figura 2.37: Curvas dos valores triestímulos para observadores de
2º e 10º
Figura 38. — Figura 2.38: Diagrama de Cromaticidade da CIE. (Schandra, 2007)
Figura 39. — Figura 2.39: Representação do sistema aditivo de cores
Figura 40. —Figura 2.40: Combinação de luzes verde/azul (a), vermelho/azul (b)
e vermelho/verde (c)
Figura 41. — Figura 2.41: Reta de mesma luminosidade no Diagrama de
Cromaticidade CIE
Figura 42. — Figura 2.42: Disco de Maxwell estático (a) e em movimento (b) 47
Figura 43. — Fig 2.43: Fibras antes da mistura (a) e após mistura íntima (b)48

Figura 44. — Figura 2.44: Elipses de MacAdam mostrando a variação de
cromaticidade49
Figura 45. — Figura 2.45: Elipsóides de MacAdam-Brown no espaço xyY50
Figura 46 Figura 2.46: Diagrama de cromaticidade. (Fonte: modificado de
[www.efg2.com/lab]51
Figura 47. — Figura 2.47: O espaço CIELAB51
Figura 48. — Figura 2.48: Representação tridimensional do Sistema Munsell53
Figura 49. — Figura 2.49: Representação do círculo de tonalidade
Figura 50. — Figura 2.50: Sistema Munsell de ordenação de cores
Figura 51. — Fig 2.51: Representação do círculo de tonalidade de Munsell55
Figura 52 Fig 2.52: Folhas do livro de cores de Munsell (Munsell Book of
Colors)
Figura 53. — Figura 2.53: Conceito do sistema Oswald e NCS
Figura 54. — Figura 2.54: Representação do círculo de tonalidade NCS
Figura 55. — Representação tridimensional das cores do sistema NCS57
Figura 56. — Figura 2.56: Círculo de tonalidades de Goethe (a) e de Chevreul (b)
Figura 58. — Figura 2.57: Círculo cromático de Itten (a) e de Feisner (b)
Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web,
Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente
 Figura 59. — Figura 2.58: Círculo cromático para aquarela e trabalhos na web, respectivamente

Figura 68. — Figura 3.3: Impressão com pontos de área constante (a) e com
área variável
Figura 69. — Figura 3.4: Formato de orifícios de saída de diversos fabricantes.
(Fonte: modificado de www.chipworks.com Acesso em 2009)71
Figura 70. — Figura 3.5: Imagem ampliada do orifício da cabeça Spectra-M \dots 72
Figura 71. — Figura 3.6: Esquema de classificação da tecnologia de impressão
jato de tinta72
Figura 72. — Figura 3.7: Cabeça de impressão com eletrodos de carga e placas
de deflexão73
Figura 73. — Figura 3.8: Esquema de funcionamento de um mecanismo
piezoelétrico74
Figura 74. — Figura 3.9: Esquema de cabeça de impressão com mecanismo de
deflexão binária74
Figura 75. — Figura 3.10: Esquema de cabeça de impressão com mecanismo de
deflexão múltipla75
Figura 76. — Figura 3.11: Esquema de cabeça de impressão com sistema Hertz
Figura 77. — Figura 3.12: Esquema de cabeça com mecanismo de excitação
térmica76
Figura 78. — Figura 3.13: Esquema de cabeça com transdutor piezoelétrico na
parede76
Figura 79. — Figura 3.14: Esquema de cabeça com transdutor piezoelétrico
modo Deformação77
Figura 80. — Figura 3.15: Esquema de cabeça com transdutor piezoelétrico
modo Deformação Xaar77
Figura 81. — Figura 3.17: Esquema de cabeça com transdutor piezoelétrico
modo Pressão78
Figura 82. — Figura 3.18: Esquema de cabeça com transdutor piezoelétrico
modo Compressão78
Figura 83. — Figura 3.19: Esquema de cabeça Piezoelétrico modo Vibração de
Saída
Figura 84. — Figura 3.20: Esquema de cabeça Piezoelétrico modo Membrana
Porosa
Figura 85. — Figura 3.21: Esquema de cabeça térmica do tipo Acionamento
Superior80
Figura 86. — Figura 3.22: Esquema de cabeça térmica do tipo Acionamento
Lateral80

Figura 87. — Figura 3.23: Esquema de cabeça térmica do tipo Acionamento Inferior
Figura 88. — Figura 3.24: Esquema de cabeça térmica do tipo Multi
Aquecimento
Figura 89. — Figura 3.25: Esquema de cabeca térmica do tipo Acionamento
Superior Sonv
Figura 90. — Figura 3.26: Esquema de cabeca térmica do tipo Aquecimento
Flutuante
Figura 91. — Fig 3.27: Esquema de cabeca térmica do tipo Elemento Móvel82
Figura 92. — Figura 3.28: Esquema de cabeca DOD do tipo Eletrostático
Figura 93. — Figura 3.29: Esquema de cabeca DOD do tipo Acústico
Figura 94. — Figura 3.30: Esquema de cabeca DOD do tipo Termomecânico83
Figura 95. — Figura 3.31: Esquema de cabeca DOD do tipo Eletro-hidro-
dinâmico
Figura 96. — Figura 3.32: Esquema de cabeca DOD do tipo Tensão superficial84
Figura 97. — Figura 3.34: Máguina de estampar digital MIMAKI Tx3-1600 Textile
Jet
Figura 98. — Figura 3.35: Máguina digital marca Reggiane Macchine, modelo
DBeAM
Figura 99. — Figura 3.36: Máguina de estampar digital marca Dupont, modelo
Artistri
Figura 100. — Figura 3.37: Máguina de estampar digital marca Ichinose, modelo
IP-2/2030 88
Figura 101 — Figura 3.38: Máguina Konica-Minolta, modelo Nassenger 7 TX 88
Figura 102 — Figura 3.39: Máguina de estampar digital marca Bobustelli
modelo Monnal isa 88
Figura 103 — Figura 3.40: Máguina de estampar digital marca Osiris, modelo
lsis
Figura 104 — Figura 3.41: Vista de entrada do tecido na Máguina de estampar
COLARIS 89
Figura 105 — Figura 3.42: Vista de saída do tecido na Máguina de estampar
COLARIS 90
Figura 106 — Figura 3 43: Máguina de estampar digital marca STORK modelo
Tourmaline 90
Figura 107 — Fluxo do processo de impressão digital 92
Figura 108 — Figura 3.44: Máquina Rama modelo MS-Ministenter da marca
MS-Italy 92

Figura 109. — Figura 3.45: Vaporizador contínuo modelo MS-Vapo Cont 15 SC
da marca MS-Italy93
Figura 110. — Figura 3.46: Máquina para lavagem contínua modelo MS-Waster
da marca MS-Italy93
Figura 111. — Figura 3.47: Máquina Lavadora/ Impregnadora contínua modelo
Wash-X da marca Rimslow94
Figura 112. — Figura 3.48: Passamento de tecido na Rimslow Wash-X, como
Impregnadora contínua94
Figura 113 Figura 3.49: Passamento de tecido na Rimslow Wash-X, como
Lavadora contínua95
Figura 114. — Figura 3.50: Vaporizador contínuo Rimslow Steam XL-185095
Figura 115. — Figura 3.51: Importância do Espessante no Pré-tratamento97
Figura 116. — Figura 3.53: Formulação típica de matéria corante utilizada na
DDP
Figura 117. — Figura 3.54: Representação esquemática da ligação covalente
celulose-corante reativo
Figura 118. — Figura 3.55: Estrutura molecular plana do corante ácido Amarelo
23105
Figura 119. — Figura 3.56: Estrutura molecular plana do corante disperso
Vermelho 60106
Figura 120. — Figura 4.1: Espectrofotômetro de bancada Minolta modelo CM-
3720d110
Figura 121. — Figura 4.2: Certificado de calibração e caixa de 12 azulejos
calibrados pelo NPL110
Figura 122. — Figura 4.4: Coleção Munsell com as cores escolhidas114
Figura 123 Figura 4.5: SpectraMatch, software do Minolta 3720d, com os
parâmetros de medição114
Figura 124. — Figura 4.7: Organização das cores no PhotoShop v.CS2116
Figura 125. — Figura 4.8: Máquina de estampar digital marca Stork, modelo
Tourmaline116
Figura 126. — Figura 4.9: Telas do programa Stork Job Editor
Figura 127. — Figura 4.10: Telas de seleção de perfil do programa Stork Job
Figura 127. — Figura 4.10: Telas de seleção de perfil do programa Stork Job editor
 Figura 127. — Figura 4.10: Telas de seleção de perfil do programa Stork Job editor
 Figura 127. — Figura 4.10: Telas de seleção de perfil do programa Stork Job editor